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Abstract

Motivation: Accumulating evidences indicate that long non-coding RNAs (lncRNAs) play pivotal

roles in various biological processes. Mutations and dysregulations of lncRNAs are implicated in

miscellaneous human diseases. Predicting lncRNA–disease associations is beneficial to disease

diagnosis as well as treatment. Although many computational methods have been developed, pre-

cisely identifying lncRNA–disease associations, especially for novel lncRNAs, remains challenging.

Results: In this study, we propose a method (named SIMCLDA) for predicting potential lncRNA–

disease associations based on inductive matrix completion. We compute Gaussian interaction

profile kernel of lncRNAs from known lncRNA–disease interactions and functional similarity of dis-

eases based on disease–gene and gene–gene onotology associations. Then, we extract primary

feature vectors from Gaussian interaction profile kernel of lncRNAs and functional similarity of

diseases by principal component analysis, respectively. For a new lncRNA, we calculate the

interaction profile according to the interaction profiles of its neighbors. At last, we complete the as-

sociation matrix based on the inductive matrix completion framework using the primary feature

vectors from the constructed feature matrices. Computational results show that SIMCLDA can

effectively predict lncRNA–disease associations with higher accuracy compared with previous

methods. Furthermore, case studies show that SIMCLDA can effectively predict candidate lncRNAs

for renal cancer, gastric cancer and prostate cancer.

Availability and implementation: https://github.com//bioinfomaticsCSU/SIMCLDA

Contact: jxwang@mail.csu.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Traditional central dogma of molecular biology postulates that gen-

etic information is stored in the protein-coding genes (Yanofsky,

2007). However, accumulating evidences indicate that non-coding

genes are not just plentiful but also play important roles. With the

completion of ENCODE project, researchers found that �74.7% of

human genome are transcribed (Djebali et al., 2012), in contrast to

only �1.5% encoding proteins (Lander et al., 2001). Furthermore,

accumulating evidences show that non-coding RNAs (ncRNAs) par-

ticipate in a wide-repertoire of biological processes. In particular,

long non-coding RNAs (lncRNAs) with length � 200 nt (nucleoti-

des) consist of the largest subclass of ncRNAs. Although lncRNAs
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have no potential to encode, facts show that they perform various

biological functions such as translational and post-translational

regulation, cell differentiation, proliferation and apoptosis, epigenet-

ic regulation and so on (Guttman et al., 2009). Consequently, muta-

tion and dysregulation of lncRNAs can cause miscellaneous human

diseases, including breast cancer (Vincent-Salomon et al., 2007),

lung cancer (Chen et al., 1997), Alzheimer’s disease (Faghihi et al.,

2008; Liu et al., 2018) and others. The details of mechanisms of

lncRNAs are still a conundrum, but lncRNAs are considered as

molecules for disease diagnosis and therapy. Predicting the relation-

ships between lncRNAs and diseases has attracted more and more

attentions. It is not only beneficial to disease diagnosis, but also

helpful in understanding biological processes. Furthermore, compu-

tational methods provide a possible way to decrease the time

and cost of experiments with limited known lncRNA–disease

associations.

Computational methods proposed to predict potential lncRNA–

disease associations could be classified into the following three

categories. Methods in the first category identify lncRNA–disease

associations by utilizing biological information of lncRNA, such as

genome location, expression profile, tissue specificity and so on.

Chen et al. (2013) predicted lncRNA–disease associations by virtue

of neighbourship between lncRNAs and genes in genome location,

based on known gene–disease associations. Since location and iden-

tification of lncRNAs is still an impediment, this model just works

for small parts of lncRNAs. Liu et al. (2014) identified potential

associations by combing lncRNA’s tissue specificity and gene–

lncRNA co-expression. Chen (2015) used the KATZ measure to

find potential associations, integrating lncRNA expression profiles,

lncRNA functional similarity, known lncRNA–disease associations,

disease semantic similarity and Gaussian interaction profile kernel.

