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Abstract In this paper, we analyze all possible situations of rank deficiency that cause
breakdown in block conjugate gradient (BCG) solvers. A simple solution, breakdown-
free block conjugate gradient (BFBCG), is designed to address the rank deficiency
problem. The rationale of the BFBCG algorithm is to derive new forms of parameter
matrices based on the potentially reduced search subspace to handle rank deficiency.
Orthogonality properties and convergence of BFBCG in case of rank deficiency are
justified accordingly with mathematical rigor. BFBCG yields faster convergence than
restarting BCG when breakdown occurs. Numerical examples suffering from rank
deficiency are provided to demonstrate the robustness of BFBCG.

Keywords Rank deficiency · Breakdown-free block conjugate gradient method ·
Block Krylov subspace · Multiple right-hand sides · Near-breakdown problem
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1 Introduction

The Conjugate Gradient (CG) algorithm [19,50] is an effective computational method
extensively used to solve a system of linear operator equations
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Ax = b

with a large, sparse n × n Symmetric Positive Definite (SPD) matrix A. The Block
Conjugate Gradient (BCG) algorithm [34,38] is a generalization of the CG algorithm
for solving a system of equations

AX = B,

where B is a block matrix containing s(s ≥ 1) right-hand sides. Compared to CG,
BCG has the advantages of potentially faster convergence and being more suitable for
parallel computing architectures [26,30,39], which has been widely used in a variety
of applications [4,7,8,33–35]. In today’s large-scale linear systems where A is either
stored outside of the systemmemory or the elements of A have to be regenerated at each
use, accessing A becomes the main computational bottleneck of a linear solver. BCG
and related block algorithms are hence particularly attractive, due to their capability
of exploring multiple search directions in a single pass over A.

Despite the above attractive features, a well-known practical issue of BCG is the
rank deficiency problem that can lead to BCG breakdown. Theoretically, a necessary
and sufficient condition is given by Broyden [5] for absence of breakdown by ana-
lyzing the Krylov subspace sequences. In practice, at a certain BCG iteration, the
block search direction vectors may become linearly dependent and cannot span an s–
dimensional search subspace. Consequently, at least one of the parameter matrices in
BCG turns out to be singular, which results in BCG breakdown. Rank deficiency may
be caused by many factors, which will be thoroughly analyzed in Sect. 2. Restarting
BCG is suggested as a practical remedy to breakdown [38]. Instead of restarting, other
approaches, such as normalizing the right-hand side vectors [7], orthogonalizing the
residual columns to remove dependent vectors [14], and reducing block size adap-
tively [37] help reduce the risk of BCG breakdown, but cannot completely guarantee
numerical stability.

In this paper, we present a simple solution to address the rank deficiency problem
in BCG, which results in a Breakdown-Free Block Conjugate Gradient (BFBCG)
algorithm. The fundamental idea of BFBCG is, in case of the rank of a block matrix
being reduced, the parameter matrices are calculated in the reduced Krylov subspace
to minimize the block nonnegative quadratic function of

F(X) = trace
((

X − X∗)T A
(
X − X∗)) , (1.1)

where trace(·) denotes the trace of a matrix and X∗ = A−1B is the desired block
solution. As a result, BFBCG avoids inverting a potentially non-full rank matrix and
thus addresses the breakdown problem caused by rank deficiency.

The rest of the paper is organized as follows. Section 2 analyzes the factors that
lead to rank deficiency in BCG. In Sect. 3, we derive the BFBCG algorithm with new
forms of parameter matrices. Then, in Sect. 4 we discuss the convergence properties
of BFBCG. The numerical results are presented in Sect. 5. Section 6 describes the
relation of BFBCG to other work. Finally, Sect. 7 summarizes the paper.
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2 Block conjugate gradient and rank deficiency

Algorithm 1 is the original BCG algorithm proposed by O’Leary [38] for simulta-
neously solving a linear system with s right-hand sides in an n × s block matrix B.
X0 is an initial solution guess and M is an SPD preconditioner. αi and βi are s × s
parameter matrices to ensure orthogonality of the residual matrix Ri+1 and the search
matrix Pi as well as conjugacy (A-orthogonality) of P0, . . . , Pi+1, respectively. γi is
an arbitrary nonsingular s × s matrix, which in practice is selected, for example, to
orthogonalize Pi to decrease round–off errors and enhance numerical stability [38]. As
shown in Proposition 2.1, the preconditioned residual matrix Zi and the search matrix
Pi have the same matrix rank as Ri . Therefore, loss of full rank in Ri will lead to
rank deficiency of Zi and Pi during BCG iterations. Consequently, ZT

i Ri and PT
i APi

become singular and thus it is improbable to obtain (ZT
i Ri )

−1 and (PT
i APi )−1 to

evaluate αi and βi . As a result, BCG breakdown occurs.

Proposition 2.1 Suppose Ri is an n × s residual matrix of rank ri (ri ≤ s) at the i th
iteration, then

rank(Pi ) = rank(Zi ) = rank(Ri ) = ri ,

where rank(·) denotes the rank of a matrix.

Proof First, we show that rank(Zi ) = rank(Ri ) = ri . From Algorithm 1, matrix Zi is
defined as Zi = MRi . SinceM is assumed to be SPD, then rank(Zi ) = rank(Ri ) = ri .

Next we show that rank(Pi ) = rank(Ri ). The search matrix Pi is given by

Pi = (Zi + Pi−1βi−1)γi . (2.1)

Left multiplying (2.1) by PT
i A on both sides, we get

PT
i APi = PT

i AZiγi + PT
i APi−1βi−1γi .
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Notice that Pi is A-orthogonal to Pi−1, i.e., PT
i APi−1 = 0, then

PT
i APi = PT

i AZiγi .

