Adaptive Congestion Control

Kevin Jeffay
Department of Computer Science
University of North Carolina at Chapel Hill
jeffay@cs.unc.edu
November 23, 1999

http://www.cs.unc.edu/~jeffay/courses/comp249f99

Best-Effort Multimedia Networking
Outline

◆ IP message delivery semantics
 » The four common Internet pathologies

◆ Ameliorating the effects of delay-jitter
 » “60 ways to queue & play your media samples”

◆ Ameliorating the effects of packet loss
 » Recovery of lost samples through retransmission
 » Recovery of lost samples through the addition of redundant information

◆ Congestion control
 » Adaptive media scaling and packaging
Best-Effort Multimedia Networking

Congestion control

- Delay-jitter buffering, retransmission, and forward error correction ameliorate the effects of variation in end-to-end delay and packet loss
 » They do not attempt to address the root cause

- Congestion control aims to eliminate or reduce these effects

Congestion Control

What is congestion?
Congestion Control

The nature of congestion

- What causes congestion?
 - Did our multimedia stream(s) cause the network to be congested?
 - Are there simply too many connections competing for too little bandwidth?

Congestion Control

The adaptive, best-effort, congestion control problem

- How can we make the best use of the (time varying) bandwidth that is available to our streams?
 - How can we determine what this bandwidth is?
 - How can we track how it changes over time?
 - How can we match our codec(s)’s output the bandwidth “available” to our application?
Adaptive, Best-Effort Congestion Control

Principles of operation

- Receivers periodically report throughput & loss statistics
- Sender adapts to match the bandwidth available
 » Assume sufficient bandwidth exists for some useful execution of the system

Canonical Adaptive Congestion Control

Video bit-rate scaling

- Temporal scaling
 » Reduce the resolution of the stream by reducing the frame rate
- Spatial scaling
 » Reduce the number of pixels in an image
- Frequency scaling
 » Reduce the number of DCT coefficients used in compression
- Amplitude scaling
 » Reduce the color depth of each pixel in the image
- Color space scaling
 » Reduce the number of colors available for displaying the image
UNC Adaptive Congestion Control
2-Dimensional media scaling

◆ Canonical approach to congestion
 » Reduce (video) bit-rate

◆ Alternate approach
 » View congestion control as a search of a 2-dimensional bit-rate x packet-rate space
 » Scale bit- and packet-rates simultaneously to find a sustainable operating point

Bit- and Packet-Rate Scaling
An analytic model of media scaling

◆ Capacity constraints
 » the network is incapable of supporting the desired bit rate in any form

◆ Access constraints
 » the network can not support the desired bit rate with the current packaging scheme
Two Types of Congestion Constraints
Two dimensions of adaptation

- Reduce the packet-rate to adapt to an access constraint
 » Change the packaging or send fewer video frames
 » Primary Trade-off: higher latency (potentially)

- Reduce the bit-rate to adapt to a capacity constraint
 » Send fewer video frames or fewer bits per video frame
 » Primary Trade-off: lower fidelity

2-Dimensional Scaling Example
The “Recent Success” heuristic

- Initial operating point:

 \(\text{(high quality, 12 fps)} \)

- First adaptation:

 \(\text{(high quality, 10 fps)} \)
 » congestion persists

- Second adaptation:

 \(\text{(medium quality, 10 fps)} \)
 » congestion relieved

- First probe:

 \(\text{(medium quality, 12 fps)} \)

- Second probe:

 \(\text{(medium quality, 14 fps)} \)
The search space can be pruned by eliminating:

- Points that inherently lead to high latency
- Points that lead to high latency given the state of the network

The problem

- A sender can only (directly) effect the *message rate*, not the *packet rate*

Does fragmentation render message-rate scaling obsolete?
Adaptive, 2-Dimensional Media Scaling
Does it work?

❖ Campus-szed internets — yes!
 » It “solves” the first-mile/last-mile problem

Media Scaling Evaluation on the UNC Campus
Performance with no media scaling
Media Scaling Evaluation on the UNC Campus
Performance with video scaling only

Throughput (frames/sec)

Packet Loss

Audio Latency (ms)

Video Latency (ms)

Media Scaling Evaluation on the UNC Campus
Performance with 2-dimensional scaling

Throughput (frames/sec)

Packet Loss

Audio Latency (ms)

Video Latency (ms)
Media Scaling Evaluation on the UNC Campus
2-dimensional adaptation over time

Adaptive, 2-Dimensional Media Scaling
Does it work?

- Campus-szed internets — yes!
 » It “solves” the first-mile/last-mile problem

- The Internet? — well...
 » Does our necessary condition for success hold?
 » Does it hold often enough to be useful?
 » How much “room” is there for 2-D scaling in most codecs?
Media Scaling Evaluation on the Internet

Media scaling in Intel’s ProShare™ codec

Proshare operating points

Media Scaling Evaluation on the Internet

ProShare with no media scaling
Media Scaling Evaluation on the Internet
ProShare with 2-dimensional media scaling

Throughput (frames/sec)
Packet Loss
Audio Latency (ms)
Video Latency (ms)

Media Scaling Evaluation on the Internet
ProShare with video scaling only

Throughput (frames/sec)
Packet Loss
Audio Latency (ms)
Video Latency (ms)
Media Scaling Evaluation on the Internet
ProShare with 2-dimensional media scaling

Sustainability Results
Adaptive methods on the Internet

- Results of an Internet performance study from UNC to UVa
 - Repeated trials from 10 am to 7 PM weekdays
 - Trials separated by at least two hours
 - Scattered over three months

<table>
<thead>
<tr>
<th>Time Slot</th>
<th>Sustainable</th>
<th>Not Sustainable</th>
<th>% Sustainable</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00-12:00</td>
<td>6</td>
<td>3</td>
<td>67%</td>
</tr>
<tr>
<td>12:00-14:00</td>
<td>4</td>
<td>4</td>
<td>50%</td>
</tr>
<tr>
<td>14:00-16:00</td>
<td>1</td>
<td>11</td>
<td>8%</td>
</tr>
<tr>
<td>16:00-18:00</td>
<td>3</td>
<td>9</td>
<td>25%</td>
</tr>
<tr>
<td>18:00-20:00</td>
<td>4</td>
<td>5</td>
<td>44%</td>
</tr>
<tr>
<td>Percentage</td>
<td>36%</td>
<td>64%</td>
<td></td>
</tr>
</tbody>
</table>