However, tissue-specific expression and low expression level of

lncRNAs limit these methods predicting for all lncRNAs. Methods

in the second category uses machine learning models to identify

potential associations. Chen and Yan (2013) proposed a semi-

supervised learning method LRLSLDA to identify possible associa-

tions between lncRNAs and diseases by using Laplacian regularized

least squares. However, this method suffered from combing two

classifiers reasonably. Lan et al. (2016) fused different data sources

and used a bagging SVM classifier to predict latent interactions be-

tween lncRNAs and diseases. Nevertheless, effectively fusing differ-

ent kernels of lncRNAs is still a big problem. Based on the

commonly accepted assumption that phenotypically similar diseases

are prone to be associated with functionally similar lncRNAs and

vice versa Wu et al. (2008), methods in the third category takes use

of random walk. Sun et al. (2014) constructed a lncRNA–lncRNA

functional similarity network through diseases semantic similarity,

and used the random walk with restart to predict lncRNA–disease

associations. Chen et al. (2016) took use of random walk on the

lncRNA similarity network with an initial probability vector, speci-

fied by lncRNA expression similarity and disease semantic similar-

ity. Zhang et al. (2017a) applied a flow propagation algorithm on a

constructed network, incorporating information of lncRNAs, pro-

teins and diseases. Yao et al. (2017) designed a heterogeneous ran-

dom walk on the constructed multi-level composite network,

integrating lncRNA, gene and phenotype. However, these models

predict potential associations just utilizing the most important fea-

ture vector, corresponding to the maximum eigenvector of known

information. Moreover, there is still a challenge to achieve signifi-

cant performance for prediction.

In this study, we formulate lncRNA–disease association prediction

as a recommendation system problem. We propose the use of an

inductive matrix completion (IMC) method (Jain and Dhillon, 2013)

for predicting lncRNA–disease associations (named SIMCLDA) by

using informative feature vectors corresponding to the top singular

vectors of the lncRNA and disease feature matrices. Generally, a rec-

ommendation system is an information filtering system that seeks to

predict the preference that user would give to a certain item, given

only partial known preference information. Recently, recommenda-

tion system methods have been applied to association prediction in a

variety of bioinformatics problems. For example, Zheng et al. (2013)

proposed a collaborative matrix factorization method to predict drug-

target interactions; Luo et al. (2018) used a matrix completion

method for drug repositioning. Analogously, the lncRNA–disease as-

sociation prediction task takes the set of lncRNAs, the set of diseases

and the set of partially known associations between lncRNAs and dis-

eases, then recommends lncRNAs for a given disease, using prior in-

formation about lncRNAs and diseases. Similar to the assumption in

the user-item recommendation system that users with similar behavior

share similar preferences towards items, the lncRNA–disease predic-

tion assumes that functionally similar lncRNAs exhibit similar inter-

action patterns with diseases. Here, we model the lncRNA–disease

association prediction problem as a recommendation task and solve it

with speedup IMC (Xu et al., 2013). SIMCLDA uses principle com-

ponents analysis (PCA) (Jolliffe, 1986) to extract informative feature

vectors, based on disease–gene, gene–gene ontology and known

lncRNA–disease associations. For a new lncRNA, SIMCLDA calcu-

lates the interaction profile according to its sequence-similar neigh-

bors. Then, SIMCLDA completes the association matrix using the

primary feature vectors from the constructed feature matrices.

SIMCLDA outperforms the other methods in leave-one-out experi-

ments. Moreover, case studies show that SIMCLDA is capable of

inferring potential lncRNAs for renal cancer, gastric cancer and pros-

tate cancer. In summary, incorporating effective features extracted

from interaction profiles with neighboring information into fast IMC

computation leads to SIMCLDA performance enhancement.

2 Materials and methods

Given a lncRNA–disease interaction matrix A 2 R
m�n from known

lncRNA–disease associations, where m and n are the number of

lncRNAs and diseases, respectively, and each row corresponds to

a lncRNA while each column represents a disease. Aij is 1 if lncRNA

i is linked to disease j, and Aij is 0 if their relationship is unknown.

Predicting potential associations between lncRNAs and diseases is

deemed as completing A, which is a problem of matrix completion.

2.1 Methods overview
To infer potential lncRNAs associated with diseases under consider-

ation, we propose a method SIMCLDA based on IMC (Jain and

Dhillon, 2013). SIMCLDA consists of five steps shown in Figure 1.

Step 1, SIMCLDA computes Gaussian interaction profile kernel of

lncRNAs (Gkl) from known lncRNA–disease interactions. Step 2,

SIMCLDA uses Jaccard similarity coefficient to calculate functional

similarity of diseases (Dis). Step 3, SIMCLDA extracts primary fea-

ture vectors from Gkl and Dis by PCA, respectively. Step 4,

SIMCLDA calculates the interaction profile for a new lncRNA with

the interaction profiles of its neighbors. Step 5, SIMCLDA com-

pletes the association matrix with IMC using primary feature vec-

tors and constructed interaction profiles.
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2.2 Gaussian interaction profile kernel of lncRNAs
Based on the assumption that functionally similar lncRNAs exhibit

similar interaction patterns with diseases, we use Gkl 2 R
m�m to de-

fine the lncRNA latent feature space including feature matrix. The

interaction profile of lncRNA i (IP lncið Þ) is the ith row vector of as-

sociation matrix A 2 R
m�n. It is a binary vector indicating the pres-

ence or absence of its associations with diseases. Then, the distance

between any two row vectors is computed as Gaussian interaction

profile kernel of their corresponding lncRNAs,

Gkl lnci; lncj

� �
¼ exp �clkIP lncið Þ � IP lncj

� �
k2

� �
(1)