Using the basic properties of matrix rank, we can get

rank(Pi ) = rank(PT
i APi ) = rank(PT

i AZiγi )

≤ rank(Zi ) = rank(Ri ). (2.2)

On the other hand, since Ri is orthogonal to Pi−1, i.e., RT
i Pi−1 = 0, left multiplying

both sides of (2.1) by RT
i and then eliminating the zero terms, we obtain

RT
i Pi = RT

i Ziγi = RT
i MRiγi .

According to the basic properties of matrix rank again, we have

rank(Pi ) ≥ rank(RT
i Pi ) = rank(RT

i MRiγi )

= rank(Ri ). (2.3)

Based on (2.2) and (2.3), rank(Pi ) = rank(Ri ) = ri is concluded. ��
Rank deficiency may be caused by many different reasons in practice, for instance,

inappropriate guess of initial vectors, unbalanced convergence speeds of solutions
with respect to multiple right-hand sides, and accumulation of round-off errors. The
possible situations of rank deficiency in BCG are summarized as follows:

– Two ormore vector components in the initial residualmatrix R0 are linearly depen-
dent. For example, if the multiple right-hand sides in matrix B contain linearly
dependent vectors and X0 simply takes zero vectors as the initial guess, then the
initial residual matrix R0 will include linearly dependent vectors. In practice, this
breakdown situation can be eliminated by ensuring linear independence of the col-
umn vectors in R0, such as carefully selecting an initial guess X0. An alternative
approach is orthogonalizing R0 [14] to eliminate the dependent vectors;

– One or more but not all vector components in the residual matrix Ri reach con-
vergence. During BCG iterations, solutions with respect to some right-hand sides
may converge faster than the others, which results in near-zero vectors in Ri . This
typically happens when the norms of the component vectors in R0 are significantly
different in magnitude. An obvious approach is to normalize the right-hand sides
in B so as to keep the norms of the component vectors of R0 at a similar scale [7]
to hopefully balance the number of convergence steps for the multiple right-hand
sides. Since convergence has already been achieved in some solutions, removing
these solutions and their corresponding residual vectors [38] not only avoids BCG
breakdown, but also eliminates unnecessary numerical computations; and

– Twoormore vector components in the residualmatrix Ri at the i th iteration become
linearly dependent. If one is only interested in a single solution with respect to a
specific right-hand side, i.e., themultiple right-hand sides block is expanded from a
single right-hand side, the variable BCG algorithm [37] can sufficiently address the
breakdown problem caused by this factor through constructing an A-orthogonal

123



A breakdown-free block conjugate gradient method 383

projector to reduce the block size. Nevertheless, if solutions to all right-hand sides
are of interest, assuming that the right–hand sides of the corresponding linearly
dependent vectors have not converged yet and thus none of the vector components
in Ri are zero, reducing the block sizes will result in loss of solutions.

In addition to the original BCG algorithm, alternative BCG algorithms [38] based
on different CG forms are also developed. These BCG forms have different ways to
calculate the parameter matrices. The Hestenes and Stiefel form BCG [23] uses

αi−1 =
(
PT
i−1APi−1

)−1
γ T
i−1

(
RT
i−1MRi−1

)

and

βi−1 = γ −1
i−1

(
RT
i−1MRi−1

)−1 (
RT
i MRi

)
.

The block minimum residual (B-MR) algorithm [15] employs

αi−1 =
(
PT
i−1AMAPi−1

)−1
γ T
i−1

(
RT
i−1MAMRi−1

)

and

βi−1 = γ −1
i−1

(
RT
i−1MAMRi−1

)−1 (
RT
i M AMRi

)
,

instead. The change of variables form BCG [2,40] adopts

αi−1 =
(
PT
i−1MAMPi−1

)−1
γ T
i−1

(
RT
i−1MRi−1

)

and

βi−1 = γ −1
i−1

(
RT
i−1MRi−1

)−1 (
RT
i MRi

)
.

The Rutishauser form BCG [42,44] is based on a three–term recurrence relation form
of CG, which updates the solution and the residual matrix by

Xi+1 = Xi + (MRi − (Xi − Xi−1) ηi−1) ωi+1

and

Ri+1 = Ri + ((Ri − Ri−1) ηi−1 − AMRi ) ωi+1,

respectively, where

ω−1
i+1 =

(
RT
i MRi

)−1
RT
i M AMRi − ηi−1
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and

ηi = ω−1
i+1

(
RT
i MRi

)−1
RT
i+1MRi+1.

The deflated BCG [7] updates the search matrix Pi with a deflation matrix W by

Pi =
(
Zi + Pi−1βi−1 − W

(
WT AW

)−1
WT AZi

)
γi

and uses the same formulas in Algorithm 1 to calculate αi and βi . In summary, all of
these alternative BCG forms require estimation of the inverse of matrices involving
either Ri or Pi . Consequently, breakdown in these BCG forms is unavoidable when
loss of full rank in Ri or Pi occurs.

3 Breakdown-free block conjugate gradient algorithm

In this section, we describe a Block Conjugate Gradient algorithm that can avoid
breakdown completely. The resulting method is called the Breakdown-Free Block
Conjugate Gradient (BFBCG) algorithm. To illustrate the differences in comparison
with the original BCG algorithm described in Algorithm 1, the matrix symbols with
a “∼” notation are used to indicate that the dimensions of these matrices may reduce
in case of rank deficiency in BFBCG (Algorithm 2). The rationale of the BFBCG
algorithm is to derive new forms of the parameter matrices α̃i and β̃i based on the
potentially reduced search subspace. In case of linear dependence in the search direc-
tions or the residual vectors, α̃i is designed to ensure that the column space of the
next residual matrix Ri+1 is orthogonal to the search space Pi . A new form of β̃i is
derived so that the new search space Pi+1 is conjugate to all previous search spaces
P j ( j < i + 1).
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Compared to the original BCG algorithm [38], the BFBCG algorithm has the fol-
lowing major differences:

– Matrix operation orth(·) is employed for extracting an orthogonal basis P̃i ∈
R
n×ri from the search spacePi . orth(·) can be efficiently implemented using QR

decomposition with column pivoting. In case of rank deficiency, the dimension of
the search spacePi will be reduced, which avoids the situations of revisiting the
subspace already visited in the BCGAdQ algorithm described in [10];

– If rank deficiency occurs at the i th iteration, α̃i and β̃i will turn into rectangular
matrices of size ri × s, where ri is the dimension of the search space Pi . In
comparison, the parameter matrices are restricted as squarematrices in the original
BCG algorithm; and

– Matrices γi are no longer necessary in the BFBCG algorithm.

