

A Grid Workflow-Based Monte Carlo Simulation Environment

Yaohang Li1, Michael Mascagni2, Robert van Engelen3, Qin Cai4
1Department of Computer Science

North Carolina A&T State University
Greensboro, NC 27411, USA

2,3Department of Computer Science and School of Computational Science and
Information Technology
Florida State University

Tallahassee, FL 32306-4530, USA
4Department of Computer Science

Indiana University
Bloomington, IN 47405, USA

Abstract

Monte Carlo methods provide enormous scope for realistic statistical modeling and
simulation. The implementation of large-scale Monte Carlo applications on the grid
benefits from state-of-the-art approaches to accessing resources in a computational grid.
Workflow techniques allow one to describe and enact his simulation processes in a
structured, manageable, and verifiable way. We developed the Grid-Computing
Infrastructure for Monte Carlo Applications (GCIMCA) based on the Globus toolkit and
the SPRNG library. The Globus toolkit facilitates the creation and utilization of a
computational grid for large distributed computational jobs and the Scalable Parallel
Random Number Generators (SPRNG) library is designed to generate practically infinite
number of random number streams with favorable statistical properties for parallel and
distributed Monte Carlo applications. GCIMCA provides grid services specific to grid-
based Monte Carlo simulation applications, including the Monte Carlo subtask schedule
service using the N-out-of-M strategy, the facilities of application-level checkpointing,
the partial result validation service, and the intermediate value validation service. By
taking advantage of emerging grid workflow paradigms and the facilities of GCIMCA,
we implemented a Grid Workflow-based Monte Carlo (GWMC) simulation environment.
Workflow management services are implemented to manage the Monte Carlo simulation
process. Based on these services, we intend to provide a trustworthy and manageable
grid-computing environment for large-scale and high-performance distributed Monte
Carlo simulation applications.

 1

1. Introduction
Monte Carlo methods provide solutions to a variety of mathematical problems through
statistical sampling. They are important techniques for performing simulation and
optimization in numerous fields of science and engineering, including nuclear physics,
chemistry, meteorology, biology, and medicine. The applications using Monte Carlo
methods are widely perceived as computationally intensive but naturally parallel. With
more ambitious calculations by estimating more random samples, a Monte Carlo
application is capable of reducing the statistical errors to any desired level (Srinivasan et
al., 1999). By computing and analyzing random samples independently, Monte Carlo
applications can be programmed in a dynamic bag-of-work model and fit into the master-
worker paradigm. In a parallel environment using the master-worker paradigm, the
master partitions the task, schedules subtasks to workers, and receives results when the
workers complete their assigned work (Basney et al., 1999). The subsequent growth of
computer power, especially that of the parallel/distributed computing systems and the
newly emerging grid computing systems, has made large-scale distributed Monte Carlo
computation possible and practically effective.

Large-scale Monte Carlo computation consumes large amounts of computational
power, and depends on high-quality parallel random number generators with good
quality. On the one hand, grid computing is characterized by large-scale sharing and
cooperation of dynamically distributed resources, such as CPU cycles, communication
bandwidth, and data to constitute a computational environment (Foster et al., 2001). A
computational grid based on grid-computing techniques can, in principle, provide a
tremendously large amount of CPU cycles to a Monte Carlo application. The Globus
software toolkit (Foster & Kesselman, 1997) provides software tools and services to build
computational grid infrastructures for grid-based applications. On the other hand, the
SPRNG (Scalable Parallel Random Number Generators) (Mascagni & Srinivasan, 2000)
library is designed to use parameterized pseudorandom number generators to provide
independent random number streams. The SPRNG library provides uniform
programming interfaces for the Linear Congruential Generator (LCG), Prime Modulus
Linear Congruential Generator (PMLCG), additive Lagged-Fibonacci Generator (LFG),
Multiplicative Lagged-Fibonacci Generator (MLFG), and Combined Multiple Recursive
Generator (CMRG). Some generators in the SPRNG library can provide up to 278000 – 1
independent random number streams (SPRNG Website, 2003) with sufficiently long
period, which have favorable inter-stream and cross-stream properties in a statistical
sense. These generators can meet the random number requirements of most distributed
Monte Carlo applications. Furthermore, by analyzing the statistical nature of Monte Carlo
applications and the cryptographic aspects of these underlying random number
generators, our previous research (Li & Mascagni, 2002; Li & Mascagni, 2003; Li &
Mascagni, 2003) developed techniques to improve the performance and trustworthiness
of Monte Carlo computations on the grid. Recently, in (Li et al., 2003), we developed a
grid middleware, a Grid-Computing Infrastructure for Monte Carlo Applications
(GCIMCA) to assemble “all the pieces of the puzzle” for large-scale grid-based Monte
Carlo analysis.

