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Abstract

Motivation: Computational drug repositioning is a cost-effective strategy to identify novel indica-

tions for existing drugs. Drug repositioning is often modeled as a recommendation system problem.

Taking advantage of the known drug–disease associations, the objective of the recommendation sys-

tem is to identify new treatments by filling out the unknown entries in the drug–disease association

matrix, which is known as matrix completion. Underpinned by the fact that common molecular path-

ways contribute to many different diseases, the recommendation system assumes that the underly-

ing latent factors determining drug–disease associations are highly correlated. In other words, the

drug–disease matrix to be completed is low-rank. Accordingly, matrix completion algorithms effi-

ciently constructing low-rank drug–disease matrix approximations consistent with known associa-

tions can be of immense help in discovering the novel drug–disease associations.

Results: In this article, we propose to use a bounded nuclear norm regularization (BNNR) method to

complete the drug–disease matrix under the low-rank assumption. Instead of strictly fitting the

known elements, BNNR is designed to tolerate the noisy drug–drug and disease–disease similarities

by incorporating a regularization term to balance the approximation error and the rank properties.

Moreover, additional constraints are incorporated into BNNR to ensure that all predicted matrix entry

values are within the specific interval. BNNR is carried out on an adjacency matrix of a heteroge-

neous drug–disease network, which integrates the drug–drug, drug–disease and disease–disease

networks. It not only makes full use of available drugs, diseases and their association information,

but also is capable of dealing with cold start naturally. Our computational results show that BNNR

yields higher drug–disease association prediction accuracy than the current state-of-the-art methods.

The most significant gain is in prediction precision measured as the fraction of the positive predic-

tions that are truly positive, which is particularly useful in drug design practice. Cases studies also

confirm the accuracy and reliability of BNNR.

Availability and implementation: The code of BNNR is freely available at https://github.com/

BioinformaticsCSU/BNNR.

Contact: jxwang@mail.csu.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The process of new drug discovery is time-consuming and tremen-

dously expensive (Chong et al., 2007). It has been showed that the

average time of developing a new drug is more than 13.5 years and

the cost exceeds $1.8 billion dollars (Paul et al., 2010). Discovering

new and reliable indications for commercialized drugs allows the

pharmaceutical industry and the research community to reduce time

and costs, because the existing commercialized drugs have already

owned safety, efficacy and toleration data after various tests and

clinical trials. The process of identifying new applications for exist-

ing drugs is known as drug repositioning. In fact, some successfully

repositioned drugs, such as sildenafil, raloxifene and thalidomide,

have generated generous revenues for their patent holders or compa-

nies. Therefore, drug repositioning is an effective strategy for devel-

oping new drugs.

Computational drug repositioning has attracted increasing attention,

since manual investigation is time-consuming. With the development of
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high throughput technology and continuously updating databases, quite

a few computational approaches have been proposed, including

network-based analysis, machine learning, text mining and semantic in-

ference approaches. The network-based methods are popular and fun-

damental for drug repositioning. Based on a network of drugs, diseases

and targets (proteins), Martinez et al. (2015) proposed an approach

named DrugNet to predict new use for existing drugs. DrugNet can per-

form both drug–disease and disease–drug prioritization by propagating

information in the heterogeneous network. Gottlieb et al. (2011) inte-

grated drug similarities and disease similarities to obtain primary fea-

tures to support a computational approach called PREDICT to identify

unknown drug–disease associations. Wang et al. (2013) constructed a

heterogeneous drug–target graph, which contains intra-similarity infor-

mation and drug–target association information. Based on the guilt-

by-association principle, heterogeneous graph based inference (HGBI)

algorithm (Wang et al., 2013) was proposed to predict new drug–target

associations. HGBI is also used for predicting drug–disease associations

(Wang et al., 2014). Luo et al. (2016) exploited the available informa-

tion of drug–disease associations to enhance drug similarity and disease

similarity. The MBiRW algorithm, which used some comprehensive

similarity measures and Bi-Random Walk (BiRW) algorithm, is imple-

mented on the drug–disease heterogeneous network to predict potential

drug–disease associations.

Matrix factorization and matrix completion techniques have

been applied to drug repositioning in recent years. Dai et al. (2015)

