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Abstract 
 

Monte Carlo methods provide enormous scope for realistic statistical modeling and 
simulation. The implementation of large-scale Monte Carlo applications on the grid 
benefits from state-of-the-art approaches to accessing resources in a computational grid. 
Workflow techniques allow one to describe and enact his simulation processes in a 
structured, manageable, and verifiable way. We developed the Grid-Computing 
Infrastructure for Monte Carlo Applications (GCIMCA) based on the Globus toolkit and 
the SPRNG library. The Globus toolkit facilitates the creation and utilization of a 
computational grid for large distributed computational jobs and the Scalable Parallel 
Random Number Generators (SPRNG) library is designed to generate practically infinite 
number of random number streams with favorable statistical properties for parallel and 
distributed Monte Carlo applications. GCIMCA provides grid services specific to grid-
based Monte Carlo simulation applications, including the Monte Carlo subtask schedule 
service using the N-out-of-M strategy, the facilities of application-level checkpointing, 
the partial result validation service, and the intermediate value validation service. By 
taking advantage of emerging grid workflow paradigms and the facilities of GCIMCA, 
we implemented a Grid Workflow-based Monte Carlo (GWMC) simulation environment. 
Workflow management services are implemented to manage the Monte Carlo simulation 
process. Based on these services, we intend to provide a trustworthy and manageable 
grid-computing environment for large-scale and high-performance distributed Monte 
Carlo simulation applications. 
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1. Introduction 
Monte Carlo methods provide solutions to a variety of mathematical problems through 
statistical sampling. They are important techniques for performing simulation and 
optimization in numerous fields of science and engineering, including nuclear physics, 
chemistry, meteorology, biology, and medicine. The applications using Monte Carlo 
methods are widely perceived as computationally intensive but naturally parallel. With 
more ambitious calculations by estimating more random samples, a Monte Carlo 
application is capable of reducing the statistical errors to any desired level (Srinivasan et 
al., 1999). By computing and analyzing random samples independently, Monte Carlo 
applications can be programmed in a dynamic bag-of-work model and fit into the master-
worker paradigm. In a parallel environment using the master-worker paradigm, the 
master partitions the task, schedules subtasks to workers, and receives results when the 
workers complete their assigned work (Basney et al., 1999). The subsequent growth of 
computer power, especially that of the parallel/distributed computing systems and the 
newly emerging grid computing systems, has made large-scale distributed Monte Carlo 
computation possible and practically effective.  
 