In addition to breakdown avoidance, the BFBCG algorithmmaintains several favor-
able features in practice. For example, at each iteration, matrix A is visited only once.
Meanwhile, (P̃T

i Qi )
−1 calculated in α̃i can be reused for computing β̃i .

We use Theorems 3.1 and 3.2 to justify the derivations of α̃i and β̃i , respectively.
Theorem 3.1 shows, in case of rank deficiency at the i th iteration in BFBCG, the
rectangular parameter matrix α̃i ensures that the column space of Ri+1 is orthogonal
to the search space Pi .

Theorem 3.1 Suppose that Ri loses full rank at the i th iteration. Let Pi denote the
corresponding search space with dimension ri (ri < s). Given a matrix α̃i ∈ R

ri×s so
that

α̃i =
(
P̃T
i Qi

)−1 (
P̃T
i Ri

)
,

where P̃i ∈ R
n×ri consists of the orthonormal basis of Pi and Qi ∈ R

n×ri denotes
the matrix product AP̃i , the column space of Ri+1 derived from α̃i is orthogonal to
the search space Pi .

Proof As P̃i ∈ R
n×ri is the orthonormal basis of the search spacePi and Qi = AP̃i ,

P̃T
i Qi ∈ R

ri×ri is nonsingular. Therefore, there exists a matrix α̃i ∈ R
ri×s such that

α̃i = (P̃T
i Qi )

−1(P̃T
i Ri ). (3.1)

Since Ri+1 is constructed from

Ri+1 = Ri − Qi α̃i (3.2)

in BFBCG, left multiplying both sides of (3.2) by P̃T
i and then by (3.1), we can get

P̃T
i Ri+1 = P̃T

i Ri − P̃T
i Qi α̃i

= P̃T
i Ri − P̃T

i Qi (P̃
T
i Qi )

−1 P̃T
i Ri

= 0,

which indicates that the column space of Ri+1 is orthogonal to the search space Pi .
��
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Based on Theorem 3.1, other orthogonality properties of BFBCG can be easily
obtained,which are summarized as the following two corollaries.Corollary 3.1 extends
Theorem 3.1 and shows that the column space of Ri+1 is not only orthogonal to the
search space Pi at the i th iteration, but also to all previous search spaces P j ( j <

i + 1). Moreover, observing that the search spacesP j are derived from the subspace
spanned by the preconditioned residual matrix Z j ( j < i + 1), Corollary 3.2 states
that Ri+1 is M–orthogonal to all previous residual matrices under the preconditioner
M (assuming that M is SPD).

Corollary 3.1 RT
i+1 P̃j = 0, for all j < i + 1.

Corollary 3.2 RT
i+1MRj = ZT

i+1R j = 0, for all j < i + 1.

At the i th iteration, BFBCG explores the block Krylov subspace [21,38], defined
as

Di (A, M, R0) = block-span{MR0, MAMR0, . . . , (MA)i MR0}

=
⎧⎨
⎩

i∑
j=0

(MA) j MR0Ψ j ; Ψ j ∈ R
s×s

⎫⎬
⎭ ,

which is the union of the previous subspaces spanned by thematricesMRj ( j < i+1).
Here Ψ j ’s are related to the parameter matrices α̃k and β̃k (k ≤ j). According to
Corollary 3.2, the column space of Ri+1 is orthogonal to the block Krylov subspace as
well, which implies that Xi+1 from BFBCG is the minimizer of the block nonnegative
quadratic function (1.1) over the block Krylov subspace X0 + Di (A, M, R0) at the
i th iteration.

The other parameter matrix β̃i in BFBCG is chosen to ensure that the next search
spacePi+1 is conjugate to the previous search spaceP j ( j < i + 1) in case of rank
deficiency, which is shown in Theorem 3.2. The following Lemmas 3.1 and 3.2 will
be used for the proof of Theorem 3.2.

Lemma 3.1 Suppose that Ri is an n × s residual matrix of rank ri (ri ≤ s) at the i th
iteration, then

rank(P̃T
i Ri ) = ri .

Proof Let P̃i denote an orthonormal basis of the search spacePi , which is the range
of Zi + P̃i−1β̃i−1 shown in Algorithm 2, then Zi + P̃i−1β̃i−1 can be expressed as

Zi + P̃i−1β̃i−1 = P̃iδ, (3.3)

where δ is an ri × s matrix of rank ri . Left multiplying (3.3) by RT
i on both sides, we

can get

RT
i Zi + RT

i P̃i−1β̃i−1 = RT
i P̃iδ.
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A breakdown-free block conjugate gradient method 387

According to Corollary 3.1, RT
i P̃i−1 = 0. Then,

RT
i Zi = RT

i P̃iδ.

