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ABSTRACT 

Unlike the visual trimming of B-spline surfaces, which 
hides unwanted portions in rendering, the geometric trimming 
approach provides a mathematically clean representation 
without redundancy. However, the process may lead to 
significant deviation from the corresponding portion on the 
original surface. Optimization is required to minimize 
approximation errors and obtain higher accuracy.  

In this paper, we describe the application of a novel global 
optimization method, so-called hybrid Parallel Tempering (PT) 
and Simulated Annealing (SA) method, for the minimization of 
B-spline surface representation errors. The high degree of 
freedom within the configuration of B-spline surfaces as well as 
the “rugged” landscapes of objective functions complicate the 
error minimization process. The hybrid PT/SA method, which 
is an effective algorithm to overcome the slow convergence, 
waiting dilemma, and initial value sensitivity, is a good 
candidate for optimizing geometrically trimmed B-spline 
surfaces. Examples of application to geometrically trimmed 
wing components are presented and discussed. Our preliminary 
results confirm our expectation. 

 
INTRODUCTION 

In most of the literature, the term “trimming” of B-spline 
surfaces refers to the visual trimming, which defines a trimmed 
surface by using the original surface and a trimming curve. 
 

When the trimmed surface is rendered, the original surface is 
tessellated so that it shows only the wanted portions. In 
contrast, geometric trimming creates new surfaces. 
Intersections are obtained to restrain the sampling points [1]. 
Then surface points are sampled on the retained part and re-
interpolated into new surfaces [2, 3, 4]. In this paper, trimming 
refers to geometric trimming for the sake of brevity. An exact 
trimming is precluded due to the remarkably high degree of 
their intersections [5]. Depending on the selection of the 
interpolation points on the original surface, the trimming errors 
may vary greatly.  

The B-spline curve/surface shape modification problem 
has been addressed through optimization. Ferguson and Jones 
proposed methods to control curvature by formulating a 
constrained nonlinear optimization problem using the control 
points of B-splines in nonrational form as variables [6]. 
Moreton and Sequin studied the application of nonlinear 
optimization techniques to minimize a fairness functional based 
on the variation of curvature [7]. Hohenberger and Reuding 
investigated the possibilities of entering the weights in an 
automatic fairing process [8]. Laurent-Gengoux and Mekhilef 
investigated the optimization of a NURBS representation by 
using Polak-Ribiere technique with some improvement [9]. The 
Quasi-Newton BFGS method has been applied to optimize 
NURBS represented wing profiles by Trepanier, etc [10]. Most 
prior work focuses on curve shape optimization and local 
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optimization methods due to the high dimensionality and 
complexity of the surface optimization problem.  

In this paper, trimmed B-spline surfaces are optimized by 
the hybrid PT/SA method, which has been applied to molecular 
biology and has shown promising results in solving complex, 
high-dimension problems and overcoming slow convergence 
[11]. The optimization can be further applied to the general 
surface fitting problem, not limited to trimmed surfaces.  

This paper is organized as follows. First, geometric 
trimming is explained and the trimming errors are defined. 
Then the hybrid PT/SA method is described and the 
implementation to B-spline surface shape optimization is 
detailed. Finally, results on trimmed wing surfaces are 
presented and analyzed. 

 

DEFINITION OF A NURBS SURFACE 
A non-uniform rational B-spline (NURBS) surface is 

defined by: 
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Pi, j  are control points, the 
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wi, j  are the weights, and 
the 

 

Ni,p (u)  and 
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N j,q (v)  are the B-spline basis functions 
defined on the knot sequences 
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U = {u0,u1,...,un+ p+1}  and 
V = {v0,v1,...,vm+q+1} , where 
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p is the degree in the u direction and q is the degree in v 

direction. 

! 

N j ,q (v)  is defined similarly to 

! 

Ni ,p (u) . If all the 
weights are the same, it refers to non-rational B-spline surfaces. 
Since weights are difficult to visualize and very little is known 
on setting weights, most often all weights are set to 1.  

 

GEOMETRIC TRIMMING  
A new surface is created by re-interpolating the surface 

points in the wanted portion of the original surface. When a 
surface is trimmed by an open trimming curve whose two end   
points lie on the opposite boundary in the u-v space, the surface 
is divided into two regions by the trimming curve. The rule is 
set so that the wanted portion is on the left side when walking 
along the trimming curve (Figure 1).  

 

! 

! 

! 
 

 
Figure 1 Illustration of trimming curves and regions 
 
Due to the properties of tensor-product surfaces, the 

number of interpolation points on each isoparametric curve 
must be the same. Let 
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*is the number of points in the new parametric space on each 

v isoparametric curve. 
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N
* can be any number as long as it 

satisfies the minimum number of points required by the surface 
degree and interpolation method. Increasing the number of 
points forces a closer adherence to the original shape. The 
determination of isoparametric curves also affects the results. If 
the original surface is created by interpolation and we have the 
knowledge of the original interpolation, the knowledge can be 
applied to trimming sufficiently. Using the parameters of the 
original interpolation points for sampling the new surface 
points and computing parameters by the same parameterization 
method provides high accuracy. However, in many cases, the 
knowledge of how the original surface is created is unknown. 
Uniformly distributed isoparametric curves are selected.  