Large-scale Monte Carlo computation consumes large amounts of computational 
power, and depends on high-quality parallel random number generators with good 
quality. On the one hand, grid computing is characterized by large-scale sharing and 
cooperation of dynamically distributed resources, such as CPU cycles, communication 
bandwidth, and data to constitute a computational environment (Foster et al., 2001). A 
computational grid based on grid-computing techniques can, in principle, provide a 
tremendously large amount of CPU cycles to a Monte Carlo application. The Globus 
software toolkit (Foster & Kesselman, 1997) provides software tools and services to build 
computational grid infrastructures for grid-based applications. On the other hand, the 
SPRNG (Scalable Parallel Random Number Generators) (Mascagni & Srinivasan, 2000) 
library is designed to use parameterized pseudorandom number generators to provide 
independent random number streams. The SPRNG library provides uniform 
programming interfaces for the Linear Congruential Generator (LCG), Prime Modulus 
Linear Congruential Generator (PMLCG), additive Lagged-Fibonacci Generator (LFG), 
Multiplicative Lagged-Fibonacci Generator (MLFG), and Combined Multiple Recursive 
Generator (CMRG). Some generators in the SPRNG library can provide up to 278000 – 1 
independent random number streams (SPRNG Website, 2003) with sufficiently long 
period, which have favorable inter-stream and cross-stream properties in a statistical 
sense. These generators can meet the random number requirements of most distributed 
Monte Carlo applications. Furthermore, by analyzing the statistical nature of Monte Carlo 
applications and the cryptographic aspects of these underlying random number 
generators, our previous research (Li & Mascagni, 2002; Li & Mascagni, 2003; Li & 
Mascagni, 2003) developed techniques to improve the performance and trustworthiness 
of Monte Carlo computations on the grid. Recently, in (Li et al., 2003), we developed a 
grid middleware, a Grid-Computing Infrastructure for Monte Carlo Applications 
(GCIMCA) to assemble “all the pieces of the puzzle” for large-scale grid-based Monte 
Carlo analysis.  
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In addition to the issues of performance and trustworthiness (Li & Mascagni, 2002), 
a computational grid also presents a number of other challenges, including heterogeneity 
of grid equipment, crossing administrative domain cooperation, and dynamism of grid 
resources. With the functionalities of the organization of complex high-performance 
computational tasks within a grid-computing environment, workflow management is 
emerging as one of the most important grid services to address these challenges and 
implement e-science process automation. The WfMC (Workflow Management Coalition) 
standard developed the Workflow Process Definition Language (WPDL) (Allen, 2001) to 
specify general workflow scenarios. However, the WPDL is too generalized and 
sophisticated for grid computing (Bivens, 2001; Cao et al., 2003). More specifically, the 
Grid Workflow specification based on XML (Bivens, 2001) is documented and used in 
the  ASCI (Accelerated Strategic Computing Initiative) grid infrastructure. In this paper, 
we will adopt these workflow techniques to implement grid-based Monte Carlo 
simulation process automation. Based on this Grid Workflow specification, we are going 
to elucidate the implementation of the Grid Workflow-based Monte Carlo (GWMC) 
simulation environment.  The GWMC simulation environment integrates the services of 
GCIMCA to provide a trustworthy and easy-to-manage grid-computing environment for 
large-scale and high-performance distributed Monte Carlo simulation applications.  

 
The remainder of this paper is organized as follows. We illustrate the system 

architecture and the working paradigm of the GWMC simulation environment in Sections 
2 and 3, respectively. In Section 4, we discuss detailed implementations of the core 
services and facilities in GCIMCA, and the underlying middleware of GWMC simulation 
environment. Finally, Section 5 summarizes our conclusions and future research 
directions.  

 

2. Architecture of GWMC Simulation Environment 
The GWMC simulation environment is based on the grid middleware, GCIMCA (Li et 
al., 2003). GCIMCA is designed on the top of the grid services provided by Globus, 
(Globus Website, 2003) and supplies facilities and services for grid-based Monte Carlo 
applications. The Globus grid services include GRAM (Globus Resource Allocation 
Manager), GIS (Grid Information Service), GSI (Grid Security Infrastructure), and 
GridFTP. GRAM is used to implement Monte Carlo subtask remote-submission and 
manage the execution of each subtask. GIS provides information services, i.e., the 
discovery of the properties and configurations of grid nodes. GSI offers security services 
such as authentication, encryption and decryption for running Monte Carlo applications 
on the grid. GridFTP provides a uniform interface for data transport and access on the 
grid for GCIMCA. At the same time, the execution of each Monte Carlo subtask usually 
consumes a large amount of random numbers. SPRNG is the underlying pseudorandom 
number generator library in GCIMCA, providing independent pseudorandom number 
streams. As a grid middleware based on the grid services provided by Globus and the 
SPRNG library, GCIMCA provides higher-level services, including the N-out-of-M 
Monte Carlo subtask scheduling, application-level checkpointing, partial result 
validation, and intermediate value checking. Then, the GWMC grid workflow service 
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integrates the services of GCIMCA to provide workflow management services for grid-
based Monte Carlo simulation applications. Figure 2.1 shows the architecture of the 
GWMC simulation environment. 
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Figure 2.1 Architecture of GWMC Simulation Environment 

 

3. Working Paradigm 
 

3.1 Workflow Description of The Simulation Process 
A workflow in the GWMC simulation environment can be decomposed into smaller 
units. These units are described as follows: 
• Operation: Operations are the smallest elements in a grid workflow. Each operation in 

a grid workflow corresponds to a computational subtask and is usually excutable on a 
grid node. 