Here cl determines the kernel bandwidth, which is normalized by

the average number of associations with diseases per lncRNA and is

computed as follows,

cl ¼
1

m

Xm
i¼1

kIP lncið Þk2 (2)

2.3 Disease similarity
Recent studies discover that phenotypically similar diseases are

related with similar dysfunctions of genes (Schlicker et al., 2010).

Gene ontology annotations provide a way to measure semantic

function of genes. We calculate functional similarity of diseases

(Dis 2 R
n�n) using Jaccard similarity coefficient (Jaccard, 1908)

based on disease–gene and gene–gene ontology associations,

Dis di; dj

� �
¼
jGOdi

\GOdj
j

jGOdi
[GOdj

j ; (3)

where GOdi
denotes the gene ontology terms associated with disease i.

2.4 Extracting primary feature vectors
IMC model assumes that the feature vectors of lncRNAs and disease

interacting in the latent space determine the associations. Due to the

low quality of the original data, we use PCA to extract the primary

feature vectors from Gkl 2 R
m�m and Dis 2 R

n�n, respectively.

SIMCLDA employs singular value decomposition (SVD) to perform

PCA. Because both Gkl and Dis are symmetric, then Gkl¼UlSlU
T
l

for lncRNAs, where Ul is an m�m unitary matrix and Sl is an

m�m diagonal matrix with singular values deposited on the diag-

onal in descending order, and Dis¼UdSdUT
d for diseases, where Ud

means an n�n unitary matrix and Sd is an n�n diagonal matrix

with singular values on the diagonal in descending order. Based on

the dominating energy strategy (Ji et al., 2016), we find appropriate

parameters fl and fd with specified al and ad, which are the percent-

age of the sum of singular values in the diagonal matrix Sl and Sd

such that

fl ¼ arg min
x

Px
i¼1 Slð ÞiiPm
j¼1 Slð Þjj

� al

( )
(4)

and

fl ¼ arg min
x

Px
i¼1 Sdð ÞiiPn
j¼1 Sdð Þjj

� ad

( )
(5)

Then, we set L ¼ Vl1 ;Vl2 ; . . . ;Vlfl

� �
and D ¼ Vd1

;Vd2
; . . . ;Vdfd

� �
.

The primary feature vectors in the latent spaces are top singular vec-

tors corresponding to the top singular values, which contain most

intrinsic information.

2.5 Calculating interaction profile for a new lncRNA
During the prediction process, a new lncRNA without any known

lncRNA–disease associations results in the cold-start problem

(details in Supplementary 3.1), i.e. for a new lncRNA i, all elements

of its interaction profile IP lncið Þ are 0, indicating that no prior

association knowledge could be used for prediction. Inspired by the

solutions to the cold-start problem in collaborative filtering, we cal-

culate the interaction profile for a new lncRNA using the mean of its

neighbors’ interaction profiles based on the assumption that the

similar lncRNAs interact with the similar diseases. By virtue of the

computed interaction profile, we are able to incorporate prior inter-

action patterns of the neighbors of this new lncRNA and extract ef-

fective feature vectors. For example, we compute a new interaction

profile IP0(lnci) for lncRNA i. If similarities between other lncRNAs

and the lncRNA i were larger than the mean of the sequence similar-

ity, these lncRNAs can be defined as the neighbors of lncRNA i.

Then, we calculate the interaction profile for lncRNA i by using the

mean of its neighbors’ interaction profiles. Moreover, we replace the

corresponding interaction profiles with the newly formed one such

that

IP0 lncið Þ ¼
P

j2N lncið Þ IP lncj

� �
jN lncið Þj ; (6)

where N lncið Þ is the set of the neighbors of lncRNA i and j � j
denotes the cardinality of a set.

2.6 Inductive matrix completion
2.6.1 Standard matrix completion

In the standard model, matrix completion is to recovery the missing

values in an m�n matrix M given partially observed entry sets X.