incorporated the interaction network of genes and developed a ma-

trix factorization model. Taking advantage of the information in

genes network, the association between drug and disease can be pre-

dicted and new indications for known drugs can be obtained. Luo

et al. (2018) constructed a heterogeneous network by integrating

drug–drug network, disease–disease network and drug–disease asso-

ciation network, and then R4SVD (Li and Yu, 2017) was employed

to efficiently compute the dominant singular values and the corre-

sponding singular vectors of the association matrix. Based on the

Singular Value Thresholding (SVT) algorithm (Cai et al., 2010), a

Drug Repositioning Recommendation System (DRRS) has been pro-

posed to rank the potential associations between drugs and diseases

by completing the drug–disease association matrix. In fact, the

methods based on random walks are equivalent to certain special

cases of those using matrix completions. For example, MBiRW is

equivalent to finding the eigenvector with respect to the largest

eigenvalue of the association matrix. However, the above matrix

completion algorithms are operated in a noiseless setting, assuming

that the drug–disease associations are correctly derived and the dis-

ease–disease as well as drug–drug similarities are accurately meas-

ured. But in reality, drugs and diseases vary in many aspects and it is

difficult to construct a single measure to precisely describe the simi-

larity relationship among drugs or diseases. Occasionally, such simi-

larity is misleading. For example, a disease caused by bacteria may

have highly similar symptoms as one caused by virus, which should

be treated by completely different drugs. Moreover, in the matrix

completions algorithms, typically, 1’s in the drug–disease associ-

ation matrix denote known drug–disease associations while 0’s rep-

resent the unknowns. The predicted values are expected to be within

the range of [0, 1], indicating the likeliness of the predicted associa-

tions. However, the above matrix factorization and completion

approaches are unable to avoid the situations that the predicted val-

ues fall out of the [0, 1] range, which brings difficulty in biological

interpretation.

In this study, assuming that similar drugs share the similar mo-

lecular pathway to treat similar diseases, we consider the prediction

of drug–disease association as a noisy matrix completion problem

and develop a bounded nuclear norm regularization (BNNR)

method to address this problem. First of all, we construct a heteroge-

neous drug–disease network, which is composed of drug–drug,

drug–disease and disease–disease sub-networks. Then, BNNR is

implemented to recover the missing entries in the adjacency matrix

of this heterogeneous network while tolerating the potential noise in

drug–drug and disease–disease similarities calculations. Finally, we

evaluate the performance of BNNR on various datasets and com-

pare it with several state-of-the-art methods. Our results show that

our approach has superior capability of predicting hidden drug–dis-

ease associations. The main contributions of our BNNR model

include:

• BNNR performs noisy matrix completion by incorporating nu-

clear norm regularization, which effectively addresses overfitting

and leads to better improved accuracy as shown in our results;
• Our BNNR model incorporates a range constraint, which enfor-

ces all predicted matrix entry values within the specific interval;
• Our BNNR model is able to deal with noisy data efficiently; and
• An efficient iterative scheme is designed to numerically solve the

BNNR model.

2 Materials and methods

In this section, we describe the BNNR model to predict the potential

indications for existing drugs, which is organized as follows. First,

we describe the datasets used in this study. Then, we depict the con-

struction of the drug–disease heterogeneous network and its adja-

cency matrix to be completed. Finally, we present the BNNR model,

solved by alternating direction method of multipliers (ADMM), to

fill out the unknown associations between drugs and diseases. The

overall workflow of BNNR is illustrated in Figure 1.

2.1 Datasets
We use the gold standard dataset to predict new drug indications,

which is obtained from (Gottlieb et al., 2011) collecting comprehen-

sive associations from multiple data sources. There are 593 drugs,

313 diseases and 1933 validated drug–disease associations. Drugs

are collected from the DrugBank database (Wishart et al., 2006) and

diseases are extracted from the Online Mendelian Inheritance in

Man (OMIM) dataset (Ada et al., 2002).

Fig. 1. The overall workflow of BNNR. (a) Drug–drug network and its similarity

matrix. (b) Disease–disease network and its similarity matrix. (c) Drug–dis-

ease association network and its association matrix. (d) The heterogeneous

drug–disease network and its adjacency matrix. (e) The model of BNNR
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The similarities between drugs are calculated by the Chemical

Development Kit (CDK) (Steinbeck et al., 2003) according to the chem-

ical structures of all drug compounds in the Canonical Simplified

Molecular Input Line-Entry System (SMILES) (Weininger, 1988). We

firstly download the Canonical SMILES format of all drugs from

DrugBank. Then, we utilize CDK to calculate a binary fingerprint for

each drug. Finally, the Tanimoto score (Tanimoto, 1958) measuring

the similarity of pairwise drugs is calculated with respect to their chem-

ical fingerprints, which is in the range of [0, 1].

Disease–disease similarities are obtained from MimMiner (Van

Driel et al., 2006), which measure the number of appearance of

MeSH (medical subject headings vocabulary) terms of two diseases

in the medical descriptions obtained from the OMIM database.

2.2 Construction of the heterogeneous network
We construct a heterogeneous drug–disease network, which integra-

tes the drug–drug, disease–disease and drug–disease association net-

works. Let R ¼ fr1; r2; :::; rmg and D ¼ fd1;d2; :::; dng denote a set

of m drugs and n diseases, respectively. For the drug–drug network,

the edge between two drugs is weighted by the pairwise drug simi-

larity value. Similarly, the edge between two diseases is weighted by

the pairwise disease similarity value. Then, the drug–disease associ-

ation network is treated as a bipartite graph G(R, D, E), where

EðGÞ ¼ feijg � R�D contains edges representing known associa-

tions between drug ri and disease dj. In this heterogeneous drug–dis-

ease network, drug–drug network and disease–disease network are

connected by drug–disease associations. Figure 1a–d illustrates the

construction of the heterogeneous network.