 2

In addition to the issues of performance and trustworthiness (Li & Mascagni, 2002),
a computational grid also presents a number of other challenges, including heterogeneity
of grid equipment, crossing administrative domain cooperation, and dynamism of grid
resources. With the functionalities of the organization of complex high-performance
computational tasks within a grid-computing environment, workflow management is
emerging as one of the most important grid services to address these challenges and
implement e-science process automation. The WfMC (Workflow Management Coalition)
standard developed the Workflow Process Definition Language (WPDL) (Allen, 2001) to
specify general workflow scenarios. However, the WPDL is too generalized and
sophisticated for grid computing (Bivens, 2001; Cao et al., 2003). More specifically, the
Grid Workflow specification based on XML (Bivens, 2001) is documented and used in
the ASCI (Accelerated Strategic Computing Initiative) grid infrastructure. In this paper,
we will adopt these workflow techniques to implement grid-based Monte Carlo
simulation process automation. Based on this Grid Workflow specification, we are going
to elucidate the implementation of the Grid Workflow-based Monte Carlo (GWMC)
simulation environment. The GWMC simulation environment integrates the services of
GCIMCA to provide a trustworthy and easy-to-manage grid-computing environment for
large-scale and high-performance distributed Monte Carlo simulation applications.

The remainder of this paper is organized as follows. We illustrate the system

architecture and the working paradigm of the GWMC simulation environment in Sections
2 and 3, respectively. In Section 4, we discuss detailed implementations of the core
services and facilities in GCIMCA, and the underlying middleware of GWMC simulation
environment. Finally, Section 5 summarizes our conclusions and future research
directions.

2. Architecture of GWMC Simulation Environment
The GWMC simulation environment is based on the grid middleware, GCIMCA (Li et
al., 2003). GCIMCA is designed on the top of the grid services provided by Globus,
(Globus Website, 2003) and supplies facilities and services for grid-based Monte Carlo
applications. The Globus grid services include GRAM (Globus Resource Allocation
Manager), GIS (Grid Information Service), GSI (Grid Security Infrastructure), and
GridFTP. GRAM is used to implement Monte Carlo subtask remote-submission and
manage the execution of each subtask. GIS provides information services, i.e., the
discovery of the properties and configurations of grid nodes. GSI offers security services
such as authentication, encryption and decryption for running Monte Carlo applications
on the grid. GridFTP provides a uniform interface for data transport and access on the
grid for GCIMCA. At the same time, the execution of each Monte Carlo subtask usually
consumes a large amount of random numbers. SPRNG is the underlying pseudorandom
number generator library in GCIMCA, providing independent pseudorandom number
streams. As a grid middleware based on the grid services provided by Globus and the
SPRNG library, GCIMCA provides higher-level services, including the N-out-of-M
Monte Carlo subtask scheduling, application-level checkpointing, partial result
validation, and intermediate value checking. Then, the GWMC grid workflow service

 3

integrates the services of GCIMCA to provide workflow management services for grid-
based Monte Carlo simulation applications. Figure 2.1 shows the architecture of the
GWMC simulation environment.

Grid Fabric

GRAM GIS GSI SPRNG

Random
Number
Stream s

GCIM CA

N-out-of-M
Subtask

Schedule
Services

MC
Application-

level
Checkpointing

M C Partial
Result

Validation

Interm ediate
Value

Checking

Grid W orkflow Services

GridFTP

Grid-based Monte Carlo S imulation Applications

Figure 2.1 Architecture of GWMC Simulation Environment

3. Working Paradigm

3.1 Workflow Description of The Simulation Process
A workflow in the GWMC simulation environment can be decomposed into smaller
units. These units are described as follows:
• Operation: Operations are the smallest elements in a grid workflow. Each operation in

a grid workflow corresponds to a computational subtask and is usually excutable on a
grid node.

• Sub-workflow: A sub-workflow is a flow of closely related operations that is to be
executed in a predefined order on the grid resources within a virtual organization.
Each sub-workflow represents a specific activity in an organization. Sub-workflows
may be executed in parallel.

• Main-Workflow: A main-workflow can be represented as a flow of several loosely
coupled activity described in a Monte Carlo simulation process. Each activity
consumes various grid resources and can be represented by a sub-workflow.