• Sub-workflow: A sub-workflow is a flow of closely related operations that is to be 
executed in a predefined order on the grid resources within a virtual organization. 
Each sub-workflow represents a specific activity in an organization. Sub-workflows 
may be executed in parallel. 

• Main-Workflow: A main-workflow can be represented as a flow of several loosely 
coupled activity described in a Monte Carlo simulation process. Each activity 
consumes various grid resources and can be represented by a sub-workflow. 
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3.2 Grid-based Monte Carlo Simulation Process Overview 
 

Organization A

Job
Server

GCIMCA
Schedule
Service

Organization B

GCIMCA
Schedule
Service

Organization C

GCIMCA
Schedule
Service

MC Simulation Job

User

Main-
workflow

Carrying the
Simulation

Result Sub-workflow
in Organization A

GWMC
Workflow

Management
Service

Sub-workflow
in Organization B

Sub-workflow
in Organization C

Operation Operation
Operation

OperationOperation

Operation

Operation

Operation

Operation

Operation
Operation

GWMC
Workflow

Management
Service

Workflow
Description

in XML

Job
Data

GCIMCA
Partial Result

Validation
Services

Validation
Sub-Workflow

 
  

Figure 3.1 The Working Paradigm in the GWMC Simulation Environment 
 

Figure 3.1 shows the working paradigm in GWMC simulation environment. A user 
submitting a Monte Carlo job description to the job server initiates the execution of a 
grid-based Monte Carlo application in the GWMC simulation environment. At the same 
time, the user prepares and stores the Monte Carlo job files, such as the executable binary 
and application data files, on the job server. Then, a grid workflow script to describe this 
Monte Carlo simulation process specified in XML is generated. According to the 
requirements of the main-workflow, the GWMC workflow management service 
dispatches the execution of sub-workflows to the GCIMCA schedule services. The 
GCIMCA schedule service manages the operations specified in its sub-workflow script. 
More specifically, in this case, each operation in the sub-workflow script actually refers 
to a Monte Carlo subtask. The GCIMCA schedule service then retrieves the Monte Carlo 
subtasks and is in charge of actually scheduling the subtasks. The subtasks are run on the 
grid resources in the organization, which is based on the master-worker model of a grid-
based Monte Carlo application. When the subtasks are complete, the GWMC workflow 
management service then executes the partial result validation sub-workflow using the 
GCIMCA partial result verification services, which include partial result validation and 
intermediate value checking. After verification, the simulation results are sent back to the 
user, specifying the end of the execution of the Monte Carlo simulation workflow. 
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3.3 Job Submission 
In GWMC simulation environment, a user provides different executable binary files, one 
for each system architecture on the grid. The remote compiler (Zhou, 2000) service is 
used to address this heterogeneity issue. A user can send source packages to a remote 
node of a specific system architecture with the remote compiler service running. Then, 
the remote compiler service compiles the source files, generates the executable files, and 
sends them back to the user. Using the remote compiler service, different executable 
codes for different platforms can be obtained. 
 