According to Proposition 2.1, we can obtain rank((RT
i P̃i )δ) = rank(RT

i Zi ) =
rank(Ri ). Again, applying the basic rules of matrix rank, rank(P̃T

i Ri ) = rank((RT
i P̃i )

δ) = ri is derived. ��
Lemma 3.1 indicates that the matrix rank of P̃T

i Ri is always equal to that of Ri ,
which will be used in the proof of Lemma 3.2. We can also learn from Lemma 3.1
that the parameter matrix α̃i has rank ri which is consistent with the rank of Ri . In
other words, α̃i will not be a zero matrix unless Ri is a zero matrix. This fundamen-
tally prevents BFBCG from suffering the potential stagnation problem occurred in
many Krylov subspace methods [29,57], where the solution matrices in two (and fur-
ther) consecutive iterations will not be updated due to a zero parameter matrix while
convergence has not been reached yet.

Lemma 3.2 Zi+1 is conjugate to the search spaces P j where j < i .

Proof Since R j+1 is generated by

R j+1 = R j − AP̃j α̃ j ,

left multiplying by ZT
i+1 on both sides and we have

ZT
i+1R j+1 = ZT

i+1R j − ZT
i+1AP̃j α̃ j .

When j < i , according to Corollary 3.2, ZT
i+1R j = 0 and ZT

i+1R j+1 = 0 hold. Thus,
we can get

ZT
i+1AP̃j α̃ j = 0

for all j < i .
Based on Theorem 3.1, α̃ j = (P̃T

j AP̃j )
−1 P̃T

j R j , we have

ZT
i+1AP̃j (P̃

T
j AP̃j )

−1 P̃T
j R j = 0.

Due to the fact that P̃T
j AP̃j is an r j × r j matrix with full rank, P̃T

j R j is an r j × s

matrix with rank r j by Lemma 3.1, and r j ≤ s, it is easy to obtain ZT
i+1AP̃j = 0

( j < i). ��
Lemma 3.2 indicates that Zi+1 from BFBCG is conjugate to all previous search

spaces P j ( j < i) except Pi . This inspires us to derive a parameter matrix β̃i

to construct a new search space Pi+1 from Zi+1 by removing the components not
conjugate to Pi . Theorem 3.2 shows that, in case of rank deficiency occurring at the
i th iteration, the rectangular parameter matrix β̃i ensures that the new search space
Pi+1 is conjugate to all previous search spaces P j ( j < i + 1).
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Theorem 3.2 Suppose that Ri loses full rank at the i th iteration. Let Pi denote the
corresponding search space with dimension ri (ri < s). Given a matrix β̃i ∈ R

ri×s so
that

β̃i = −(P̃T
i Qi )

−1QT
i Zi+1,

where P̃i ∈ R
n×ri consists of the orthonormal basis of Pi and Qi ∈ R

n×ri denotes
thematrix product AP̃i , then the new search spacePi+1 obtained from β̃i is conjugate
to all previous search spaces P j where j < i + 1.

Proof Based on the Gram–Schmidt conjugation process, the new search directions
Pi+1 at the i th iteration can be generated by

Pi+1 = Zi+1 +
i∑

j=0

P̃jβi+1, j ,

where P̃j is the orthonormal basis of P j and βi+1, j is the associated weight matrix
of P̃j . As P̃T

i Qi ∈ R
ri×ri is nonsingular, by selecting βi+1, j = 0 for all j < i and

β̃i = βi+1,i = −(P̃T
i Qi )

−1QT
i Zi+1, it is easy to show the following:

1. for any P̃j where j < i , according to Lemma 3.2,

P̃T
j APi+1 = P̃T

j AZi+1 + P̃T
j A

j∑
k=0

P̃kβi+1,k

= P̃T
j AZi+1 = 0; and

2. for P̃j where j = i ,

P̃T
i APi+1 = P̃T

i AZi+1 + P̃T
i A

i∑
k=0

P̃kβi+1,k

= P̃T
i AZi+1 + P̃T

i AP̃iβi+1,i

= P̃T
i AZi+1 − P̃T

i AP̃i (P̃
T
i AP̃i )

−1 P̃T
i AZi+1

= P̃T
i AZi+1 − P̃T

i AZi+1 = 0.

Let the range of Pi+1 be the new search spacePi+1 and then the new search space
Pi+1 is conjugate to all previous search spaces P j ( j < i + 1). ��
In fact, α̃i and β̃i defined inBFBCGare generalized forms of the parametermatrices

αi and βi in the BCG algorithms to avoid breakdown during BFBCG iterations. When
Ri ’s have full column rank, BFBCG is equivalent to the original BCG algorithm. In
particular, α̃i and β̃i are square matrices with full rank that coincide with αi and βi

from the original BCG algorithm where γi in Algorithm 1 is replaced by the inverse
of the upper triangular matrix by QR decomposition, while a simplified form of β̃i is
chosen in BFBCG to avoid the augmented condition number of ZT

i Ri . On the other
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hand, if Ri loses full rank duringBFBCG iterations, the rectangular parametermatrices
α̃i and β̃i are employed to maintain the orthogonality properties in the block Krylov
subspace and avoid breakdown due to rank deficiency.

4 Convergence analysis

The convergence properties of the BFBCG algorithm are investigated in this section.
By taking the rank deficiency problem into consideration, we start from studying
the theoretical number of iterations needed for convergence of BFBCG. Then, the
convergence rate of BFBCG is further analyzed.

4.1 Number of iterations

To solve a linear systemwith s right-hand sides usingBCG, the blockKrylov subspace

Di (A, M, R0) = block-span{MR0, MAMR0, . . . , (MA)i MR0}
= block-span{MR0, MR1, . . . , MRi }

is constructed to find an approximate solution block Xi+1 at the i th iteration, where
M is an SPD preconditioner. As pointed out in [38], if the impact of round-off errors
can be ignored, the BCG algorithm is able to find the exact solutions within at most
	n/s
 iterations, where s is the number of the right-hand sides.

As a generalized form of BCG, BFBCG shares the same convergence property if
the residual matrices remain full rank s during all iterations. When rank deficiency
occurs, BFBCG continues to explore the block Krylov subspace from the reduced
search spaces. Proposition 4.1 shows that once a residual matrix loses full rank, rank
deficiency will be inherited in the subsequent residual matrices.