 4

3.2 Grid-based Monte Carlo Simulation Process Overview

Organization A

Job
Server

GCIMCA
Schedule
Service

Organization B

GCIMCA
Schedule
Service

Organization C

GCIMCA
Schedule
Service

MC Simulation Job

User

Main-
workflow

Carrying the
Simulation

Result Sub-workflow
in Organization A

GWMC
Workflow

Management
Service

Sub-workflow
in Organization B

Sub-workflow
in Organization C

Operation Operation
Operation

OperationOperation

Operation

Operation

Operation

Operation

Operation
Operation

GWMC
Workflow

Management
Service

Workflow
Description

in XML

Job
Data

GCIMCA
Partial Result

Validation
Services

Validation
Sub-Workflow

Figure 3.1 The Working Paradigm in the GWMC Simulation Environment

Figure 3.1 shows the working paradigm in GWMC simulation environment. A user
submitting a Monte Carlo job description to the job server initiates the execution of a
grid-based Monte Carlo application in the GWMC simulation environment. At the same
time, the user prepares and stores the Monte Carlo job files, such as the executable binary
and application data files, on the job server. Then, a grid workflow script to describe this
Monte Carlo simulation process specified in XML is generated. According to the
requirements of the main-workflow, the GWMC workflow management service
dispatches the execution of sub-workflows to the GCIMCA schedule services. The
GCIMCA schedule service manages the operations specified in its sub-workflow script.
More specifically, in this case, each operation in the sub-workflow script actually refers
to a Monte Carlo subtask. The GCIMCA schedule service then retrieves the Monte Carlo
subtasks and is in charge of actually scheduling the subtasks. The subtasks are run on the
grid resources in the organization, which is based on the master-worker model of a grid-
based Monte Carlo application. When the subtasks are complete, the GWMC workflow
management service then executes the partial result validation sub-workflow using the
GCIMCA partial result verification services, which include partial result validation and
intermediate value checking. After verification, the simulation results are sent back to the
user, specifying the end of the execution of the Monte Carlo simulation workflow.

 5

3.3 Job Submission
In GWMC simulation environment, a user provides different executable binary files, one
for each system architecture on the grid. The remote compiler (Zhou, 2000) service is
used to address this heterogeneity issue. A user can send source packages to a remote
node of a specific system architecture with the remote compiler service running. Then,
the remote compiler service compiles the source files, generates the executable files, and
sends them back to the user. Using the remote compiler service, different executable
codes for different platforms can be obtained.

Monte Carlo Job Description
JobName = “Monte Carlo Integration”
JobDescription=
 “Execfile=http://sprng.cs.fsu.edu/mcint/mcintIntel.out
 Datafile=http://sprng.cs.fsu.edu/mcint/mcint.data
 Arg= -r
 Arch=INTEL
 Opsys=LINUX”
JobDescription=
 “Execfile=http://sprng.cs.fsu.edu/mcint/mcintSolaris.out
 Datafile=http://sprng.cs.fsu.edu/mcint/mcint.data
 Arg= -r
 Arch=SUN
 Opsys=Solaris26”
RequiredJobs = 20
MaxJobs = 40
ResultFileName = mcintresult.dat
ResultLocation = http://sprng.cs.fsu.edu/mcint/result
Org= cs.fsu.edu;csit.fsu.edu
Encryption= YES

Figure 3.2 Sample of a Monte Carlo Job Description File for A Grid-based Monte Carlo

Integration Application

To run a Monte Carlo application in the GWMC simulation environment, a user need

to submit a Monte Carlo simulation job description file to the job server. The Monte
Carlo job description file declares the information related to the Monte Carlo job,
including the job name, locations of executable and data files, arguments, required
hardware architectures and operating systems, number of subtasks, result file names and
destinations, encryption option, and authenticated organization. Figure 3.2 shows a
sample of a job description file for a grid-based Monte Carlo integration application.
Based on the job description, the job server validates the Monte Carlo job, creates a
Monte Carlo subtask pool, and creates a corresponding workflow file.

Figure 3.3 shows the main-workflow script corresponding to the Monte Carlo job

description file in Figure 3.2. The data transfer directives at the beginning of the
workflow script indicate the executable files and application data for the Monte Carlo
integration job while those at the end specify the storage location of the result data. The
data transfer directives instruct the workflow engine to execute the appropriate data

 6

transfer program. The computation directive describes the computational process in the
GWMC simulation environment.

