The Multimedia Transport Protocol RTP

Kevin Jeffay
Department of Computer Science
University of North Carolina at Chapel Hill
jeffay@cs.unc.edu
September 28, 1999

http://www.cs.unc.edu/~jeffay/courses/comp249f99

The Multimedia Transport Protocol RTP
Introduction

- How should one transmit audio and video streams over an internetwork?
- Do we need a new protocol?
 » What’s wrong with TCP?
 » With UDP?
Multimedia Data Transport

Requirements

- Media synchronization & codec control
 - Inter-stream synchronization
 - Inter-receiver synchronization

- Quality-of-service management
 - Receiver selectable services
 - Feedback to media generation sources on network performance

- Application control
 - Media adaptation

- Reliable transmission
 - Depends...

Multimedia Data Transport

Multicast requirements

- The peculiarities of multicast and IP-multicast require special protocol/application support
Multicast Primer

Multicast addressing: The 4 major classes of IP addresses

- **Class A addresses**
 - 128 networks
 - more than 65,536 hosts

- **Class B addresses**
 - 16,384 networks
 - 256 to 65,536 hosts

- **Class C addresses**
 - \(2^{21}\) networks
 - less than 256 hosts

- **Class D addresses**
 - 28-bit multicast addresses
 - no origin or network information is encoded

Multicast Primer

Multicast addressing & multicast groups

- Multicast addresses can only be used as a destination address
- Multicast addresses correspond to a *multicast group*
 - Groups may be of *any* size
 - Group members may be located *anywhere* in the Internet
 - Hosts can join and leave groups at will
 - There is no “list” of group members
 - A sender cannot tell who, or if anyone, received any message
 - *Senders need not be members of the group*
The peculiarities of multicast and IP-multicast require special protocol/application support

- Mixing, bridging, transcoding
- Tunneling through firewalls
- Encryption

A media gateway is an entity on the path from a source to a destination that receives, manipulates, and retransmits media

Gateways can be either:
- Active — emulating the behavior of a media source
- Passive — forwarding streams in a transparent manner
Media Gateways

Active gateways

- Active gateways modify streams through some form of:
 - Transcoding, recoding
- Applications
 - Mixing/bridging for composite media transmission
 - Transcoding/mixing for low bandwidth links

Media Gateways

Passive gateways

- Passive gateways provide filtering/transcoding functions that are logically transparent to the receivers
- Applications
 - Application-level filters
 - Multicast to unicast replicators
 - Encryption
 - Simple transcoding
The Multimedia Transport Protocol RTP
Overview

◆ RTP data delivery services:
 » Multicast & unicast stream delivery
 » Bridging, translation, transcoding, & encryption

◆ RTP conference control services:
 » Stream timing and synchronization
 » Performance monitoring & media adaptation
The Multimedia Transport Protocol RTP

Protocol components

- RTP
 - Multicast & unicast stream delivery
- RTCP
 - Conference control and feedback
- Mixers, monitors, & translators
 - RTP media gateways
- RTP profiles
 - RTP/RTCP message formats and semantics
- RTP payload specifications
 - RTP message formats

RTP Protocol Architecture

Protocol layering

- RTP is an application-level, datagram protocol
- Traditional transport services such as:
 - addressing,
 - segmentation/reassembly,
 - quality-of-service, and
 - delivery semantics
 - are all provided by a lower level protocol
RTP Concepts and Terms

Sessions

- An RTP *session* is the sending and receiving of RTP data by a group of participants
 - For each participant a session is a (pair of) transport addresses used by a participant to communicate with the group

- If multiple media types are communicated by the group, the transmission of each medium constitutes a session
RTP Concepts and Terms

Synchronization sources

- Each source of RTP packets is called a *synchronization source*
 - Identified by a unique, randomly chosen 32-bit ID (the SSRC)
- A host generating multiple streams within a single RTP session must use a different SSRC per stream

RTP Concepts and Terms

Basics of data transmission

- A basic RTP message consists of
 - Synchronization source identifier of sender
 - Sequence number
 - Timestamp
 - Media data unit(s)
An RTP mixer is an intermediate system that receives & combines packets of one or more RTP sessions into a new packet

» Streams may be transcoded, special effects may be performed
» A mixer will typically have to define synchronization relationships between streams
» Resulting stream is multicast to a new group address

A mixer defines synchronization relationships between streams, thus...

Mixers are *synchronization sources*

» Sources that are mixed together become *contributing sources* (*CSRC*)
An intermediate system that...