The adjacency matrix of the drug–disease heterogeneous net-

work is then defined as:

M ¼ ARR AT
DR

ADR ADD

� �
;

where the sub-matrices ARR and ADD denote the adjacency matrices

of drug network and disease network and their weights are set as the

pairwise drug and disease similarities, respectively, in range [0, 1].

ARR and ADD are dense which include rich correlation information

among drugs and diseases. In contrast, due to the fact that drug–dis-

ease associations are rare, ADR is usually extremely sparse, where

1’s denote known drug–disease associations and 0’s correspond to

the unknowns. After all, our goal is to fill out the unknown elements

in ADR as the predicted scores of potential associations between

drugs and diseases.

2.3 BNNR for predicting drug–disease associations
Assuming a low-rank structure, the general matrix completion prob-

lem (Ramlatchan et al., 2018) to fill out the missing entries is formu-

lated as:

min
X

rankðXÞ
s:t:PXðXÞ ¼ PXðMÞ;

where M 2 R
ðmþnÞ�ðmþnÞ is the given incomplete matrix, rank(.)

denotes the rank function, X is a set containing index pairs (i, j) of

all known entries in M and PX is the projection operator onto X.

ðPXðXÞÞij ¼
Xij; ði; jÞ 2 X

0; ði; jÞ 62 X
:

�

Unfortunately, the rank minimization problem is known to be

NP-hard. The rank minimization in the above matrix completion

model is often relaxed to a nuclear norm minimization problem

such that:

min
X
kXk�

s:t:PX Xð Þ ¼ PX Mð Þ;
(1)

where kXk� denotes the nuclear norm of X, which is defined as the

sum of all singular values of X. The nuclear norm minimization

model is a convex optimization problem. Many algorithms have

been designed to provide numerical solutions for the above model or

alternative forms, including the fixed point continuation with ap-

proximate SVD (FPCA) (Ma et al., 2011), the accelerated proximal

gradient algorithm (APG) (Toh et al., 2010), the SVT algorithm (Cai

et al., 2010) and the ADMM (Boyd et al., 2011; Chen et al., 2012;

Wen et al., 2010). Candes et al. (2013) showed that the solution

obtained by optimizing the nuclear norm is equivalent to the one by

rank minimization under certain conditions, minimizing the nuclear

norm.

For predicting drug–disease associations, the elements in the

drug similarity matrix ARR and disease similarity matrix ADD are

within the interval of [0, 1]. The elements in the association matrix

ARD are either 0 or 1. As a result, the predicted values in the un-

known entries are expected to be in the interval of [0, 1], where a

predicted value closer to 1 indicates that this is likely to be an indica-

tion and vice versa. Nevertheless, in the above matrix completion

models (1), the entries in the completed matrix can be any real value

in (�1, þ1). A predicted value out of the interval [0, 1] is mean-

ingless in the application context. Hence, it is important to add a

bound constraint to the matrix completion model to ensure that the

uncovered missing elements are within the interval of [0, 1].

Moreover, since there may be a lot ‘noise’ in the drug and disease

data, particularly when measuring the drug–drug and disease–

disease similarities, the drug repositioning model should effective

tolerate the potential noise. A matrix completion model to tolerate

noise is:

min
X
kXk�

s:t:jjPXðXÞ � PXðMÞjjF � �;

where � measures the noise level. However, for this model with the

inequality constraint, choosing the appropriate parameter is chal-

lenging, because the noise level is not explicitly known. Moreover, it

is not straightforward to come up with an efficient solver for this

model. Therefore, we relax the constraint satisfaction model into a

regularization model. Introducing the soft regularization term not

only enables tolerance to the unknown noise (Chen et al., 2012;

Hu et al., 2013; Ma et al., 2011; Toh et al., 2010), but also provides

computational convenience.

Putting all pieces together, we propose a BNNR method, which

minimizes the nuclear norm as the regularization term and ensures

the recovered matrix elements within a specific interval. The BNNR

model is described as follows:

min
X
kXk� þ

a
2
kPXðXÞ � PXðMÞk2F

s:t: 0 � X � 1;

(2)

where a is parameter balancing the nuclear norm and the error term.

Note that we use 0 � X � 1 to denote 0 � Xij � 1 for all ele-

ments in X throughout this paper. We derive a simple but effective

numerical scheme using ADMM to solve (2).