Monte Carlo Job Description 
JobName =  “Monte Carlo Integration” 
JobDescription=  
 “Execfile=http://sprng.cs.fsu.edu/mcint/mcintIntel.out 
   Datafile=http://sprng.cs.fsu.edu/mcint/mcint.data 
   Arg= -r   
   Arch=INTEL  
   Opsys=LINUX” 
JobDescription= 
 “Execfile=http://sprng.cs.fsu.edu/mcint/mcintSolaris.out 
     Datafile=http://sprng.cs.fsu.edu/mcint/mcint.data 
     Arg= -r 
   Arch=SUN  
   Opsys=Solaris26” 
RequiredJobs = 20 
MaxJobs = 40 
ResultFileName = mcintresult.dat 
ResultLocation = http://sprng.cs.fsu.edu/mcint/result 
Org=  cs.fsu.edu;csit.fsu.edu 
Encryption= YES 

 
Figure 3.2 Sample of a Monte Carlo Job Description File for A Grid-based Monte Carlo 

Integration Application 
 
To run a Monte Carlo application in the GWMC simulation environment, a user need 

to submit a Monte Carlo simulation job description file to the job server. The Monte 
Carlo job description file declares the information related to the Monte Carlo job, 
including the job name, locations of executable and data files, arguments, required 
hardware architectures and operating systems, number of subtasks, result file names and 
destinations, encryption option, and authenticated organization. Figure 3.2 shows a 
sample of a job description file for a grid-based Monte Carlo integration application. 
Based on the job description, the job server validates the Monte Carlo job, creates a 
Monte Carlo subtask pool, and creates a corresponding workflow file.  

 
Figure 3.3 shows the main-workflow script corresponding to the Monte Carlo job 

description file in Figure 3.2. The data transfer directives at the beginning of the 
workflow script indicate the executable files and application data for the Monte Carlo 
integration job while those at the end specify the storage location of the result data. The 
data transfer directives instruct the workflow engine to execute the appropriate data 
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transfer program. The computation directive describes the computational process in the 
GWMC simulation environment. 

 
<WorkFlow id = “main” name = “Monte Carlo Integration”> 
  <DataTransfer id = “MainData001”> 
     <Description> Executable Files </Description> 
     <Argument name = “Execfile” value = “http://sprng.cs.fsu.edu/mcint/mcintIntel.out” /> 
     <Argument name = “Arch” value = “INTEL” /> 
     <Argument name = “Opsys” value = “LINUX” /> 
  </DataTransfer> 
  <DataTransfer id = “MainData002”> 
     <Description> Executable Files </Description> 
     <Argument name = “Execfile” value = “http://sprng.cs.fsu.edu/mcint/mcintSolaris.out” /> 
     <Argument name = “Arch” value = “SUN” /> 
     <Argument name = “Opsys” value = “Solaris26” /> 
  </DataTransfer> 
  <DataTransfer id = “MainData002”> 
     <Description> Data Files </Description> 
     <Argument name = “Datafile” value = “http://sprng.cs.fsu.edu/mcint/mcint.data” /> 
  </DataTransfer> 
 
  <Computation> 
     <ComputationAttribute name = “RequiredJobs” value = “20” /> 
     <ComputationAttribute name = “MaxJobs” value = “40” /> 
     <ComputationAttribute name = “Org” value = “cs.fsu.edu;csit.fsu.edu” /> 
     <ComputationAttribute name = “Encryption” value = “YES” /> 
  </Computation> 
 
  <DataTransfer id = “MainResult”> 
     <Description> Data Files </Description> 
     <Argument name = “Datafile” value = “http://sprng.cs.fsu.edu/mcint/result/mcintresult.dat” /> 
  </DataTransfer> 
</WorkFlow> 
 

Figure 3.3 The Main Workflow Script in XML Corresponding to the Monte Carlo 
Integration Job in Figure 3.2 

 
According to the main workflow script, the corresponding sub-workflow scripts are 

then generated by the GWMC workflow management service. The operations in the sub-
workflow specify the detail information of executing a Monte Carlo subtask. Figure 3.4 
shows a sub-workflow script based on the main workflow script in Figure 3.3. In each 
computation directive, a Monte Carlo computational subtask is specified. Each subtask 
works on the same data but different random number streams. All these subtasks having 
the same order number indicate that they can be executed in parallel. 
 