Let <X Mð Þ : Rm�n 7!R
m�n be a linear projection operator such that

<X Mð Þij ¼
Aij; if i; jð Þ 2 X

0; if i; jð Þ 62 X

(
(7)

Under the common assumption that the entry values of M are deter-

mined by only a few latent factors, matrix completion can be

Fig. 1. Scheme of SIMCLDA. Step 1: computing Gkl. Step 2: calculating func-

tional similarity of disease Dis based on disease–gene and gene–gene ontol-

ogy associations. Step 3: extracting primary feature vectors from Gkl and Dis

by PCA, respectively. Step 4: calculating interaction profile for a new lncRNA

according to the interaction profiles of its neighbors. Step 5: completing the

association matrix with IMC
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modeled as a constraint satisfaction problem by minimizing the rank

of matrix M, i.e.

minimize rank Mð Þ

s:t: Mij ¼ Aij; i; jð Þ 2 X
: (8)

Unfortunately, it is an NP-hard problem. By replacing the objective

function in (Fazel, 2002) with the nuclear norm, the matrix completion

can be reformulated as the following convex optimization problem,

minimize kMk�
s:t: Mij ¼ Aij; i; jð Þ 2 X

; (9)

where k � k� is the nuclear norm defined as the sum of the singular values.

2.6.2 SIMCLDA

We use the kernel matrix of lncRNAs and diseases to represent the

latent space by including feature vectors of side information based

on kernel extension in Yu et al. (2014). We complete A based on the

low-rank assumption in Xu et al. (2013), the column vectors in A lie

in the subspace spanned by the column vectors in L, and the row

vectors in A lie in the subspace spanned by the column vectors in D.

Then, the problem can be defined as:

min
Z2Rfl�fd

kZk�

s:t:<X LZDT
� �

¼ <X Að Þ;
(10)

where Z is the objective matrix to complete A.

Relaxing the constraint of <X LZDT
� �

¼ <X Að Þ to f Zð Þ ¼ 1
2 k<X

LZDT �A
� �

k2
F and denoting p Zð Þ ¼ kZk�, the above optimization

problem (10) becomes

min
Z2Rfl�fd

kp Zð Þ þ f Zð Þ; (11)

where k is the regularization parameter controlling the extent of the

nuclear norm.

For any given Y 2 R
fl�fd , f(Z) can be approximated by the fol-

lowing quadratic approximation

f Zð Þ � ~f Z;Yð Þ ¼ f Yð Þ þ hrf Yð Þ;Z� Yi þ s

2
kZ� Yk2

F (12)

¼ s

2
kZ� ðY � 1

s
rf Yð ÞÞk2

F þ f Yð Þ � 1

2s
krf Yð Þk2F; (13)

where rf Yð Þ ¼ LT<X LYDT � A
� �

D is the gradient of f(Z) at Y, h:i
denotes matrix inner product, and s is a proximal parameter for esti-

mating the second-order gradient r2f Yð Þ. Accordingly, the mini-

mization model (11) becomes

min
Z2Rfl�fd

kkZk� þ
s

2

����Z� Y � 1

s
rf Yð Þ

� �����
2

F

(14)

We then generate an accelerated gradient descent (APG) (Toh

and Yun, 2010) style iterative scheme for (14)

Yk  Zk þ hk h�1
k�1 � 1

� �
Zk �Zk�1ð Þ (15a)

Zkþ1  arg min
Z

kkZk� þ
s

2

����Z� Yk �
1

s
rf Ykð Þ

� �����
2

F

(15b)

hkþ1  
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h4

k þ 4h2
k

q
� h2

k

� �
=2 (15c)

Particularly, (15b) can be obtained by recasting the linearized

Bregman iterations as a special form of Uzawa’s algorithm (Cai

et al., 2010) such that

Zkþ1  Dk
s

Yk �
1

s
LT<X LYkDT �A

� �
D

� �
(16)

Here Dk
s
:ð Þ denotes the matrix shrinkage operator based on SVD on

the operand matrix with respect to threshold k
s such that

Dk
s

Xð Þ ¼
Xri�k

s

i

ri �
k
s

� �
uiv

T
i ; (17)

where ui and vi are the left and right singular vectors of X corre-

sponding to ri, respectively.

The prediction procedure is summarized in Algorithm 1. Based

on inductive matrix completion, SIMCLDA iteratively updates the

approximation using linearized Bregman iteration until convergence

is reached.

3 Results and discussion

3.1 Data collection
We retrieve known lncRNA–disease associations from the gold

standard dataset in LncRNADisease database. In order to evaluate

the performance of our proposed SIMCLDA, we use three datasets.