Model (2) is solved by an iterative method. Starting from the ini-

tial solution X1 ¼ PXðMÞ. It is important to notice that the object-

ive function in (2) is convex. By introducing an auxiliary matrix W,

(2) can be optimized using the ADMM framework in the following

equivalent form.

Drug repositioning based on BNNR i457

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/14/i455/5529141 by O
ld D

om
inion U

niversity user on 12 August 2020

Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: ,
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: )
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: ,
Deleted Text: singular value thresholding
Deleted Text: (SVT) 
Deleted Text: ,
Deleted Text: alternating direction method of multipliers (
Deleted Text: )
Deleted Text: )(
Deleted Text: (Chen <italic>et<?A3B2 show $146#?>al.</italic>, 2012)
Deleted Text: (
Deleted Text: -
Deleted Text: (&hx2013;<italic>&hx221E;</italic>, 
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: -
Deleted Text: -
Deleted Text: (Ma <italic>et<?A3B2 show $146#?>al.</italic>, 2011)
Deleted Text: (Hu <italic>et<?A3B2 show $146#?>al.</italic>, 2013)(Toh <italic>et<?A3B2 show $146#?>al.</italic>, 2010)
Deleted Text: bounded nuclear norm regularization (
Deleted Text: )
Deleted Text: alternating direction method of multipliers (
Deleted Text: )


min
X

X� þ
a
2
PXðWÞ � PXðMÞ2F

s:t: X ¼W;

0 � W � 1:

(3)

Accordingly, the augmented Lagrangian function becomes

L W;X;Y; a; bð Þ ¼ kXk� þ
a
2
kPXðWÞ � PXðMÞk2

F

þTr YT X�Wð Þ
� �

þ b
2
kX�Wk2

F;
(4)

where Y is the Lagrange multiplier and b>0 is the penalty param-

eter. At the k-th iteration, BNNR requires alternatively

computing Wkþ1; Xkþ1 and Ykþ1.

Compute Wkþ1: We fix Xk and Yk to minimize LðW;Xk;Yk; a;bÞ
for Wkþ1. We hereby take full advantage of the inverse operator to ob-

tain an exact and closed-form solution.

Wkþ1 ¼ arg min
0�W�1

LðW;Xk;Yk; a; bÞ

¼ arg min
0�W�1

a
2
kPXðWÞ � PXðMÞk2

F

þTr Yk
T Xk �Wð Þ

� �
þ b

2
kXk �Wk2

F:

(5)

Here, W* is the optimal solution of arg min
W

LðW;Xk;Yk; a; bÞ,
if and only if

aP�XðPXðW�Þ � PXðMÞÞ � Yk � bðXk �W�Þ ¼ 0 (6)

holds, where P�X denotes the adjoint operator of PX. Then, a closed-

form solution becomes

W� ¼ I þ a
bP
�
XPX

� ��1 1

b
Yk þ

a
b
P�XPX Mð Þ þXk

	 


¼ I � a
aþ b

P�XPX

	 

1

b
Yk þ

a
b
P�XPX Mð Þ þXk

	 


¼ 1

b
Yk þ

a
b
PX Mð Þ þXk

	 


� a
aþ b

PX
1

b
Yk þ

a
b
PX Mð Þ þXk

	 

;

(7)

where I is the identity operator. ðI þ a
bP
�
XPXÞ�1 denotes the inverse

operator of ðI þ a
bP
�
XPXÞ and is equal to I � a

aþbP
�
XPX (Yang and

Yuan, 2012). It’s worth noting that P�XPX ¼ PX. Considering the

interval ½0; 1� constraint, we limit the range of the elements of Wkþ1

to [0, 1] such that

Wkþ1 ¼ Q½0;1�ðW�Þ; (8)

where Q½0;1� is the projection operator defined as

ðQ½0;1�ðW�ÞÞij ¼
1; W�

ij > 1
W�

ij; 0 � W�
ij � 1

0; W�
ij < 0

:

8><
>:

Compute Xkþ1: Alternatively, we fix Wkþ1 and Yk to compute Xkþ1.

Xkþ1 ¼ argmin
X

LðWkþ1;X;Yk; a;bÞ

¼ argmin
X
kXk� þ Tr Yk

TYT
k X�Wkþ1ð Þ

� �
þ b

2
kX�Wkþ1k2F

¼ argmin
X
kXk� þ

b
2

����X� Wkþ1 �
1

b
Yk

	 
����
2

F

¼ D1

b

Wkþ1 �
1

b
Yk

	 

;

(9)

where DsðXÞ is the singular value shrinkage operator (Cai et al.,

2010; Ma et al., 2011) defined as

DsðXÞ ¼
Xri�s

i¼1

ðri � sÞuivi
T ;

where ri is the singular values of X which is larger than s, while ui

and vi are the left and right singular vectors corresponding to ri,

respectively.

