CS 381 Solutions to Homework 10

Textbook pp. 581-583:
4 (a) Not reflexive, not symmetric, transitive, antisymmetric
(b) Reflexive, symmetric, transitive, not antisymmetric

30 (b) $R_{1} \cap R_{2}=R_{1}$
(c) \emptyset
32. $S \circ R=\{<1,1\rangle,<1,2>,<2,1\rangle,<2,2>\}$

50 (d) Since R and S are reflexive, for every a in $A,<a, a>\in R$ and $<a, a>\in S$.
Hence $\langle a, a\rangle$ is not in $R-S$ for any a in A. Hence $R-S$ is irreflexive.
p. 597:

32 for 27: Not reflexive, not irreflexive, symmetric, not antisymmetric, not asymmetric, not transitive.
32 for 28: Reflexive, not irreflexive, symmetric, not antisymmetric, not asymmetric, transitive.
pp. 606-607:

2. The set of ordered pairs of integers

9 for 6: Add the following arrows: $\langle a, c\rangle,\langle b, a\rangle,\langle c, b\rangle$
20 (c) $<a, b>\in R^{*}$ if and only if b can be reached from a by taking a number of flights.
24. R^{2} is not necessarily irreflexive.

For example let $R=\{\langle a, b\rangle,\langle b, a\rangle\}$ over $A=\{a, b\}$, where $a \neq b$. Then R is irreflexive but R^{2} is reflexive.