<WorkFlow id = “main” name = “Monte Carlo Integration”>
 <DataTransfer id = “MainData001”>
 <Description> Executable Files </Description>
 <Argument name = “Execfile” value = “http://sprng.cs.fsu.edu/mcint/mcintIntel.out” />
 <Argument name = “Arch” value = “INTEL” />
 <Argument name = “Opsys” value = “LINUX” />
 </DataTransfer>
 <DataTransfer id = “MainData002”>
 <Description> Executable Files </Description>
 <Argument name = “Execfile” value = “http://sprng.cs.fsu.edu/mcint/mcintSolaris.out” />
 <Argument name = “Arch” value = “SUN” />
 <Argument name = “Opsys” value = “Solaris26” />
 </DataTransfer>
 <DataTransfer id = “MainData002”>
 <Description> Data Files </Description>
 <Argument name = “Datafile” value = “http://sprng.cs.fsu.edu/mcint/mcint.data” />
 </DataTransfer>

 <Computation>
 <ComputationAttribute name = “RequiredJobs” value = “20” />
 <ComputationAttribute name = “MaxJobs” value = “40” />
 <ComputationAttribute name = “Org” value = “cs.fsu.edu;csit.fsu.edu” />
 <ComputationAttribute name = “Encryption” value = “YES” />
 </Computation>

 <DataTransfer id = “MainResult”>
 <Description> Data Files </Description>
 <Argument name = “Datafile” value = “http://sprng.cs.fsu.edu/mcint/result/mcintresult.dat” />
 </DataTransfer>
</WorkFlow>

Figure 3.3 The Main Workflow Script in XML Corresponding to the Monte Carlo
Integration Job in Figure 3.2

According to the main workflow script, the corresponding sub-workflow scripts are

then generated by the GWMC workflow management service. The operations in the sub-
workflow specify the detail information of executing a Monte Carlo subtask. Figure 3.4
shows a sub-workflow script based on the main workflow script in Figure 3.3. In each
computation directive, a Monte Carlo computational subtask is specified. Each subtask
works on the same data but different random number streams. All these subtasks having
the same order number indicate that they can be executed in parallel.

<SubWorkFlow id = “subworkflow1” name = “Monte Carlo Integration” organization = “cs.fsu.edu”>
 <DataTransfer> … </DataTransfer>
 <Computation id = “mcintsubtask1” input = “mcintIntel.out” order = “1”>
 <Argument name = “datafile” value = “mcint.data” />
 <ComputationAttribute name = “randomnumberstreamID” value = “1” type = “LCG”/>
 <ComputationAttribute name = “directory” value = “/etc/scratch/tmp” />
 <ComputationAttribute name = “checkpointfile” value = “/etc/scratch/subtask1.cpt” />
 <ComputationAttribute name = “partialresultfile” value = “/etc/scratch/result1.dat” />
 <ComputationAttribute name = “resultdirectory” value = “/etc/scratch/mcint/subtask1_result” />
 </Computation>

 7

 <Computation id = “mcintsubtask2” input = “mcintIntel.out” order = “1”>
 <Argument name = “datafile” value = “mcint.data” />
 <ComputationAttribute name = “randomnumberstreamID” value = “2” type = “LCG”/>
 <ComputationAttribute name = “directory” value = “/etc/scratch/tmp” />
 <ComputationAttribute name = “checkpointfile” value = “/etc/scratch/subtask2.cpt” />
 <ComputationAttribute name = “partialresultfile” value = “/etc/scratch/result2.dat” />
 <ComputationAttribute name = “resultdirectory” value = “/etc/scratch/mcint/subtask2_result” />
 </Computation>

…
 <DataTransfer> … </DataTransfer>
</SubWorkFlow>

Figure 3.4 A Sub-workflow Script

3.4 Passive-Mode Subtask Scheduling
Actually, in the GWMC simulation environment, the scheduling of Monte Carlo subtasks
specified in the workflow script is completed by the GCIMCA schedule service. Unlike
the design of most existing distributed and parallel computing systems, such as Condor
(Litzkow et al., 1998), Javelin (Christiansen et al., 1997), Charlotte (Baratloo et al.,
1996), and HARNESS (Beck et al., 1999), which use an active scheduling mode to
dispatch subtasks, the GCIMCA schedule service uses a passive scheduling mode. In an
active scheduling mode, the schedule service needs to keep checking the status of
computational nodes to schedule tasks to the capable ones. Also, the schedule service
must keep track of each running subtask. In contrast, using the passive scheduling mode
in GCIMCA, a schedule service provider sends applications to the job server to apply for
a subtask only when it has computational nodes available within its organization and
ready for work. The management responsibility for the execution of each subtask is
decentralized to the GCIMCA schedule service providers. The advantage of using the
passive scheduling mode here is to reduce the workload, or more specifically, the
requirements of network connection bandwidth of the job server. In GCIMCA, most of
the communication load is between a GCIMCA schedule service provider and the
computational nodes within the organization usually having connection via a high-speed
LAN. On the other hand, the communication between the job server and the GCIMCA
schedule service providers, which is usually through a WAN with relatively low
bandwidth, is minimized.