Compute Ykþ1: Finally, Ykþ1 is calculated as

Ykþ1 ¼ Yk þ cb Xkþ1 �Wkþ1ð Þ; c 2 0;

ffiffiffi
5
p
þ 1

2

	 

; (10)

where c is the learning rate, which is set to 1 in this study for simpli-

city (Hu et al., 2013). Putting all pieces together, Algorithm 1

presents an iterative BNNR scheme for solving (2). Based on the as-

sumption that similar diseases tend to be treated by similar drugs,

because of the common molecular pathways, there exist certain low-

rank structures governing drug–disease associations. Minimizing the

nuclear norm of the target matrix, BNNR reveals the low-rank

structures and provides a way to recover the missing entries. After

supplying the adjacency matrix of the drug–disease heterogeneous

network to BNNR, we can obtain an updated drug–disease associ-

ation matrix A�DR, where the unknown entries in ADR are filled up.

The entries in A�DR with predicted values (scores) close to 1 indicate

the potential drug–disease associations.

3 Results and discussion

3.1 Evaluation metrics
To evaluate the performance of BNNR, a 10-fold cross-validation is

conducted to verify the candidate diseases for given drugs. All

known drug–disease associations are randomly divided into 10 ex-

clusive subsets of approximately equal size. Each subset is treated as

the testing set in turn, while the remaining nine subsets are used as

the training set. The 10-fold cross-validation is repeated 10 times

Algorithm 1. BNNR Algorithm

Input: The drug similarity matrix ARR 2 R
m�m, the disease

similarity matrix ADD 2 R
n�n, the drug–disease associ-

ation matrix ADR 2 R
n�m, parameters a and b.

Output: Predicted association matrix A�DR.

M ARR ADR
T

ADR ADD

" #
;

initialize X1 ¼ PXðMÞ;W1 ¼ X1;Y1 ¼ X1; c ¼ 1; //X is a set

of indices of all known entries in M.

k 1;

repeat

Wkþ1  Q½0;1�ðW�Þ;
Xkþ1  D1

b
Wkþ1 � 1

b Yk

� �
;

Ykþ1  Yk þ cbðXkþ1 �Wkþ1Þ;
k kþ 1;

until convergence

A�RR A�DR
T

A�DR A�DD

� �
 Wk;

return A�DR:
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with random subset division and the average accuracy values are

showed as the final results.

After the association matrix of the drug–disease heterogeneous

network is completed, the predicted scores of all drug–disease asso-

ciations are obtained. For each drug, the predicted scores of its asso-

ciations with the diseases are ranked in descending order. The score

of the candidate association exceeding a given threshold is consid-

ered as a positive prediction; otherwise, negative. For increasing

threshold values, true positive rate (TPR) and false positive rate

(FPR) will be calculated to generate the receiver-operating character-

istic (ROC) curve. Precision and recall (equivalent to TPR) are

obtained to plot the precision–recall (PR) curve (Davis et al., 2006).

Meanwhile, due to the fact that the top-ranked results are of most

interest, the number of correctly identified drug–disease associations

using different thresholds will be illustrated. The area under the

ROC curve (AUC) and top-ranked results are presented to compare

the overall performance of BNNR with a variety of existing methods

in this study.

3.2 Parameter setting
In BNNR algorithm, there are two parameters needed to be deter-

mined, including a and b. For the parameters a and b, we perform

cross-validation on the training dataset to determine, which are

determined from {0.1, 1, 10, 100}. Table 1 reports AUC values cal-

culated by BNNR when a and b are ranging from {0.1, 1, 10, 100}

in 10-fold cross-validation, where the best AUC values are displayed

in bold. One can find that BNNR achieves the best performance

when a¼1 and b¼10.

Meanwhile, we terminate the BNNR algorithm when the follow-

ing stopping criterions are satisfied:

fk � tol1;
jfkþ1 � fkj

maxf1; jfkjg
� tol2; (11)

where fk ¼ kXkþ1�XkkF

kXkkF
, tol1 and tol2 are the given tolerances, which

are set as 2�10�3 and 10�5 in BNNR algorithm, respectively.

3.3 Compare with other methods
BNNR is compared with four latest methods for drug repositioning:

HGBI (Wang et al., 2013), DrugNet (Martinez et al., 2015),

MBiRW (Luo et al., 2016) and DRRS (Luo et al., 2018). Based on

the guilt-by-association principle and the interpretation of informa-

tion flow, HGBI is designed for predicting disease-associated drugs.

DrugNet is based on propagation flow algorithm, which can per-

form both drug–disease and disease–drug prioritization. MBiRW

and DRRS are our previous works, MBiRW uses comprehensive

similarity measures and BiRW algorithm to infer drug–disease asso-

ciation. DRRS constructs a heterogeneous drug–disease network

and conducts prediction based on the matrix completion of SVT al-

gorithm to predict potential indications for drugs.