The first dataset is downloaded from LncRNADisease established

in October 2012, which contains 293 experimentally validated

lncRNA–disease associations. The second dataset is obtained from

LncRNADisease established in 2014, which contains 351 lncRNA–

disease associations with 156 lncRNAs and 189 diseases. The third

dataset is retrieved from LncRNADisease established in 2015, which

contains 685 lncRNA–disease associations with 256 lncRNAs and

189 diseases. After correcting names of diseases (according to UMlS,

Algorithm 1 SIMCLDA Algorithm

Input: Sequence similarity of lncRNAs, disease–gene associations,

gene–GO associations and the incomplete lncRNA–

disease association matrix A

Output: Predicted association matrix M

1: Calculate GKL based on known lncRNA–disease

associations

2: Calculate disease similarity matrix Dis from disease–gene

and gene–GO, using Jaccard similarity coefficient

3: Extract primary feature vectors from GKL and Dis using

PCA

4: Construct new interaction profile for a new lncRNA

5: Initialize threshold �; h1 ¼ h2 2 ð0; 1	;Z1 ¼ Z2; s; c > 1

6: k¼2

7: do

8: Yk ¼ Zk þ hkðh�1
k�1 � 1ÞðZk � Zk�1Þ

9: Zkþ1 ¼ Dk
s
ðYk � 1

s LT<XðLYkDT � AÞDÞ
10: while f ðZkþ1Þ � ~f ðZkþ1;YkÞ do " adjust s if

overestimated

11: s ¼ s � c
12: Zkþ1 ¼ Dk

s
ðYk � 1

s LT<XðLYkDT � AÞDÞ
13: end while

14: hkþ1 ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h4

k þ 4h2
k

q
� h2

kÞ=2
15: k ¼ kþ 1

16: while jf ðZkþ1Þ � f ðZkÞj � �
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Mesh and NCBI) and lncRNAs (according to HGNC, NCBI,

Lncipedia and lncrnadb), we remove all repeating records with the

same lncRNA and disease, and all the wrong entries that do not be-

long to human beings. The statistics of the final datasets are shown in

Table 1, and the overlaps between the datasets are shown in

Supplementary Figures S1, S2 and S3. We use BioMart to download

associations between genes and gene ontology terms of human beings

from Ensemble database (Aken et al., 2016). Disease–gene associa-

tions are derived from DisGeNET database (Pi~nero et al., 2017).

3.2 Leave-one-out cross validation
In order to evaluate the performance of SIMCLDA in predicting

potential lncRNA–disease associations, we perform leave-one-

out cross-validation (LOOCV) on known experimentally verified

lncRNA–disease associations and prioritize candidates of disease-

associated lncRNAs. For a given disease di, each known lncRNA asso-

ciated to di is left out in turn as the test sample, and the other known

experimentally verified lncRNAs associated with di are considered as

training samples. All the lncRNAs without known associations with di

make up the di-associated candidate samples. In the candidate samples,

the test sample is deemed as a positive sample, and the others are nega-

tive samples. After performing prediction, the probabilities of associa-

tions between candidate samples and di are calculated. Meanwhile, all

candidate lncRNAs are ranked by the predicted probabilities. The

higher the candidate lncRNA is ranked, the better SIMCLDA per-

forms. After all known associations have been tested, we calculate

both true positive rate (TPR) and false positive rate (FPR) as follows:

TPR ¼ TP

TPþ FN
(18)

where TP is the number of positive samples, whose rank is higher

than a given rank cutoff and FN is the number of negative samples

that are identified incorrectly.

FPR ¼ FP

FPþ TN
(19)

where FP is the number of negative samples, whose rank is lower

than a given rank cutoff and TN is the number of negative samples

that are identified correctly.

TPR indicates the percentage of the test sample rank is higher

than a given rank cutoff. FPR means that the percentage of candi-

date lncRNAs ranked lower than a given rank cutoff. Then the re-

ceiver operating characteristic (ROC) curve is utilized to evaluate

the performance, which plots TPR versus FPR with respect to vari-

ous cutoffs. The latent feature space Gkl depends on the known

lncRNA–disease associations. Since each known lncRNA–disease

association is taken as a test sample in turn during LOOCV, we

need to recalculate Gkl corresponding to different test samples.

3.3 The effects of parameters
3.3.1 The effects of al and ad

Primary feature vectors of lncRNA and disease determine the possi-

bility of interactions. Thus, the numbers of lncRNAs’ and diseases’

primary feature vectors fl and fd play important roles. SIMCLDA

sets al and ad to find proper fl and fd by using the dominant energy

strategy on three datasets. We test effects of al, ranged from 0.1 to

0.9, and ad, ranged from 0.2 to 1. As shown in Figure 2, we can see

that the AUC values of SIMCLDA based on Dataset1 vary slightly

for all ad except ad ¼ 1, when 0:1 
 al 
 0:6. It suggests that the

primary feature vectors of lncRNAs are informative but certain

important information is missing. The performance becomes much

better by increasing al from 0.6 to 0.8, indicating important infor-

mation is gradually integrated. Meanwhile, AUC values fall rapidly

when 0:9 
 al 
 1, indicating SIMCLDA incorporates irrelevant

information. SIMCLDA performs the best when ad equals 0.6 for all

datasets. The results of SIMCLDA on Dataset2 and Dataset3 are

shown in Supplementary Figures S4 and S5, respectively. In sum-

mary, we set al ¼ 0:8 and ad ¼ 0:6 as the default.