The job server manages the jobs submitted from the users in the GWMC simulation

environment, and processes subtask applications from the GCIMCA schedule service
providers. It is the GCIMCA schedule service provider that retrieves the information
related to a subtask, forms the subtask described in Globus RSL (Resource Specification
Language) (Globus Website, 2003), and actually schedules the subtask to a grid node.
The job management functionalities of GRAM are utilized to run subtasks on a remote
grid node. Figure 3.5 illustrates the GCIMCA implementation for remotely executing a
Monte Carlo subtask based on GRAM. When a Monte Carlo subtask is scheduled on a
grid node, a process running the GCIMCA subtask callback function is created so as to
listen to the status as it changes on the running subtask. Depending on the status of the

 8

running subtask, the callback function takes corresponding actions, such as reporting
errors, submitting partial result files, or rescheduling the subtask with checkpoint data.

GCIMCA
Schedule
Service

Monte Carlo
Subtask Callback

Function

globus_gram_client_job_request()

subtask
status changed

Collect partialresults Job Error Report Collect Checkpointing Data
Restart the Computation

globus_gram_client_callback_allow()

JOB_STATE_DONE JOB_STATE_FAILED JOB_STATE_PENDING

JOB_STATE_ACTIVE

Figure 3.5 Remote Execution of a Monte Carlo Subtask

The operations of the scheduling a Monte Carlo subtask is described using the
“RestartLoop” directive proposed in (Bivens, 2001) in a workflow script. Figure 3.6
shows such a workflow script.

<RestartLoop id = “MonteCarloSubtask”>
 <Monitor id = “restart-subtask” activityToMonitor = “MCSubtask”>
 <Condition pattern = “JOB_STATE_DONE” continue = “no” exitVal = “DONE” />
 <Condition pattern = “JOB_STATE_FAILED” continue = “no” exitVal = “FAILED” />
 <Condition pattern = “JOB_STATE_PENDING” continue = “yes” exitVal = “CONTINUE” />
 </Monitor>

 <Computation id = “MCSubtask” input = “mcsubtask.out”>
 <Argument name = “checkpoint” value = “checkpoint.dat” />
 </Computation>
</RestartLoop>

Figure 3.5 A Workflow Script of the Execution of a Monte Carlo Subtask in GWMC
Simulation Environment

4. Implementation of GCIMCA Services
The GWMC simulation environment is based on the grid middleware, GCIMCA. Taking
advantage of the fundamental grid services provided by the Globus toolkit and parallel
random number streams by the SPRNG library, GCIMCA provides higher-level services,
including the N-out-of-M Monte Carlo subtask scheduling, application-level
checkpointing, partial result validation, and intermediate value checking.

 9

4.1 N-out-of-M Scheduling Strategy
The main idea of the N-out-of-M strategy (Li & Mascagni, 2002; Li & Mascagni, 2003)
for grid-based Monte Carlo computations is to schedule more subtasks than are required
to tolerate possible delayed or halted subtasks on the grid to achieve optimal
performance. The statistical nature of Monte Carlo applications allows us to enlarge the
actual size of the computation by increasing the number of subtasks from N to M, where
M > N. Each of these M subtasks uses its unique independent random number stream,
and we submit M instead of N subtasks to the grid system. When N partial results are
ready, we consider the whole task for the grid system to be completed. More theoretical
analysis of the N-out-of-M strategy can be found in (Li & Mascagni, 2003).

1
0

SCHEDULED
SPRNG stream #
Subtask Status

Subtask ID

Grid Node pseudo.cs.fsu.edu

2
1

UNSCHEDULED
SPRNG stream #
Subtask Status

Subtask ID

Grid Node NULL

20
19

DONE
SPRNG stream #
Subtask Status

Subtask ID

Grid Node onion.csit.fsu.edu

...
...

Monte Carlo
Job Description

Requested Jobs
Done Jobs

Job Name

Max Jobs

MC Integration
10
8
20

Job Server

Figure 4.1 Implementation of the N-out-of-M Scheduling Strategy in GCIMCA

Figure 4.1 shows the implementation of the N-out-of-M scheduling strategy in

GCIMCA. The Monte Carlo job description file from the user states the maximum
number (M) of subtasks to be scheduled and the required number (N) of those to achieve
a certain predetermined accuracy. Based on this, the job server sets up a subtask pool
with the number of entries as M. Each entry of the pool describes the status of a subtask,
including the subtask schedule status, random stream ID for the SPRNG library, the grid
node if scheduled, and other implementation dependent details. The job server also
maintains the statistics of completed subtasks. Once the number of completed subtasks
reaches the number of requested subtasks, the job server will regard this Monte Carlo job
as complete. A subtask-canceling signal will be sent to the GCIMCA schedule service
providers that still have subtasks running related to this job.