Although DRRS and BNNR are based on the same heteroge-

neous drug–disease network, BNNR can exploit more accuracy

association information due to better robustness. BNNR has several

distinct advantages compared with DRRS: First, BNNR could fit the

whole network better. Since the values of similarity matrices com-

puted in silico may include noisy information, BNNR has a relaxed

penalty function to cope with noisy entries, while DRRS attempts to

fit all entries. Second, BNNR has more interpretable predicted val-

ues. The bounded constraint ensures that all predicted associations

are within [0, 1]. In contrast, the predicted association scores may

be negative or >1 in DRRS. Third, the regularization term based on

nuclear norm is able to address overfitting effectively. This enables

us to design an appropriate stop criterion for BNNR to directly ob-

tain the optimal solution without the need of designating a part of

known drug–disease associations as the validation set to identify the

optimal rank.

To ensure a fair comparison, the parameters in the compared

approaches are set to the default values according to the authors’

recommendation (HGBI: a¼0.4; MBiRW: a¼0.3, l ¼ 2, r ¼ 2;

DRRS: s and d are two adaptive parameters) and cross-validation

(DrugNet: a is chosen from {0.1, 0.2, . . ., 0.9}). The overall results

of 10-fold cross-validation for all methods are depicted by ROC

curve, PR curve and top-ranked results in Figure 2. As shown in

Figure 2, the BNNR method outperforms the other methods in

terms of AUC values of the ROC curves, precisions and top-ranked

indications. Specifically, BNNR reports AUC value of 0.932, while

HGBI, DrugNet, MBiRW and DRRS have 0.829, 0.868, 0.917 and

0.930, respectively. The more significant gains are in precision.

BNNR obtains prediction precision of 0.440, which is significantly

higher than HGBI (0.130), DrugNet (0.192), MBiRW (0.304) and

DRRS (0.375). It is important to note that BNNR can successfully

rank 44.0% true drug–disease associations at top 1, which is 13.6

and 6.5% higher than MBiRW and DRRS, respectively. One true

drug–disease association is treated as a retrieved association when

its predicted rank is higher than the specified top rank threshold.

These approaches identify different numbers of true drug–disease

associations with respect to different rank cutoffs, which are pre-

sented in Figure 2c. For instance, among the 1933 true drug–disease

associations, 1333 associations are identified at top 5 by BNNR,

while in comparison, only 561, 738, 1044 and 1251 associations are

predicted by HGBI, DrugNet, MBiRW and DRRS, respectively. In

practice, precision is a more important measure of the drug–disease

association prediction performance, because a more precise predic-

tion provides correct indication for existing drugs with higher prob-

ability, which can lead to budget and time reduction.

3.4 Predicting indications for new drugs
To assess the capability of BNNR in predicting potential indications

for new drugs, we choose these drugs which have only one known

drug–disease association to conduct a de novo test. For each of these

drugs, the known disease association is removed in turn as the test

sample and other existing associations are used as training sample.

For a new drug without any known drug–disease association,

BNNR is able to predict its drug–disease associations by taking ad-

vantage of the similarity information of the novel drug in adjacency

matrix. Also, due to the fact that there is no drug–disease association

information for the novel drug, the similarity information is more

important than the existing drug–disease association information

for the other drugs, which should be given heavier weights.

Equivalently, association matrix is multiplied by a weight coefficient

0.7 in this study.

As shown in Figure 3 for the de novo test, BNNR achieves AUC

value of 0.830, while HGBI, DrugNet, MBiRW and DRRS have

Table 1. The AUC values using different a and b values in 10-fold

cross-validation on the gold standard dataset

a\b 0.1 1 10 100

0.1 0.757 0.785 0.879 0.888

1 0.863 0.921 0.933 0.899

10 0.854 0.921 0.926 0.890

100 0.862 0.919 0.925 0.889
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inferior results with 0.746, 0.782, 0.818 and 0.824, respectively.

For top-ranked results, BNNR outperforms all methods at top 5, 10

and 50, except for being inferior to DRRS at top 1.

3.5 Case studies
In these case studies, we apply BNNR to predict new uses for al-

ready approved drugs in practical applications. In the process of

identifying novel drug–disease associations, we treat all known

drug–disease associations in the gold standard dataset as the training

set and regard the missing drug–disease pairs as the candidate set.

After the prediction scores of all candidate pairs are computed by

BNNR, we rank the candidate diseases by the predicted scores for

each drug.

In order to confirm whether the predicted diseases are true or

not, we choose Levodopa, Doxorubicin, Amantadine and Flecainide

as the representative drugs to validate their potential diseases pre-

dicted by BNNR and then list the confirmed information of top-5

candidate diseases for them. We confirm the potential diseases asso-

ciated with the given drug by authoritative public databases, such as

DrugBank, CTD (Davis et al., 2013) and KEGG (Kanehisa et al.,

2014). The predicted results and the supporting evidences are sum-

marized in Table 2. For each representative drug, more than three

new drug–disease associations on top-5 have been reported in the

public databases. It demonstrates the effectiveness of BNNR in pre-

dicting novel indications for drugs in practical use.