<SubWorkFlow id = “subworkflow1” name = “Monte Carlo Integration” organization = “cs.fsu.edu”> 
  <DataTransfer> … </DataTransfer> 
  <Computation id = “mcintsubtask1” input = “mcintIntel.out” order = “1”> 
     <Argument name = “datafile” value = “mcint.data” /> 
     <ComputationAttribute name = “randomnumberstreamID” value = “1” type = “LCG”/> 
     <ComputationAttribute name = “directory” value = “/etc/scratch/tmp” /> 
     <ComputationAttribute name = “checkpointfile” value = “/etc/scratch/subtask1.cpt” /> 
     <ComputationAttribute name = “partialresultfile” value = “/etc/scratch/result1.dat” /> 
     <ComputationAttribute name = “resultdirectory” value = “/etc/scratch/mcint/subtask1_result” /> 
  </Computation> 
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  <Computation id = “mcintsubtask2” input = “mcintIntel.out” order = “1”> 
     <Argument name = “datafile” value = “mcint.data” /> 
     <ComputationAttribute name = “randomnumberstreamID” value = “2” type = “LCG”/> 
     <ComputationAttribute name = “directory” value = “/etc/scratch/tmp” /> 
     <ComputationAttribute name = “checkpointfile” value = “/etc/scratch/subtask2.cpt” /> 
     <ComputationAttribute name = “partialresultfile” value = “/etc/scratch/result2.dat” /> 
     <ComputationAttribute name = “resultdirectory” value = “/etc/scratch/mcint/subtask2_result” /> 
  </Computation> 

… 
  <DataTransfer> … </DataTransfer> 
</SubWorkFlow> 
 

Figure 3.4 A Sub-workflow Script 
 

3.4 Passive-Mode Subtask Scheduling 
Actually, in the GWMC simulation environment, the scheduling of Monte Carlo subtasks 
specified in the workflow script is completed by the GCIMCA schedule service. Unlike 
the design of most existing distributed and parallel computing systems, such as Condor 
(Litzkow et al., 1998), Javelin (Christiansen et al., 1997), Charlotte (Baratloo et al., 
1996), and HARNESS (Beck et al., 1999), which use an active scheduling mode to 
dispatch subtasks, the GCIMCA schedule service uses a passive scheduling mode. In an 
active scheduling mode, the schedule service needs to keep checking the status of 
computational nodes to schedule tasks to the capable ones. Also, the schedule service 
must keep track of each running subtask. In contrast, using the passive scheduling mode 
in GCIMCA, a schedule service provider sends applications to the job server to apply for 
a subtask only when it has computational nodes available within its organization and 
ready for work. The management responsibility for the execution of each subtask is 
decentralized to the GCIMCA schedule service providers. The advantage of using the 
passive scheduling mode here is to reduce the workload, or more specifically, the 
requirements of network connection bandwidth of the job server. In GCIMCA, most of 
the communication load is between a GCIMCA schedule service provider and the 
computational nodes within the organization usually having connection via a high-speed 
LAN. On the other hand, the communication between the job server and the GCIMCA 
schedule service providers, which is usually through a WAN with relatively low 
bandwidth, is minimized. 

 
The job server manages the jobs submitted from the users in the GWMC simulation 

environment, and processes subtask applications from the GCIMCA schedule service 
providers. It is the GCIMCA schedule service provider that retrieves the information 
related to a subtask, forms the subtask described in Globus RSL (Resource Specification 
Language) (Globus Website, 2003), and actually schedules the subtask to a grid node. 
The job management functionalities of GRAM are utilized to run subtasks on a remote 
grid node. Figure 3.5 illustrates the GCIMCA implementation for remotely executing a 
Monte Carlo subtask based on GRAM. When a Monte Carlo subtask is scheduled on a 
grid node, a process running the GCIMCA subtask callback function is created so as to 
listen to the status as it changes on the running subtask. Depending on the status of the 
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running subtask, the callback function takes corresponding actions, such as reporting 
errors, submitting partial result files, or rescheduling the subtask with checkpoint data. 
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Restart the Computation
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Figure 3.5 Remote Execution of a Monte Carlo Subtask 
 

The operations of the scheduling a Monte Carlo subtask is described using the 
“RestartLoop” directive proposed in (Bivens, 2001) in a workflow script. Figure 3.6 
shows such a workflow script.   