Figure 4.2 shows the simulation of the N-out-of-M scheduling strategy on a

computational grid comprised of nodes with various service rates. 10-out-of-10, 10-out-
of-20, and 10-out-of-50 scheduling are compared in this simulation experiment. From the

 10

Figure 4.2, we notice that we gain significant improvement in task completion time with
a properly chosen value of M.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 200 400 600 800 1000 1200

Time Steps

M
on

te
 C

ar
lo

 T
as

k
C

om
pl

et
io

n
Pe

rc
en

ta
ge

10-out-of-10
10-out-of-20
10-out-of-50

Figure 4.2 Simulations of the N-out-of-M Strategy on a Grid System

4.2 Monte Carlo Lightweight Checkpointing
A long-running computational task on a grid node must be prepared for node
unavailability. Compared to process-level checkpointing (Litzkow et al., 1998),
application-level checkpointing is much smaller in size and thus less costly. More
importantly, the application-level checkpointing data is usually readily portable and is
easy to migrate from one platform to another. Monte Carlo applications have a structure
highly amenable to application-level checkpointing. Typically, a Monte Carlo application
can be programmed in a structure that starts in an initial configuration, evaluates a
random sample or a random trajectory, estimates a result, accumulates means and
variances with previous results, and repeats this process until some termination
conditions are met.

Thus, to recover an interrupted computation, a Monte Carlo subtask needs to save

only a relatively small amount of information, which includes the current results based on
the estimates obtained so far, the current status and parameters of the random number
generators, and other relevant program information like the current iteration number.
GCIMCA uses the pack_sprng() and unpack_sprng() functions (SPRNG Website, 2003)
in the SPRNG library to store and recover the states of random number streams,
respectively. At the same time, GCIMCA requires the Monte Carlo application
programmer to specify the other checkpoint data, and also the location of the main loop
to generate the checkpointing and recovery subroutines. Figure 4.3 shows the flowchart
of GCIMCA’s implementation of Monte Carlo application-level checkpointing and
recovery.

 11

In itia liz ation

Main Monte Car lo
Computation

Mean and Standard Error
Es timation

Main
Loop

SPRNG

Rec ov er Subroutine
UNPA CK_SPRNG to Res tore RNG s tatus

Res tore c hanged v ar iables
Set iteration index

Chec kpoint Subroutine
PA CK_SPRNG to s av e RNG parameters

Sav e c hanged v ar iables
Sav e iteration index

Chec kpoint Condition?

Chec kpoint Data
File

Chec kpoint
Data File

Figure 4.3 The GCIMCA Implementation of Monte Carlo Application-Level
Checkpointing

4.3 Partial Result Validation and Intermediate Value Checking
Grid-based Monte Carlo applications are very sensitive to each partial result generated
from subtasks running on widely distributed grid nodes. An erroneous computation of a
subtask will most likely lead to the corruption of the whole grid Monte Carlo
computation. To enforce the correctness and accuracy of grid-based Monte Carlo
computations, GCIMCA provides a partial result validation service and an intermediate
value checking service.

The partial result validation service takes advantage of the statistical nature of

distributed Monte Carlo applications. In distributed Monte Carlo applications, we
anticipate that the partial results will be approximately normally distributed. Based on all
the partial results and a desired confidence level, the normal confidence interval is
created. Then, each partial result is examined. If it is in the normal confidence interval,
this partial result is considered as trustworthy; otherwise it is very suspicious. Discussion
of the grid-based Monte Carlo partial result validation can be found in (Li & Mascagni,
2002; Li & Mascagni, 2003). To utilize the partial result validation service, GCIMCA
requires the user to specify quantities in the partial result data files that are anticipated to
conform to the approximately normal distribution. Then, when the Monte Carlo job is
done, all these value files will be collected to compute the normal confidence interval and
check each partial result. If a partial result is found suspicious, the particular subtask that

 12

produced this partial result will be rescheduled on another grid node to perform further
validation.

The intermediate value checking service is used to check if the assigned subtask

from a grid node is faithfully carried out and accurately executed. The intermediate
values are quantities generated within the execution of the subtask. To the node that runs
the subtask, these values will be unknown until the subtask is actually executed and
reaches a specific point in the program. On the other hand, to the owner of the
application, certain intermediate values are either pre-known or very easy to generate. By
comparing the intermediate values and the pre-known values, we can control whether the
subtask is actually faithfully executed. The underlying pseudorandom numbers in the
Monte Carlo applications are the perfect candidates to use as the intermediate values (Li
& Mascagni, 2003). The intermediate value checking service in GCIMCA uses a simple
strategy to validate a result from subtasks by tracing certain predetermined random
numbers in the grid-based Monte Carlo applications. To utilize the intermediate value
checking service, GCIMCA also requires user-level (programmer-level) cooperation. The
application programmers need to save the value of the current pseudorandom number
after every N pseudorandom numbers are generated. Thus, a record of the Nth, 2Nth, …,
kNth random numbers used in the subtask are produced. When a subtask is complete, the
verification service obtains this record and then re-computes the Nth, 2Nth, …, kNth
random numbers applying the specific generator in the SPRNG library with the same
seed and parameters as used in this subtask. A mismatch indicates problems during the
execution of the subtask.