Furthermore, BNNR identifies other new indications including:

Levodopa for hyperplastic myelinopathy; Doxorubicin for dohle

bodies; Amantadine for restless legs syndrome and malignant hyper-

thermia; Flecainide for nephropathy-hypertension and hyperplastic
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Fig. 2. The performance of all methods in predicting drug–disease association for 10-fold cross-validation. (a) ROC curve of prediction results. (b) PR curve of pre-

dicting candidate diseases for drugs. (c) The number of correctly retrieved drug–disease associations for various rank thresholds
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Fig. 3. The performance of all methods in predicting potential diseases for

new drugs. (a) PR curve of prediction results. (b) The number of retrieved

drugs for various rank thresholds

Table 2. The top five candidate diseases for Levodopa,

Doxorubicin, Amantadine and Flecainide

Drugs

(DrugBank IDs)

Top five candidate diseases

(OMIM IDs)

Evidences

Levodopa

(DB01235)

Parkinson disease (168600) KEGG/DB/CTD

Dementia (125320) DB/CTD

Multiple sclerosis (126200) CTD

Pheochromocytoma (171300) CTD

Hyperplastic myelinopathy (147530)

Doxorubicin

(DB00997)

Small cell cancer of the lung (182280) CTD

Dohle bodies (223350)

Testicular germ cell tumor (273300) CTD

Reticulum cell sarcoma (267730) CTD

Leukemia (109543) KEGG/DB/CTD

Amantadine

(DB00915)

Parkinson disease (168600) KEGG/DB/CTD

Dementia (125320) DB/CTD

Restless legs syndrome (102300)

Alzheimer disease (104300) CTD

Malignant hyperthermia (217150)

Flecainide

(DB01195)

Atrial fibrillation (608583) CTD

Cardiac arrhythmia (115000) DB/CTD

Diastolic hypertension (608622) CTD

Nephropathy-hypertension (161900)

Hyperplastic myelinopathy (147530)
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myelinopathy. These predicted associations are not yet reported in

current literature, but may have a greater likelihood of existing.

There are great opportunities to research and validate these associa-

tions for medical researchers and pharmaceutical companies.

3.6 The effects of bounded constrain and regularization

model of BNNR on performance
In order to evaluate the effectiveness of bounded constraint [0, 1]

and regularization model, we compare BNNR with two models in

10-fold cross-validation. The first model is BNNR without bounded

constraint [0, 1] (referred to as NNR), while the other one is BNNR

without regularization term (referred to as BNN). Specifically, NNR

is defined as:

min
X
kXk� þ

a
2
kPXðXÞ � PXðMÞk2F; (12)

and BNN is defined as:

min
X
kXk�

s:t:PXðXÞ ¼ PXðMÞ

0 � X � 1:

(13)

One can find that incorporating the regularization term leads to

more robust prediction results compared to simply minimizing the

nuclear norm, where the noise in similarity measures is tolerated.

Moreover, constraining the predicted association values within [0, 1]

further improves the prediction accuracy. This is shown in the 10-fold

cross-validation results illustrated in Figure 4.

To further verify the robustness of BNNR, we increasingly add

random noises to the drug–drug and disease–disease similarity

matrices. The noise entries are drawn independently from

Nð0; 1=20Þ and noise rate is the proportion of the contaminated

entries with respect to all components of similarity matrix. We set

the noise rate in [0, 0.3] with an increase step size of 0.06. BNNR

and BNN are compared in 10-fold cross-validation in terms of AUC

values. Without a surprise, as shown in Figure 5, the AUC values de-

crease gradually as the noise rate increases in both BNNR and

BNN. However, the decrease of BNNR is much slower compared to

BNN, indicating that BNNR is able to better tolerate noisy similar-

ity computations. This also explains why BNNR leads to better pre-

diction accuracy when the nuclear norm regularization term is

incorporated.

3.7 Experiments on the other datasets
In order to illustrate the adaptability of BNNR in different datasets, we

perform BNNR on the two other datasets including Cdataset and

DNdataset, which are used in our previous work (Luo et al., 2016,

2018). Cdataset (Luo et al., 2016) contains 663 drugs collected in

DrugBank, 409 diseases obtained in OMIM database and 2352

known drug–disease associations. DNdataset (Martinez et al., 2015)
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Fig. 4. Performance comparison of BNNR, NNR and BNN in 10-fold cross-val-
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Fig. 6. The performance of all methods in predicting drug–disease associations for 10-fold cross-validation on Cdataset. (a) ROC curve of prediction results. (b) PR

curve of predicting candidate diseases for drugs. (c) The number of correctly retrieved drug–disease associations for various rank threshold
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includes 1490 drugs registered in DrugBank, 4516 diseases anno-

tated by Disease Ontology (DO) terms and 1008 known drug–

disease associations. We evaluate the robustness of our method on

these two datasets by performing 10-fold cross-validation and the de

novo test. The parameters of BNNR for Cdataset and DNdataset

are set as Section 3.2. (For Cdataset, a¼1 and b¼10. For

DNdataset, a¼1 and b¼1.)