Proposition 4.1 If Ri loses full column rank at the i th iteration, the subsequent resid-
ual matrices R j ( j > i) are also rank deficient.

Proof Since

Ri+1 = Ri − AP̃i α̃i

= Ri − AP̃i (P̃
T
i AP̃i )

−1 P̃T
i Ri

= (I − AP̃i (P̃
T
i AP̃i )

−1 P̃T
i )Ri ,

then rank(Ri ) ≥ rank(Ri+1) can be obtained based on the properties of matrix rank.
For j > i , rank(Ri ) ≥ rank(R j ) can be derived in a similar way. ��

In the case that rank deficiency occurs, the block Krylov subspace can no longer
be expanded by s dimensions in future iterations. Instead, the dimension of the corre-
sponding block Krylov subspace increases by the rank of the residual matrix, which
is less than s, at each subsequent iteration step. Consequently, in general, more than
	n/s
 iterations are needed in BFBCG to find the solutions when rank deficiency
occurs.
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4.2 Convergence rate

Defining the error matrix Ei+1 as

Ei+1 =
[
e(0)
i+1, e

(1)
i+1, . . . , e

(s−1)
i+1

]
= Xi+1 − X∗

at the i th iteration, where e(k)
i+1 is the kth column of Ei+1 and X∗ = A−1B is the

desired block solution, the block nonnegative quadratic function can be represented
as

trace
((

Xi+1 − X∗)T A(Xi+1 − X∗))
=

s−1∑
k=0

‖e(k)
i+1‖2A.

To determine the convergence rate of BCG, the initial residual matrix R0 = B −
AX0 plays an important role in bounding the errors at each iteration step. Under the
assumption that R0 has full column rank, O’Leary [38] showed that the minimum
error square norm ‖e(k)

i+1‖2A (0 ≤ k ≤ s − 1) is bounded as

‖e(k)
i+1‖2A ≤ c(k)

(
1 − √

κ−1

1 + √
κ−1

)2(i+1)

at each iteration. Here κ = λn/λs where λn and λs are the nth and sth eigenvalues of
MA, respectively, and c(k) is a constant only related to e(k)

0 . Nevertheless, if R0 does
not have full rank, the above error bound does not hold. Instead, assuming that R0
has rank r0, Theorem 4.1 shows that the convergence rate of the BFBCG algorithm is

bounded by
(
1−√

κ ′−1

1+√
κ ′−1

)2
, where κ ′ = λn/λr0 .

Theorem 4.1 Suppose R0 is rank deficient with rank r0 (r0 < s). The minimum error
square norm ‖e(k)

i+1‖2A is bounded as

‖e(k)
i+1‖2A ≤ c

(
1 − √

κ ′−1

1 + √
κ ′−1

)2(i+1)

,

where c is a constant only related to E0 and κ ′ = λn/λr0 .

Proof Assuming that the n × s residual matrix R0 has rank r0, which is potentially
rank deficient, then there exists a nonsingular s × s matrix δ such that

R0 = (R′
0, 0)δ,

where R′
0 is an n × r0 matrix with full column rank. Since E0 = A−1R0 and Ei+1 =

Φi (MA)E0, where Φi (MA) is a polynomial of degree i , we have Ei+1 = (E ′
i+1, 0)δ

and each column in Ei+1 can be expressed as
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e(k)
i+1 =

r0−1∑
j=0

δ jke
′( j)
i+1,

where e′( j)
i+1 is the j th column of E ′

i+1.

Hence, the error bound of the square norm ‖e(k)
i+1‖2A becomes

‖e(k)
i+1‖2A = ‖

r0−1∑
j=0

δ jke
′( j)
i+1‖2A ≤

r0−1∑
j=0

δ2jk‖e′( j)
i+1‖2A

≤
r0−1∑
j=0

δ2jkc
( j)

(
1 − √

κ ′−1

1 + √
κ ′−1

)2(i+1)

≤ c

(
1 − √

κ ′−1

1 + √
κ ′−1

)2(i+1)

,

where c = ∑r0−1
j=0 δ2jkc

( j) and κ ′ = λn/λr0 . ��

In case of rank deficiency, i.e., Ri loses full rank to ri , BCG has to restart with a
reduced block size. Restarting is unfavorable in parallel computing, where reinitiating
processes and redistributing workload are necessary. More importantly, the restart-
ing BCG uses the range of Ri as the initial search space and abandons all search
spaces explored before. As a result, the restarted BCG has a lower convergence rate

of
(
1−√

κ ′′−1

1+√
κ ′′−1

)2
, where κ ′′ = λn/λri . In contrast, without restarting, BFBCG yields

faster convergence than restarting BCG, because BFBCG still takes advantage of
the search space information constructed previously. Hence, the overall convergence

rate of BFBCG lies between
(
1−√

κ ′′−1

1+√
κ ′′−1

)2
and

(
1−√

κ−1

1+√
κ−1

)2
, where κ ′′ = λn/λri and

κ = λn/λs , respectively.

5 Numerical results

In this section, we first use a simple linear system with a 6 × 6 coefficient matrix
and two right-hand side columns as an example to demonstrate how BFBCG handles
each individual rank deficiency situation. Then, BFBCG is used to solve a more “real-
istic” linear system with a 7102 × 7102 coefficient matrix and 200 right-hand side
columns and address combined rank deficiency situations. Moreover, we compare the
performance between BCG with restarting and BFBCG in handling rank deficiency
on a set of SPD matrices. In these examples, the solutions of all right–hand sides are
concerned. The tolerance of convergence is set to 10−7.