<SubWorkFlow id = “intvalchk1” name = “ResultVerification” organization = “cs.fsu.edu”>
 <DataTransfer id = “resultdata001”>
 <Argument name = “presult1” value = “result1.dat” host = “sprng.cs.fsu.edu”/>
 </DataTransfer>
 <Computation id = “intermediatevalchk1” input = “intermediatevalchk.out” order = “2”>
 <ComputationAttribute name = “randomnumberstreamID” value = “1” type = “LCG”/>
 <ComputationAttribute name = “validationresult” value = “vresult1.dat”/>
 </Computation>

 <DataTransfer id = “resultdata002”>
 <Argument name = “presult2” value = “result2.dat” host = “sprng.cs.fsu.edu”/>
 </DataTransfer>
 <Computation id = “intermediatevalchk2” input = “intermediatevalchk.out” order = “2”>
 <ComputationAttribute name = “randomnumberstreamID” value = “2” type = “LCG”/>
 <ComputationAttribute name = “validationresult” value = “vresult2.dat”/>
 </Computation>
 <DataTransfer> … </DataTransfer>

…

<DataTransfer> … </DataTransfer>
 <Computation id = “presultvalidation” input = “presultvalidation.out” order = “3”>
 <ComputationAttribute name = “validationresult” value = “vresult.dat”/>
 </Computation>
 <DataTransfer> … </DataTransfer>
</SubWorkFlow>

Figure 4.4 A Sub-Workflow Script of Partial Result Verification

 13

Figure 4.4 shows the sub-workflow script of partial result verification. The first two

computation directives specify the intermediate value checking for each partial results.
The same value of “order” attribute indicates that the intermediate value checking can be
executed in parallel. The last computation directive specifies the partial result validation
operation.

5. Conclusions
In this paper, we discussed utilizing the Globus software toolkit and the SPRNG library
to implement a grid middleware of GCIMCA -- a grid-computing infrastructure for
Monte Carlo applications. The N-out-of-M subtask schedule service, application-level
checkpointing service, Monte Carlo partial result validation service, and intermediate
value checking service are implemented in GCIMCA. Based on the facilities of
GCIMCA, we developed the GWMC simulation environment to provide a workflow
management service for grid-based Monte Carlo simulation processes for trustworthy and
high-performance large-scale Monte Carlo computation. One of our computational
biology applications, the grid-based nonequilibrium multiple-time scale molecular
dynamics/Brownian dynamics simulations of ligand-receptor interactions in structured
protein systems (Li et al., 2003), has demonstrated the power of large-scale grid-based
Monte Carlo computation.

One of the drawbacks of the GWMC simulation environment design is that the end

user has limited access to the workflow. Job submission is based on the job description
file provided by the user and the workflow scripts are generated by the workflow
management services. In the future, we plan to implement a graphic user portal to
facilitate the composition of simulation workflow elements by the end user. Also, we
plan to adopt the emerging OGSA (Open Grid Services Architecture) (Foster et al., 2003)
into GCIMCA so that we can integrate the standard grid-computing services into grid-
based Monte Carlo applications. Also, we plan to implement the remote checkpointing
facilities using gSOAP (van Engelen & Gallivan, 2002) for Monte Carlo application-level
checkpointing in a grid-computing environment. At the same time, we will also try to
apply more real-life Monte Carlo applications on GCIMCA. A final goal is to experiment
with the Monte Carlo-based services on non-Monte Carlo applications. The goal here
being to study the extent to which these application-specific services can enhance other
non-Monte Carlo grid computations.

References
1. Srinivasan, A., Ceperley, D. M. & Mascagni M., (1999). Random Number Generators

for Parallel Applications. Monte Carlo Methods in Chemical Physics, v.105, pp. 13-
36.

2. Basney, J., Raman, R., & Livny, M., (1999). High Throughput Monte Carlo.
Proceedings of 9th SIAM Conference on Parallel Processing for Scientific
Computing, San Antonio.

 14

3. Foster, I., Kesselman, C., & Tueske, S., (2001). The Anatomy of the Grid.
International Journal of Supercomputing Applications, v.15(3).