 
<RestartLoop id = “MonteCarloSubtask”> 
  <Monitor id = “restart-subtask” activityToMonitor = “MCSubtask”> 
    <Condition pattern = “JOB_STATE_DONE” continue = “no” exitVal = “DONE” /> 
    <Condition pattern = “JOB_STATE_FAILED” continue = “no” exitVal = “FAILED” />     
    <Condition pattern = “JOB_STATE_PENDING” continue = “yes” exitVal = “CONTINUE” /> 
  </Monitor> 
 
  <Computation id = “MCSubtask” input = “mcsubtask.out”> 
    <Argument name = “checkpoint” value = “checkpoint.dat” /> 
  </Computation> 
</RestartLoop> 
 

Figure 3.5 A Workflow Script of the Execution of a Monte Carlo Subtask in GWMC 
Simulation Environment 

 

4. Implementation of GCIMCA Services 
The GWMC simulation environment is based on the grid middleware, GCIMCA. Taking 
advantage of the fundamental grid services provided by the Globus toolkit and parallel 
random number streams by the SPRNG library, GCIMCA provides higher-level services, 
including the N-out-of-M Monte Carlo subtask scheduling, application-level 
checkpointing, partial result validation, and intermediate value checking. 
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4.1 N-out-of-M Scheduling Strategy 
The main idea of the N-out-of-M strategy (Li & Mascagni, 2002; Li & Mascagni, 2003) 
for grid-based Monte Carlo computations is to schedule more subtasks than are required 
to tolerate possible delayed or halted subtasks on the grid to achieve optimal 
performance. The statistical nature of Monte Carlo applications allows us to enlarge the 
actual size of the computation by increasing the number of subtasks from N to M, where 
M > N. Each of these M subtasks uses its unique independent random number stream, 
and we submit M instead of N subtasks to the grid system. When N partial results are 
ready, we consider the whole task for the grid system to be completed. More theoretical 
analysis of the N-out-of-M strategy can be found in (Li & Mascagni, 2003). 
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Figure 4.1 Implementation of the N-out-of-M Scheduling Strategy in GCIMCA 

 
Figure 4.1 shows the implementation of the N-out-of-M scheduling strategy in 

GCIMCA. The Monte Carlo job description file from the user states the maximum 
number (M) of subtasks to be scheduled and the required number (N) of those to achieve 
a certain predetermined accuracy. Based on this, the job server sets up a subtask pool 
with the number of entries as M. Each entry of the pool describes the status of a subtask, 
including the subtask schedule status, random stream ID for the SPRNG library, the grid 
node if scheduled, and other implementation dependent details. The job server also 
maintains the statistics of completed subtasks. Once the number of completed subtasks 
reaches the number of requested subtasks, the job server will regard this Monte Carlo job 
as complete. A subtask-canceling signal will be sent to the GCIMCA schedule service 
providers that still have subtasks running related to this job. 

 
Figure 4.2 shows the simulation of the N-out-of-M scheduling strategy on a 

computational grid comprised of nodes with various service rates. 10-out-of-10, 10-out-
of-20, and 10-out-of-50 scheduling are compared in this simulation experiment. From the 
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Figure 4.2, we notice that we gain significant improvement in task completion time with 
a properly chosen value of M. 
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Figure 4.2 Simulations of the N-out-of-M Strategy on a Grid System 

 

4.2 Monte Carlo Lightweight Checkpointing 
A long-running computational task on a grid node must be prepared for node 
unavailability. Compared to process-level checkpointing (Litzkow et al., 1998), 
application-level checkpointing is much smaller in size and thus less costly. More 
importantly, the application-level checkpointing data is usually readily portable and is 
easy to migrate from one platform to another. Monte Carlo applications have a structure 
highly amenable to application-level checkpointing. Typically, a Monte Carlo application 
can be programmed in a structure that starts in an initial configuration, evaluates a 
random sample or a random trajectory, estimates a result, accumulates means and 
variances with previous results, and repeats this process until some termination 
conditions are met. 