3.3.2 The effect of k

In Equation (11), the regularization parameter is used to balance the

nuclear norm and approximation error. Intuitively, if the magnitude

of k is too large, the nuclear norm brings in a large penalty which

may lead to large approximation error. On the other hand, if the

magnitude of k is too small, the low-rank property of the solution

matrix Z may not be ensured. Typically, the proper value of k is

determined by cross-validation. Here, we randomly divide the dataset

into ten folds and use nine folds as training set and one fold as test

set. Table 2 shows the mean (Mean) and the standard deviation (SD)

of AUC values on the test sets in the ten-fold cross-validation with re-

spect to k ranging from 0.001 to 1000 increasing in the power of 10.

Through the training process, SIMCLDA minimizes the objective

function (11) with respect to the specified value of k and estimates

the performance on the test set. The results for the three datasets are

d

d

d

d

d

Fig. 2. Effects of parameters al and ad on Dataset1

Table 1. Details of final datasets

Datasets No. of lncRNAs No. of diseases No. of interactions

Dataset1 112 150 276

Dataset2 131 169 319

Dataset3 285 226 621

(a) (b)

Fig. 3. Comparison of predicting methods on Dataset1. (a) Performance of all

methods in terms of ROC curve using LOOCV. (b) Number of correctly

retrieved known lncRNA–disease associations for specified rank thresholds
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shown in the Table 2. One can find that SIMCLDA yields the best

performance when k adopts the magnitude of 1, which is consistent

across the three datasets. As a result, we set k¼1 as the default for

SIMCLDA.

3.4 Comparison with other methods
We compare SIMCLDA with other four the-state-of-art computa-

tional methods (LRLSLDA, RWRlncD, RWRH and LDAP) in terms

of AUC and number of correctly retrieved associations on the same

three datasets. LRLSLDA (Chen et al., 2013) used Laplacian regu-

larized least squares, a semi-supervised learning method, to identify

the possible associations between lncRNAs and diseases by incorpo-

rating lncRNA expression profiles. RWRlncD (Sun et al., 2014) was

a random walk with restart method for each disease to predict

lncRNA–disease associations, based on constructed lncRNA–

lncRNA functional similarity. RWRH (Li and Patra, 2010) was a

random walk with restart on a heterogeneous network. LDAP (Lan

et al., 2016) fused different data sources and used a bagging SVM

classifier to predict latent associations between lncRNAs and dis-

eases. On Dataset1, we can see that SIMCLDA obtained an AUC of

0.8237, which is significantly higher than AUCs of others

(LRLSLDA 0.6444, RWRH 0.6186, RWRLncD 0.6886 and LDAP

0.6283), suggesting that our method exhibits greatly improved

accuracy compared to these prediction methods (Fig. 3a).

Furthermore, the numbers of correctly retrieved lncRNA–disease

associations are shown in Figure 3b. If a predicted association is

ranked higher than the specified rank threshold, then it is regarded

as a correctly retrieved association. SIMCLDA outperforms the

other methods by predicting more true associations. On Dataset2,

SIMCLDA also performs better with the AUC of 0.8526 than the

others (LRLSLDA 0.6407, RWRH 0.6727, RWRLncD 0.6803 and

LDAP 0.6315), whose results are shown in Figure 4a. As shown in

Figure 4b, SIMCLDA can retrieve more correct associations. On

Dataset3, SIMCLDA is much better with AUC of 0.8578 than the

others (LRLSLDA 0.73, RWRH 0.7078, RWRLncD 0.6121 and

LDAP 0.6393), as shown in Figure 5a. SIMCLDA can find more

correct associations on the whole shown in Figure 5b. Overall, our

method performs is more effective than the other existing methods.