5.1 A simple 6× 6 example

Considering a linear system with two right-hand sides, where the SPD coefficient
matrix A is given as follows

123



392 H. Ji, Y. Li

0 1 2 3 4 5 6 7 8 9
0

1

2

3
R

an
k 

o
f 

R
i

0 1 2 3 4 5 6 7 8 9

10
−15

10
−10

10
−710
−5

10
0

10
5

Iteration Number

R
es

id
u

al
 N

o
rm

 o
f 

 C
o

lu
m

n
s 

in
 R

i

Column 1
Column 2

Fig. 1 Matrix rank and the two column residual norms of Ri in Case 1 (columns in each block residual Ri
are linearly independent) along BFBCG iterations

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

15 5 4 3 2 1
5 35 9 8 7 6
4 9 46 12 11 10
3 8 12 50 14 13
2 7 11 14 19 15
1 6 10 13 15 45

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Four initial residual matrices are used as test cases to study the behavior of BFBCG.
For simplicity, the preconditioner matrix M is set to identity.

Case 1 (the residual matrix Ri without rank deficiency)
In this case, the initial block residual matrix R0 is selected as

R0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0.537266261211281
2 0.043775211060964
3 0.964458562037146
4 0.622317517840541
5 0.552735938776748
6 0.023323943544997

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where the elements in the second column are random values uniformly generated over
interval (0, 1) and thus the second column is linearly independent with the first one.
Figure 1 shows the matrix rank of residual matrix Ri (upper) and the norm of columns
in Ri (lower) at each iteration step. One can find that eventually BFBCG, which is
equivalent to BCG in this case, converges within three iterations and each residual
matrix Ri has full rank 2 before convergence.
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Fig. 2 Matrix rank and the two column residual norms of Ri in Case 2 (columns in the initial block residual
R0 are linearly dependent) along BFBCG iterations

Case 2 (columns in the initial block residual R0 are linearly dependent)
In this case, the initial block residual matrix R0 is set to

R0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 10
2 20
3 30
4 40
5 50
6 60

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where the second column of R0 is a scalar multiple of the first one and thus the rank of
R0 is one. As shown in Fig. 2, the behavior of BFBCG is the same as that of running
two individual parallel CGs, where the matrix rank of Ri is maintained at one until
BFBCG converges at step 6.

Case 3 (convergence of one or more but not all columns in the residual matrix Ri )
The initial block residual matrix R0 is

R0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0.027212780358615
2 0.117544343373396
3 0.140184539179715
4 0.605659566833592
5 0.323269030695212
6 0.590821508384101

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Clearly, the two columns in R0 are linearly independent and R0 has full column rank.
As the second system converges first at the 1st iteration shown in Fig. 3, which leads to
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Fig. 3 Matrix rank and the two column residual norms of Ri in Case 3 (convergence of one or more
columns in the residual matrix Ri ) along BFBCG iterations

the rank deficiency in R2. However, since the first system has not reached convergence
yet, BFBCG continues to update the first column in the consequent residual matrices.
The overall system converges at the 4th iteration, which is faster than Case 2.

Case 4 (columns in the residual matrix Ri become linearly dependent during
BFBCG iterations)

In Case 4, we adopt the following the initial block residual matrix R0

R0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 − 8.888614458250306
2 − 10.999025290685955
3 − 19.339674247091921
4 − 10.289152668326622
5 18.107579559267656
6 − 8.930794511222629

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where the two columns are linearly independent and R0 has rank of two. The key
difference from Case 3, as illustrated in Fig. 4, is that the two column vectors in R2
become identical. As a result, the rank of R2 is reduced to 1 but none of the systems
have converged yet. In the subsequent iterations, BFBCG updates both columns of the
residual matrices and converges at the 4th iteration.

5.2 Example with a bigger coefficient matrix with combined rank deficiency
situations

Weuse amatrix “Kuu” from theUniversity of Florida sparsematrix collection [9] as the
coefficient matrix of a block linear system with 200 right-hand sides to demonstrate
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Fig. 4 Matrix rank and the two residual norms of Ri in Case 4 (columns in the residual matrix Ri become
linearly dependent at the 2nd iteration) along BFBCG iterations

Fig. 5 Sparse pattern of matrix
“Kuu”

the effectiveness of BFBCG in addressing the breakdown problem with combined
rank deficiency situations. “Kuu” is a 7102×7102 SPDmatrix with 340, 200 nonzero
elements arisen from a structural problem whose sparse pattern is shown in Fig. 5. To
construct linearly dependent vector components in the initial residual matrix R0, we
intentionally set the elements in the first 198 columns of the right–hand side matrix
B as randomly generated numbers while the last two columns are created as linear
combinations of thefirst 198 columns.The initial guess X0 is set to be the sameas B and
a preconditioner M is constructed using the Crout version of ILU factorization [31,46]
with 0.01 element drop tolerance.

Figure 6 illustrates the change of thematrix rank of Ri (upper), the condition number
of PT

i APi (middle), as well as the maximum and minimum residual norms of the
columns in Ri (lower) along theBFBCG iterations. The condition number of PT

i APi is
bounded by the condition number of A. One can find that rank deficiency happens at the
very beginning because of the linearly dependent vectors in B that we set intentionally.
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Fig. 6 Matrix rank of Ri , condition number of PT
i APi , and the corresponding maximum and minimum

residual norm for a block linear system with 200 right–hand sides using “Kuu” as the coefficient matrix
along BFBCG iterations

The rank of the residualmatrix Ri starts to drop down to 150 at the 9th iteration because
further linear dependence occurs during the BFBCG process; however, none of the
systems converge to the desired resolution yet. At the 11th iteration, the residual norms
of some columns in Ri are smaller than the given error tolerance, indicating that some
but not all systems have reached convergence. Correspondingly, the matrix rank of
Ri decreases further to 45. After all, BFBCG is able to deal with the combination
of various rank deficiency situations and continues to improve the solution accuracy
based on the reduced Krylov subspace. Eventually, all systems reach convergence at
the 20th iteration.