 
Thus, to recover an interrupted computation, a Monte Carlo subtask needs to save 

only a relatively small amount of information, which includes the current results based on 
the estimates obtained so far, the current status and parameters of the random number 
generators, and other relevant program information like the current iteration number. 
GCIMCA uses the pack_sprng() and unpack_sprng() functions (SPRNG Website, 2003) 
in the SPRNG library to store and recover the states of random number streams, 
respectively. At the same time, GCIMCA requires the Monte Carlo application 
programmer to specify the other checkpoint data, and also the location of the main loop 
to generate the checkpointing and recovery subroutines. Figure 4.3 shows the flowchart 
of GCIMCA’s implementation of Monte Carlo application-level checkpointing and 
recovery. 
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Figure 4.3 The GCIMCA Implementation of Monte Carlo Application-Level 
Checkpointing 

 

4.3 Partial Result Validation and Intermediate Value Checking 
Grid-based Monte Carlo applications are very sensitive to each partial result generated 
from subtasks running on widely distributed grid nodes. An erroneous computation of a 
subtask will most likely lead to the corruption of the whole grid Monte Carlo 
computation. To enforce the correctness and accuracy of grid-based Monte Carlo 
computations, GCIMCA provides a partial result validation service and an intermediate 
value checking service.  

 
The partial result validation service takes advantage of the statistical nature of 

distributed Monte Carlo applications. In distributed Monte Carlo applications, we 
anticipate that the partial results will be approximately normally distributed. Based on all 
the partial results and a desired confidence level, the normal confidence interval is 
created. Then, each partial result is examined. If it is in the normal confidence interval, 
this partial result is considered as trustworthy; otherwise it is very suspicious. Discussion 
of the grid-based Monte Carlo partial result validation can be found in (Li & Mascagni, 
2002; Li & Mascagni, 2003). To utilize the partial result validation service, GCIMCA 
requires the user to specify quantities in the partial result data files that are anticipated to 
conform to the approximately normal distribution. Then, when the Monte Carlo job is 
done, all these value files will be collected to compute the normal confidence interval and 
check each partial result. If a partial result is found suspicious, the particular subtask that 
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produced this partial result will be rescheduled on another grid node to perform further 
validation. 

 
The intermediate value checking service is used to check if the assigned subtask 

from a grid node is faithfully carried out and accurately executed. The intermediate 
values are quantities generated within the execution of the subtask. To the node that runs 
the subtask, these values will be unknown until the subtask is actually executed and 
reaches a specific point in the program. On the other hand, to the owner of the 
application, certain intermediate values are either pre-known or very easy to generate. By 
comparing the intermediate values and the pre-known values, we can control whether the 
subtask is actually faithfully executed. The underlying pseudorandom numbers in the 
Monte Carlo applications are the perfect candidates to use as the intermediate values (Li 
& Mascagni, 2003). The intermediate value checking service in GCIMCA uses a simple 
strategy to validate a result from subtasks by tracing certain predetermined random 
numbers in the grid-based Monte Carlo applications. To utilize the intermediate value 
checking service, GCIMCA also requires user-level (programmer-level) cooperation. The 
application programmers need to save the value of the current pseudorandom number 
after every N pseudorandom numbers are generated. Thus, a record of the Nth, 2Nth, …, 
kNth random numbers used in the subtask are produced. When a subtask is complete, the 
verification service obtains this record and then re-computes the Nth, 2Nth, …, kNth 
random numbers applying the specific generator in the SPRNG library with the same 
seed and parameters as used in this subtask. A mismatch indicates problems during the 
execution of the subtask. 