» Connects two or more transport-level networks
 - Multicasting through a firewall
 - RTP dissemination across/into non-IP networks

» or...

Or... an intermediate system that modifies the stream without changing the stream’s timing

Sample translator functions:

» Encryption
» Frame-level transcoding or re-packing
» Protocol translation
Translators forward packets with SSRC identifiers intact
 » Translators are transparent to participants

As with mixers, output must be sent to a new multicast group address

RTP Gateways
Mixers and Translators example
Mixers and Translators
Message forwarding loops

- If gateways transmit to multicast group addresses to which they subscribe, then transmission loops form

![Diagram](image)

Mixer and Translator Anomalies
Message forwarding loops

- However, having translators transmit to a new group address is not sufficient to avoid loops
 » Participants must be prepared to dynamically detect loops as a session progresses

![Diagram](image)
Mixer and Translator Anomalies
Detecting forwarding loops

-loops through mixers can be detected by recognizing one’s SSRC in a CSRC list

Mixer and Translator Anomalies
Forwarding loops and SSRC conflicts

-but what’s the difference between a loop and an SSRC conflict?
 » How can S1 determine what is going on?
Mixer and Translator Anomalies
Dealing with forwarding loops and SSRC conflicts

Senders: if a SSRC conflict is found:
- leave the session and rejoin with a new SSRC
- if conflict persists, then a loop exists

 Receivers: ignore packets from one of the sources
- assume sources/gateways will fix the problem

Dealing With Loops & SSRC Conflicts
Receiver requirements

- All receivers maintain a table of all synchronization sources they have heard from recently
 - Table entries contain (SSRC, source transport address) pairs
 - Entries time out and are deleted if no packets from a source have been received for a sufficiently long time

- If a SSRC conflict is detected then packets from the new source are ignored
Dealing With Loops & SSRC Conflicts

Sender requirements

- If a source’s packets are looped then the source keeps track of other sources that conflict with it
 - Record the conflicting source’s transport address and the time the most recent conflicting packet from each source was received
 - Entries time out if no conflicting packets are received over a specified interval

The Multimedia Transport Protocol RTP

Outline

- **RTP concepts**
 - Entities and abstractions

- **Protocol definition**
 - Header format and packet structure

- **Developing interoperable applications with RTP**
 - RTP profiles

- **Quality-of-service monitoring and reporting**
 - Real-time control protocol RTCP
RTP Protocol Definition
Message encapsulation

- RTP is an application-level protocol
 - UDP is the canonical transport protocol
- Underlying transport protocol handles
 - addressing
 - segmentation/reassembly
 - delivery semantics
 - quality-of-service

Protocol Definition
Fixed header format

![Fixed header format diagram]

- 12 octets (bytes)
 - A version number (= 2)
 - Payload type
 - Padding (yes/no)
 - Sequence number (16 bits)
 - Extension bit (yes/no)
 - Timestamp (32 bits)
 - Contributed source count (0-15)
 - Synchronization source identifier (32 bits)
RTP Header Format
Header extensions/optional fields

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | 1 |
| v | p | x | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | 1 |

- Contributing source identifier(s)
 - 0-15 entries, 32-bits each
 - Set by mixers
- Header extension
 - (Not expected to be used)

Creating an Instance of the RTP Protocol
RTP profiles

- RTP is a protocol framework that needs to be instantiated for a specific application or use
 - what are markers?
 - what is the clock frequency?
 - what are payload types?
 - how is the payload formatted?
The RTP Profile for Audio & Video Conferences with Minimal Control

◆ The default profile for 2-way interactive multimedia communication

◆ Defines markers & payload types for common audio and video encoding schemes and defines payload formats for audio encodings

 » PCM ("L16")
 » µ-Law ("PCMU")
 » IMA ADPCM ("DVI4")
 » MPEG Audio ("MPA")
 » CELP ("1016")
 » LPC
 » GSM
 » ...

A profile for simple audio video conferences
IMA ADPCM (DVI4) audio conferencing example

◆ Payload type = 5
◆ Clock frequency = 8 kHz
 » ticks are 125 µs apart
◆ The marker bit identifies the start of a talkspurt
◆ Packets contain ≈20 ms of audio data
 » 161 audio samples per packet
◆ Payload format:
 » uncompressed predicted sample (16-bits)
 » current index into the step-size table (8-bits)
 » reserved byte (8-bits)
 » 160 compressed samples (4-bits each)