3.5 De novo lncRNA–disease prediction
To assess the performance of SIMCLDA in predicting potential asso-

ciations for new lncRNAs, we conduct a denovo lncRNA–disease pre-

diction test. After removing all known lncRNA–disease associations

for each queried lncRNA i, computational methods are used to pre-

dict its associations. In order to evaluate the effectiveness of calculat-

ing interaction profiles, SIMCLDA* that does not calculate the

interaction profile for a new lncRNA is also compared. Then, we

compare SIMCLDA, LRLSLDA, RWRH, LDAP and SIMCLDA* on

three datasets, except RWRLncD. Because similarity among lncRNAs

is computed by lncRNA–disease associations, RWRLncD cannot be

used in thede novo test. As shown in Figure 6, SIMCLDA achieves an

AUC value of o.69657, which is much higher than those of other pre-

diction methods. Moreover, we can find that calculating interaction

profiles is an effective way for prediction. Comparison with other

methods on Dataset2 and Dataset3 are reported in Supplementary

Figures S6 and S7. In the de novo experiment, SIMCLDA derives

interaction patterns for a new lncRNA based on its neighbors’ inter-

action profiles, extracts feature vectors using PCA to reduce noise,

and predicts lncRNA–disease associations using the speedup IMC

model. In summary, all of the above factors contribute to the accuracy

improvement in SIMCLDA.

3.6 Case studies
To demonstrate the capability of SIMCLDA in predicting new

lncRNAs related to a queried disease, we conduct case studies for

(a) (b)

Fig. 4. Comparison of predicting methods on Dataset2. (a) Performance of all

methods in terms of ROC curve using LOOCV. (b) Number of correctly

retrieved known lncRNA–disease associations for specified rank thresholds

(a) (b)

Fig. 5. Comparison of predicting methods on Dataset3. (a) Performance of all

methods in terms of ROC curve using LOOCV. (b) Number of correctly

retrieved known lncRNA–disease associations for specified rank thresholds
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Fig. 6. Comparison of predicting methods in de novo prediction test on Dataset1

Table 2. The effect of k

k Dataset1 Dataset2 Dataset3

Mean SD Mean SD Mean SD

0.001 0.6435 0.0072 0.6944 0.0083 0.7332 0.0042

0.01 0.6490 0.0080 0.6989 0.0079 0.7397 0.0049

0.1 0.6704 0.0158 0.7045 0.0309 0.7791 0.0049

1 0.8008 0.0086 0.8267 0.0051 0.8340 0.0038

10 0.5810 0.0001 0.5613 0.0007 0.5421 0.0001

100 0.5731 0.0009 0.5523 0.0005 0.5328 0.0003

1000 0.5610 0.0002 0.5473 0.0004 0.5197 0.0001

Results are marked in bold on three datasets with k¼ 1.
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renal cancer, gastric cancer and prostate cancer on Dataset3, and

confirm the new predicted lncRNA–disease associations in the top-

10 by manually mining literatures. Case study for renal cancer is

described as follows.

Renal cancer is one of the 10 most common cancers, with

more than 250 000 new cases diagnosed each year worldwide

(Zhou et al., 2014). It is important to find the associations be-

tween progression of renal cancer and dysregulations of some

lncRNAs. SIMCLDA has inferred associations between all the

candidate lncRNAs for renal cancer, and finds that 8 renal

cancer-associated lncRNAs (H19 1st, MALAT1 2nd, GAS5 3rd,

MEG3 4th, XIST 5th, UCA1 6th, DRAIC 7th and NEAT1 9th)

are in the top-10 rank of prediction (Table 3). The expression

level of H19 is significantly higher in clear cell renal carcinoma

compared with the normal renal tissues (Wang et al., 2015a).

MALAT1 expresses higher in human renal cell carcinoma, and

MALAT1 silencing decreases renal cell carcinoma proliferation and

invasion and increases apoptosis (Hirata et al., 2015). Compared with

non-tumorous renal tissue, GAS5 expression level is significantly

lower in renal cell carcinoma samples in vitro and in vivo (Seles et al.,

2016). In renal cancer cell, MEG3 is significantly down-regulated in

comparison to normal renal tissue in vivo and in cultured cells (Wang

et al., 2015b). The lncRNA XIST regulates the tumorigenicity of renal

cell carcinoma cells via the miR-302c/SDC1 axis (Zhang et al.,

2017b). UCA1 expression levels are significantly increased in renal

cell carcinoma tissues and cells (Li et al., 2016). DRAIC over-

expression indicates a favorable prognosis in many kinds of malignan-

cies including renal cell carcinoma (Sakurai et al., 2015). NEAT1

knockdown suppresses renal cell–carcinoma cell proliferation by

inhibiting cell cycle progression, and inhibits renal cell–carcinoma cell

migration and invasion by reversing the epithelial-to-mesenchymal

transition phenotype (Liu et al., 2017).

Case studies for gastric cancer and prostate cancer on

Dataset3 are described in the Supplementary Tables S1 and S2.