5.3 Comparison with the restarting scheme

When breakdown actually occurs, the original BCG algorithm has to restart with a
reduced block size. Table 1 compares the performance of BCG with restarting and
BFBCG on a set of SPD matrices from the structural engineering applications in the
Harwell–Boeing sparse matrix collection [11]. We use a right-hand side matrix B
consisting of ten random column vectors. Particularly, we scale the elements in the
first eight columns of B by the matrix norm of A to amplify the magnitude difference
among column vectors so that rank deficiency can easily occur. The Crout version
of ILU preconditioners is applied. The computational experiments are carried out on
the XSEDE TACC Stampede System [54]. When breakdown happens and restarting
causes the loss of all search spaces that have been explored before, BCG typically
takes more iteration steps to reach convergence than BFBCG. In contrast, BFBCG is
able to continue to update the solution blocks from the reduced search spaces without
being interrupted. Moreover, restarting requires additional operations to reinitiate the
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Table 1 Performance comparison between BFBCG and BCG with restarting

Name Rows Columns Nonzeros BCG with restarting BFBCG

# of
iterations

# of restarts Time (s) # of
iterations

Time (s)

BCSSTK14 1806 1806 32,630 9 5 1.54 8 0.68

BCSSTK15 3948 3948 60,882 19 11 6.28 14 3.18

BCSSTK16 4884 4884 147,631 8 4 3.8 8 2.44

BCSSTK17 10,974 10,974 219,812 19 16 40.69 15 17.39

BCSSTK18 11,948 11,948 80,519 14 8 28.49 14 18.44

computational process, which results in significantlymore computational time in BCG
than that in BFBCG.

6 Relation to other work

6.1 Handling multiple right-hand sides

In the literature, quite a few Krylov subspace methods have been developed to handle
linear systemswithmultiple right-hand sides. Thesemethods can be roughly classified
into three categories according to their ways of forming the basis of the underlying
Krylov subspace.

The first category is based on the seedmethods, where a seed systemwith a selected
single right-hand side is solved by a Krylov subspace method at first and then the
Krylov subspace information of the seed system is recycled to accelerate the conver-
gence in the other systems until solutions to all right-hand sides are found. The seed
scheme appears to be effective in the cases where the multiple right-hand side vectors
are similar to each other. Following this idea, a set of seed methods, including the seed
Lanczos methods [41,45], the seed CG methods [6,13,53,56], and the seed GMRES
methods [51], have been designed for various applications. As the multiple right-hand
sides are solved in a sequential order, the basis of the Krylov subspace for each sys-
tem is generally formed by a series of matrix-vector multiplications. In particular, the
Krylov subspace span{r (k)

0 , Ar (k)
0 , . . . , Air (k)

0 } is constructed in solving the kth system
for the kth right-hand side. Here the solution vector x (k)

i+1 can be expressed as

x (k)
i+1 = x (k)

0 +
i∑

j=0

ψ
(k)
j A jr (k)

0 ,

where ψ
(k)
j ’s are the evaluated scalars in the seed methods.

The second category is based on the global methods, which projects the initial
residual matrix onto the Krylov subspace in a matrix form, so called the matrix Krylov
subspace [24], and allows solutions to the multiple right-hand sides to be evaluated
simultaneously. Jbilou et al. [24] introduced the global FOM and global GMRES
algorithms, where the F-orthonormal basis of the Krylov subspace is generated using
the global Arnoldi or Lanczos process. Variations of the global Krylov subspace
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methods have been proposed later, including global CG [48], global BiCG [25], and
global BCR [58]. These global methods are built on the matrix Krylov subspace
span{R0, AR0, . . . , Ai R0} [24]. As pointed out in [21], the solution block in the global
methods is treated as an optimal linear combination of a set of basis matrices of the
matrix Krylov subspace, such that at the i th iteration,

Xi+1 = X0 +
i∑

j=0

ψ j A
j R0,

where ψ j ’s are scalar parameters.
The third category is the blockmethods, where a block Krylov subspace is explored

to evaluate solutions to the multiple right-hand sides simultaneously. The original
work of block Krylov subspace linear solvers is presented in [38], where block BiCG,
block CG, and block MINRES are first proposed. Since then, a variety of block
implementations to the standard Krylov methods, such as block BiCGSTAB [12],
block QMR [16,17], and block GMRES [1,52,55], have also been developed. A
comprehensive survey on these block methods can be found in [20]. The key dif-
ference in block methods compared to the seed methods and the global methods is
that the basis vectors are obtained from the block Krylov subspace [21,22,38], i.e.,
block-span{R0, AR0, . . . , Ai R0}. Correspondingly, the approximate solution matrix
Xi+1 at the i th iteration can be expressed as

Xi+1 = X0 +
i∑

j=0

A j R0Ψ j ,

where Ψ j ’s are parameters in matrix form.
The BFBCG algorithm proposed in this paper falls into the category of the block

methods. In general, evaluating the parameter matrices Ψ j requires inverting certain
block matrices, which can suffer from breakdown in case of rank deficiency. BFBCG
is designed to address the breakdown problem in BCG.

6.2 Addressing the breakdown problem

In block Krylov subspace methods, inverting block matrices is needed to evaluate
multiple right-hand sides simultaneously. During the iterations, some of these block
matrices may lose rank. Consequently, inverting a block matrix with rank deficiency
is one of the roots of the breakdown problem in block Krylov subspace methods.
As a result, breakdown becomes a major cause of numerical instability in almost
every block Krylov subspace method [5,21,37,38,43]. Although certain work in the
literature [7] indicates that it usually happens with a very small probability in practice,
breakdown, if it actually occurs, may seriously hurt the computational performance
of a block solver. For mission-critical applications, this is particularly unfavorable.