 
<SubWorkFlow id = “intvalchk1” name = “ResultVerification” organization = “cs.fsu.edu”> 
  <DataTransfer id = “resultdata001”> 
     <Argument name = “presult1” value = “result1.dat” host = “sprng.cs.fsu.edu”/> 
  </DataTransfer> 
  <Computation id = “intermediatevalchk1” input = “intermediatevalchk.out” order = “2”> 
     <ComputationAttribute name = “randomnumberstreamID” value = “1” type = “LCG”/> 
     <ComputationAttribute name = “validationresult” value = “vresult1.dat”/> 
  </Computation> 
 
  <DataTransfer id = “resultdata002”> 
     <Argument name = “presult2” value = “result2.dat” host = “sprng.cs.fsu.edu”/> 
  </DataTransfer> 
  <Computation id = “intermediatevalchk2” input = “intermediatevalchk.out” order = “2”> 
     <ComputationAttribute name = “randomnumberstreamID” value = “2” type = “LCG”/> 
     <ComputationAttribute name = “validationresult” value = “vresult2.dat”/> 
  </Computation> 
  <DataTransfer> … </DataTransfer> 

… 
 
<DataTransfer> … </DataTransfer> 
  <Computation id = “presultvalidation” input = “presultvalidation.out” order = “3”> 
     <ComputationAttribute name = “validationresult” value = “vresult.dat”/> 
  </Computation> 
  <DataTransfer> … </DataTransfer> 
</SubWorkFlow> 
 

Figure 4.4 A Sub-Workflow Script of Partial Result Verification 
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Figure 4.4 shows the sub-workflow script of partial result verification. The first two 

computation directives specify the intermediate value checking for each partial results. 
The same value of “order” attribute indicates that the intermediate value checking can be 
executed in parallel. The last computation directive specifies the partial result validation 
operation. 
 

5. Conclusions 
In this paper, we discussed utilizing the Globus software toolkit and the SPRNG library 
to implement a grid middleware of GCIMCA -- a grid-computing infrastructure for 
Monte Carlo applications. The N-out-of-M subtask schedule service, application-level 
checkpointing service, Monte Carlo partial result validation service, and intermediate 
value checking service are implemented in GCIMCA.  Based on the facilities of 
GCIMCA, we developed the GWMC simulation environment to provide a workflow 
management service for grid-based Monte Carlo simulation processes for trustworthy and 
high-performance large-scale Monte Carlo computation. One of our computational 
biology applications, the grid-based nonequilibrium multiple-time scale molecular 
dynamics/Brownian dynamics simulations of ligand-receptor interactions in structured 
protein systems (Li et al., 2003), has demonstrated the power of large-scale grid-based 
Monte Carlo computation. 

 
One of the drawbacks of the GWMC simulation environment design is that the end 

user has limited access to the workflow. Job submission is based on the job description 
file provided by the user and the workflow scripts are generated by the workflow 
management services. In the future, we plan to implement a graphic user portal to 
facilitate the composition of simulation workflow elements by the end user. Also, we 
plan to adopt the emerging OGSA (Open Grid Services Architecture) (Foster et al., 2003) 
into GCIMCA so that we can integrate the standard grid-computing services into grid-
based Monte Carlo applications. Also, we plan to implement the remote checkpointing 
facilities using gSOAP (van Engelen & Gallivan, 2002) for Monte Carlo application-level 
checkpointing in a grid-computing environment. At the same time, we will also try to 
apply more real-life Monte Carlo applications on GCIMCA. A final goal is to experiment 
with the Monte Carlo-based services on non-Monte Carlo applications. The goal here 
being to study the extent to which these application-specific services can enhance other 
non-Monte Carlo grid computations. 
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