For Cdataset, as shown in Figure 6, BNNR obtains AUC value

of 0.948 in 10-fold cross-validation, while HGBI, DrugNet,

MBiRW and DRRS have 0.858, 0.903, 0.933 and 0.947, respective-

ly. The PR curves illustrate that BNNR obtains the best precision

with 0.471, while HGBI, DrugNet, MBiRW and DRRS have 0.168,

0.239, 0.351 and 0.403, respectively. Meanwhile, BNNR outper-

forms the other methods on top rank results. More specifically, at

top-5 rank, 1855 associations out of 2532 are identified by BNNR,

while only 796, 1193, 1481 and 1753 associations are predicted by

HGBI, DrugNet, MBiRW and DRRS, respectively. In the de novo

test, PR curve and top rank results are illustrated in Figure 7. BNNR

obtains AUC value of 0.812, while HGBI, DrugNet, MBiRW and

DRRS have 0.732, 0.785, 0.804 and 0.819, respectively. DRRS

achieves slightly better performance than BNNR. In addition,

BNNR outperforms the other methods with respect to different top-

ranked thresholds. Specifically, for 177 drug associations, BNNR

retrieves 87(49.2%) drugs at top 10 rank, while HGBI, DrugNet,

MBiRW and DRRS have 48(27.1%), 61(34.5%), 80(45.2%) and

78(44.0%), respectively.

For DNdataset, as shown in Figure 8, BNNR obtains AUC value

of 0.955 in 10-fold cross-validation, while HGBI, DrugNet,

MBiRW and DRRS have 0.921, 0.950, 0.956 and 0.934, respective-

ly. The PR curves show that BNNR obtains the best precision with

0.347, while HGBI, DrugNet, MBiRW and DRRS have 0.204,

0.150, 0.321 and 0.346, respectively. It is a noteworthy fact that

BNNR has better AUC value and precision compared to other meth-

ods. Meanwhile, BNNR outperforms the other methods on top rank

results from four different thresholds. In de novo test, PR curve and

top rank results of de novo test are illustrated in Figure 9. BNNR

obtains AUC value of 0.956, which is slightly worse than DrugNet

and MBiRW, while HGBI and DRRS have 0.928 and 0.946, respect-

ively. BNNR surpasses the other methods on top rank results: for

347 test drug associations, BNNR retrieves 145 drugs at top 1 rank,

while HGBI, DrugNet, MBiRW and DRRS have 111, 84, 136 and

134, respectively.

3.8 Computation time comparisons
In order to compare the computational efficiency of different meth-

ods, we have conducted a 10-fold cross-validation on the gold stand-

ard dataset, Cdataset and DNdataset. The running times of these

methods were obtained on a Linux server with CPU 2.30 GHz and

128 GB memory, which are shown in Supplementary Table S1. The

average running time of BNNR is more than HGBI and DrugNet

but less than MBiRW and DRRS on the gold standard dataset.

Although HGBI is much faster than the others, it yields the lowest
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Fig. 7. The performance of all methods in predicting potential diseases for

new drugs on Cdataset. (a) PR curve of prediction results. (b) The number of

retrieved drugs for various rank thresholds
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Fig. 8. The performance of all methods in predicting drug–disease association for 10-fold cross-validation on DNdataset. (a) ROC curve of prediction results. (b)

PR curve of predicting candidate diseases for drugs. (c) The number of correctly retrieved drug–disease associations for various rank threshold
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precision and AUC values. Moreover, compared to DrugNet on a

bigger dataset such as DNdataset, BNNR is more computationally

efficient.

4 Conclusions

This study has developed a novel method named BNNR for drug repo-

sitioning. BNNR not only can restrict all predicted matrix entry values

within a specific interval, but also exhibit robustness to tolerate poten-

tially noisy similarity calculations. The results of cross-validation and

de novo experiments have demonstrated that BNNR is an effective pre-

diction approach. Especially, comparing with the existing drug reposi-

tioning methods, BNNR yields both the best AUC value and the best

precision in most measures. Our case studies have confirmed the reli-

ability of the identified new drug–disease associations. In the future, we

plan to integrate drug–target information into the existing heteroge-

neous networks to further improve the prediction ability of BNNR.
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Fig. 9. The performance of all methods in predicting potential diseases for

new drugs on DNdataset. (a) PR curve of prediction results. (b) The number of

retrieved drugs for various rank thresholds
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