Generally, several strategies have been proposed to address the breakdown problem
in block Krylov subspace methods. One strategy is restarting [38], i.e., monitoring the
rank of blockmatrices and restarting blockKrylov subspacemethods oncematrix rank
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loss is detected. Restarting requires eliminating the linearly dependent or converged
vectors. Moreover, for the block linear systems where all solutions to the multiple
right-hand sides are needed, the transformation matrix to the reduced block solution
has to be stored each timewhen rank deficiency occurs. These transformationmatrices
are later used to recover all block solutions. An alternative strategy is to detect and
keep the dependent vectors and then reintroduce them in the subsequent iteration
steps [1,28,43], which has been used to handle the inexact breakdown problem in
block GMRES. Another strategy is based on reducing the basis of the search space
or deflation [16,21], whose rationale is to remove the linearly dependent vectors at
the occurrences of rank deficiency and then to continue the remaining iterations with
a reduced block size. (Note that the term “deflation” is also used as a convergence
acceleration technique in many Krylov subspace methods [7,18,47].)

In the context of BCG, both restarting and reducing the basis of the search space
have been proposed to remedy the breakdown problem in BCG.As analyzed in Sect. 4,
restarting inevitably abandons all search spaces explored before,whichmay slowdown
convergence. The variable block BCG algorithm [37] is based on reducing the basis
of the search space without restarting, where an A-orthogonal projector is constructed
to reduce the size of the block matrices adaptively during BCG iterations; however,
this method is only of interest for getting the solution of a single right–hand side and
differs fromBFBCG in theway of updating searchmatrices, which requires integrating
a series of intermediate matrices. The main contributions of this paper include (1)
analyzing all possible rank deficiency situations that can lead to breakdown in BCG;
(2) providing a simple solution of BFBCG to avoid breakdown caused by all possible
rank deficiency situations in BCG while finding solutions to all right-hand sides; (3)
justifying the orthogonality properties and convergence of BFBCG in case of rank
deficiency with mathematical rigor; and (4) theoretically analyzing the convergence
of BFBCG. The key to avoiding breakdown in BFBCG is to reduce the basis of the
search spacewhen rank deficiency occurs. Therefore, alternative formulations ofBCG,
such as those involving LU or QR decomposition of the search direction block or QR
factorization of the residual block [10], can also reduce the basis of the search space
and achieve similar breakdown-free implementations.

The breakdown situations in general block Krylov subspace methods are more
complicated than BCG. In fact, rank deficiency is not the only factor that causes
breakdown in general block Krylov subspace methods. For example, block QMR [16]
may encounter division by zero and block GMRES may break down when defla-
tion is applied [18]. It is important to note that these situations do not occur in the
BCG methods [3,18,27,36,46]. Another potential problem for numerical instability
is stagnation, i.e., the residual norm does not change any more but without reaching
convergence [29,57]. Fortunately, our analysis of the parameter matrices indicates that
stagnation will not occur in BFBCG, either.

6.3 Handling the near-breakdown problem

Recent studies [20,22,43,49] have showed that the almost linearly dependent vectors
in the residual block matrices may cause loss of orthogonality during iterations and
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Table 2 Comparison between BCG and BFBCG in case of near-breakdown

thus slow down or even prevent convergence of block Krylov subspace methods.
This is referred to as the near-breakdown problem. We hereby investigate the impacts
of the near-breakdown problem on BFBCG in comparison with the original BCG
algorithm. To simulate the near-breakdown situations, we use a linear system of a
10 × 10 random coefficient matrix with a small condition number to eliminate the
impact from the matrix itself. We initialize a block residual matrix R0 with two nearly
linearly dependent vectors, where the second column is generated by multiplying the
first one by 10 while adding small random perturbations. The coefficient matrix and
the right-hand side block matrix have been made available on our website [32].

Table 2 compares BCG and BFBCG in the case when near-breakdown occurs. We
monitor the smallest singular value of Ri and a parameter τ is designated as a tolerance
threshold of linear dependence among the block residual vectors in BFBCG. Here, τ
is set to 10−12. One can find that the nearly linearly dependent vectors in Ri result in
a certain loss of A-orthogonality among search matrices during the iterations in both
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BCG and BFBCG, which is consistent with the analysis presented in [20,49]. This is
due to the fact that constructing the new search matrices is sensitive to the round-off
errors when the residual matrices are nearly rank-deficient. Nevertheless, the compu-
tation of the parameter matrix βi in BCG requires evaluation of γ −1

i (ZT
i Ri )

−1, where
the nearly linear dependence of the columns in Ri can lead to large round-off errors.
As shown in Table 2, BCG suffers from complete loss of A-orthogonality and fails
to converge. In contrast, the computation of β̃i in BFBCG relies only on calculating
(P̃T

i AP̃i )−1 and thus maintains relatively better A-orthogonality. Moreover, BFBCG
is designed to enforce A-orthogonality of every two consecutive search matrices. As
a result, BFBCG is able to evolve with nearly linear dependence in Ri . When the
singularity of Ri falls under threshold τ , the reduced search matrices are generated
in such a way that A-orthogonality with the previous search directions is maintained.
Consequently, the relatively better A-orthogonality allows BFBCG to reach solutions
with desired precision.

7 Conclusions

Considering solving a linear system with multiple right-hand sides, we develop the
BFBCG algorithm to address the rank deficiency problem in BCG. All possible
situations of rank deficiency causing BCG breakdown are analyzed. New forms of
parameter matrices are introduced in BFBCG and are theoretically justified to ensure
that BFBCG is able to completely avoid breakdowns due to rank deficiency. Conver-
gence of BFBCG is analyzed accordingly in case of rank deficiency. The effectiveness
of BFBCG is shown in several numerical examples suffering breakdown or near break-
down due to rank deficiency.
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