4. Foster, I., & Kesselman, C., (1997) Globus: A Metacomputing Infrastructure Toolkit.
International Journal of Supercomputer Applications, v.11(2), pp. 115-128.

5. Mascagni, M., & Srinivasan, A., (2000). Algorithm 806: SPRNG: A Scalable Library
for Pseudorandom Number Generation. ACM Transactions on Mathematical
Software, v. 26, pp. 436-461.

6. SPRNG website, http://sprng.cs.fsu.edu.
7. Li, Y., & Mascagni, M., (2002). Grid-based Monte Carlo Application. Lecture Notes

in Computer Science, GRID2002, v. 2536, pp. 13-25.
8. Li, Y., & Mascagni, M. (2003). Analysis of Large-scale Grid-based Monte Carlo

Applications. Special issue of International Journal of High Performance
Computation Applications.

9. Li, Y., & Mascagni, M. (2003). Improving Performance via Computational
Replication on a Large-Scale Computational Grid. Proceedings of the GP2PC at the
IEEE/ACM International Symposium on Cluster Computing and the Grid,
CCGRID2003, Tokyo.

10. Globus website, http://www.globus.org.
11. Litzkow, M., Livny, M., Mutka, M. (1988). Condor - A Hunter of Idle Workstations.

Proceedings of 8th International Conference of Distributed Computing Systems, pp.
104-111.

12. Christiansen, O., Cappello, P., Ionescu, M. F., Neary, M. O., Schauser, K. E., & Wu,
D. (1997). Javelin: Internet-Based Parallel Computing Using Java. Concurrency:
Practice and Experience, v. 9(11), pp. 1139-1160.

13. Baratloo, A., Karaul, M., Kedem, Z., & Wyckoff, P., (1996). Charlotte:
Metacomputing on the Web. Proceedings of 9th International Conference on Parallel
and Distributed Computing Systems.

14. Beck, Dong, Fagg, Geist, Gray, Kohl, Miliardi, Moore, K., Moore, T.,
Papadopoulous, P., Scott, S., & Sunderam V., (1999). HARNESS: a next generation
distributed virtual machine. Journal of Future Generation Computer Systems, v. 15.

15. Zhou, M., (2000). A Scientific Computing Tool for Parallel Monte Carlo in a
Distributed Environment. Ph.D. Dissertation, University of Southern Mississippi.

16. Foster, I., Kesselman, C., Nick, J. M., & Tuecke, S., (2003). The Physiology of Grid:
Open Grid Services Architecture for Distributed Systems Integration. Draft.

17. van Engelen, R., & Gallivan, K. A., (2002). The gSOAP Toolkit for Web Services
and Peer-to-Peer Computing Networks. Proceedings of proceedings of the GP2PC at
the IEEE/ACM International Symposium on Cluster Computing and the Grid,
CCGrid2002, Berlin.

18. Li, Y., Mascagni, M., & van Engelen, R., (2003). GCIMCA: A Globus and SPRNG
Implementation of a Grid Computing Infrastructure for Monte Carlo Applications.
Proceeding of the International Multiconference in Computer Science and Computer
Engineering, PDPTA’03.

19. Allen, R., (2001). Workflow: An Introduction. Workflow Handbook 2001, Workflow
Management Coalition.

 15

20. Bivens, H. P., (2001). Grid Workflow. Grid Computing Environments Working
Group, Global Grid Forum.

21. Cao, J., Jarvis, S. A., Saini, S., & Nudd, G. R., (2003). GridFlow: Workflow
Management for Grid Computing. Proceedings of 3rd International Symposium on
Cluster Computing and the Grid, CCGRID2003, Tokyo.

22. Li, Y., Mascagni, M., & Peters, M. H., (2003). Grid-based Nonequilibrium Multiple-
Time Scale Molecular Dynamics/Brownian Dynamics Simulations of Ligand-
Receptor Interactions in Structured Protein Systems. Proceeding of the First
International Workshop on Biomedical Computations on the Grid (BioGrid'03),
Tokyo.

 16

	Abstract
	1. Introduction
	2. Architecture of GWMC Simulation Environment
	
	�

	3. Working Paradigm
	
	3.1 Workflow Description of The Simulation Process
	3.2 Grid-based Monte Carlo Simulation Process Overview
	3.3 Job Submission
	3.4 Passive-Mode Subtask Scheduling

	4. Implementation of GCIMCA Services
	
	4.1 N-out-of-M Scheduling Strategy
	4.2 Monte Carlo Lightweight Checkpointing
	4.3 Partial Result Validation and Intermediate Value Checking

	5. Conclusions
	References