Furthermore, we use Dataset1 and Dataset2 to predict experimen-

tally verified lncRNA–disease associations in Dataset3 for renal

cancer, gastric cancer and prostate cancer, e.g. testing associa-

tions between renal cancer and the watched lncRNAs. The

watched lncRNAs are existing in Dataset1 and Dataset2, but

without relation to the watched disease. For renal cancer, six

watched lncRNAs in the top-10 predicted lncRNAs are verified in

Dataset3 (Supplementary Table S3), and 6 of 7 watched lncRNAs

are verified in Dataset3 (Supplementary Table S4). Case studies

for gastric cancer and prostate cancer on Dataset1 and Dataset2

are shown in Supplementary Tables S5–S8. These successful pre-

dictions demonstrate that SIMCLDA has the potential to infer

novel lncRNAs for diseases.

4 Conclusions

Predicting lncRNA–disease associations is not only helpful in

understanding critical roles of lncRNAs in biological progresses,

but also beneficial to disease diagnosis, treatment, prognosis and

prevention. In this study, we have proposed a computational

method SIMCLDA to predict lncRNA–disease associations from

known data using IMC, based on the assumption that functionally

similar lncRNAs tend to interact with phenotypically similar dis-

eases. Compared to other methods, our methods performs better

in terms of AUC values on three datasets. SIMCLDA surpasses

others for most conditions according to the number of correctly

retrieved associations. In a de novo prediction test, SIMCLDA also

outperforms other methods. In addition, we have conducted case

studies on renal cancer and found that 80% predicted candidate

lncRNAs could be confirmed for each disease of interest by litera-

ture mining. Our study has two major contributions in predicting

lncRNA–disease associations. First, we can find more precise pri-

mary feature vectors from Gkl and Dis to improve accuracy.

Second, we can predict lncRNA–disease associations for new

lncRNAs. SIMCLDA could be a useful tool for studying lncRNA–

disease relationship.

The fundamental idea of using inductive matrix completion for

LncRNA–disease association prediction is to find a low-rank matrix

that can integrate prior knowledge about lncRNA and disease to

complete the lncRNA–disease association matrix. By factorizing a

matrix to low-rank matrices (Ramlatchan et al., 2018), matrix fac-

torization provides a framework (Xi et al., 2017a) for dimension re-

duction and matrix completion, which can also be applied to

lncRNA–disease association prediction. For example, the optimiza-

tion problem (10) can be modeled as

min
M;N
kA� LMNDTkF þ k1kMk2 þþk2kNk2; (20)

when the matrix factorization framework is applied (Jain and

Dhillon, 2013). Different regularization techniques such as L0

regularization, L1 regularization and network regularization (Xi

et al., 2017b) may be incorporated. Various matrix factorization

forms such as SVD, non-negative matrix factorization (Xi and Li,

2016) and non-negative orthogonal matrix factorization may also

be adopted. Alternatively, matrix factorization can be applied to

complete the association matrix of a heterogeneous network (Luo

et al., 2018) integrating the lncRNA-similarity network, disease-

similarity network and lncRNA–disease network. Nevertheless, the

inductive matrix completion method for lncRNA–disease associ-

ation prediction described in this article has the flexibility to in-

corporate feature vectors from multiple sources. Moreover, the

nuclear norm regularization adopted in (10) ensures convex

optimization.

LncRNAs interact with RNA-binding proteins to regulate gene

expressions (Wang et al., 2008). Hence, mutations and dysfunction

of lncRNAs lead to dysfunction of biological functionalities of pro-

teins, and then result in human diseases. Computational methods

have been developed to discover the interactions between lncRNAs

and related proteins (Ge et al., 2016). The accurate prediction of

lncRNA–disease relationship by SIMCLDA can help reduce false

positive in lncRNA–protein interaction and identify disease related

lncRNA–protein interaction. Furthermore, combining the predica-

tion of IncRNA-protein interaction with lncRNA–disease relation-

ship can help understand biological molecular mechanisms of

diseases, and then provide prevention and treatment for human dis-

ease in the future.

Table 3. Top ten candidate lncRNAs for renal cancer

Rank Name of lncRNA References

1 H19 Wang et al. (2015a)

2 MALAT1 Hirata et al. (2015)

3 GAS5 Seles et al. (2016)

4 MEG3 Wang et al. (2015b)

5 XIST Zhang et al. (2017b)

6 UCA1 Li et al. (2016)

7 DRAIC Sakurai et al. (2015)

8 PCAT29 Unknown

9 NEAT1 Liu et al. (2017)

10 SRA1 Unknown
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