 

 
Figure 2 Trimming by an open trimming curve 

 
Surfaces trimmed by other types of trimming curves 

require surface subdivision and conversion of trimming curves 
[2]. Figure 3 shows geometrically trimmed wing and fuselage 
surfaces.  
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(a) Wing and fuselage surfaces before trimming 

 
(b) Trimmed fuselage surfaces 

 
(c) Trimmed wing and fuselage surfaces 

 
(d) Trimmed wing and fuselage surfaces in shading 
Figure 3 Trimming of fuselage and wing surfaces 

 
ERROR DEFINITION 

The difference between the original surface and the 
trimmed one can be evaluated by  
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distance between two surface points in the Euclidean space and 
r  is the total number of sampling points. x

i
 are the points on 
 ! 
the retained portion of the original surface and 

! 

x
i

*  are the 
images of 

! 

x
i
 on the trimmed surface. The images are created 

by projecting points on the original surface to the trimmed 
surface using the Newton method, which is a classical method 
to find the closest point on a surface to a given point [12]. The 
exception is the boundary, where the points are projected to the 
boundary curve of the trimmed surface instead of the surface. 
Figure 4 shows the distance between the associated points for 
the trimmed wing. In Figure 4(a), the isoparametric curves are 
selected uniformly, while in Figure 4(b), the parameters and 
parameterization method in interpolating the original surface 
are used. The 

! 

d"  of (a) is 2.1903e-3 and the 

! 

d"  of (b) is 
8.3100e-5. The error in (a) is significantly greater than that in 
(b). When the construction of the original surface is unknown, a 
greater error might occur. The hybrid PT/SA is applied to 
optimize the surface and reduce errors.  
 

 
(a) 

 

 
(b) 

Figure 4 Distance plots of the surfaces trimmed by not 
knowing and knowing the interpolation of the original 

surface 
 
 

HYBRID PARALLEL TEMPERING/SIMULATED 
ANNEALING METHOD 

The SA method is analogous to metals cooling and 
annealing [13]. If the liquid is cooled slowly, the atoms are 
often able to line themselves up and form a pure crystal that is 
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completely ordered. This crystal is the state of minimum energy 
for this system. The Boltzmann probability distribution states 
that a system in thermal equilibrium at temperature T has its 
energy probabilistically distributed among all different energy 
states E as 

! 

Prob(E) ~ exp("E /kT ) . The quantity k is a constant 
of nature that relates temperature to energy. The system 
sometimes goes uphill as well as downhill, so that it has a 
chance to escape from a local energy minimum to find a better 
one. But the lower the temperature, the smaller probability it 
goes uphill. It accepts a move if it lowers the energy. 
Otherwise, the move will be accepted with probability 
e
"(E

new
"E

old
) / kT . Initially, the SA method raises the temperature 

to a high value, and slowly and gradually reduces it during the 
optimization procedure to help escape from the local 
minimums. This method can also be used for other systems by 
introducing a control parameter, analogous to temperature, and 
an annealing cooling schedule that describes its gradual 
reduction.  

The PT method, also known as the multiple Markov chain 
or replica-exchange method, builds up on Markov chains of 
different temperatures [14]. The main idea of PT is that the 
replica transition moves between different temperature levels, 
which enables the system at the low temperature level to escape 
from local minima and to locate multiple minima by allowing it 
to switch with the system configuration at higher temperature 
according to the Metropolis-Hasting rule [15]. The replica 
moves accelerate the system to reach equilibrium. 

The main idea of the hybrid PT/SA method is to apply the 
PT moves to the SA scheme to reduce the relaxation time to 
equilibrium when temperature is changed in SA, which 
significantly improves the converge rate of the optimization 
process. By combining the PT and SA methods, a configuration 
is able to switch between low and high temperature levels in the 
evolving of the optimization process and at each level while all 
temperatures will gradually cool down to their target 
temperatures. The moves at high temperature levels intend to 
search the energy landscape extensively with greater step 
length while those at the low temperature levels explore the 
local details.  

The hybrid PT/SA method contains two sets of moves. One 
is to move on the same Markov chain. The acceptance rate, 
min(1,e

"(E
new

"E
old
) / kT

) , is defined in the same way as that of the 
SA method. The other move is the replica transition, which 
exchanges the configurations on two adjacent Markov chains: 

x j

new
= x j+1

old

x j+1

new
= x j

old

 
 The two adjacent Markov chains are selected randomly 

and the replica exchange move is accepted with the probability 
of ),1min( )//()//( 1111 ++++ +++! jjjjjjjj kTEkTEkTEkTE

e , where 

! 

E j  denotes the 
energy on the current configuration of the jth Markov chain.  

 

OBJECTIVE FUNCTION AND VARIABLES 
The objective function, which is associated with the 

“energy” function in the hybrid PT/SA method, is built as a 
combination of d

2
 and  d" . 

! 
 ! ! 
22
22)( !! "+"= dconstdconstXF  

where X is the vector of variables containing the positions 
of the NURBS control points, weights or knot sequences. The 
normalization constants 2const  and !const are used to obtain 
the same order for the two terms and adjust the objective 
function ranges. Using the square of 

! 

d
2
 and 

! 

d"  is for 
efficiency. At each iteration the objective function is computed 
based on a significant number of points. Avoiding the square 
root operation greatly reduces the computation time, and yet 
reflects the difference between the two surfaces.  

The approximation of the surface with a fixed degree and 
fixed number of control points is investigated. A NURBS 
surface is determined by control points, weights, and knots. The 
movement of control points has no constraints in Euclidean 
space while the weights must stay positive and the knot 
sequence must be non-decreasing. The dimension of variables 
can easily go beyond one hundred. A NURBS surface with 
degree 

! 

(p,q)  and 

! 

m " n  control points has two knot sequences 
of m + p+1 and 

! 

n + q+1. Since the knots are relative values, it 
can be normalized on 

! 

[0,1], the first and the last knots can be 
fixed in the optimization. If clamped knot sequences are used, 
the first 

! 

p+1 knots are the same, so are the last 

! 

p+1 knots.  
This further reduces the number of knot variables. The size of 
the control point location variables is 

! 

3mn  while that of the 
weight variables is 

! 

mn . Compared to the results of modifying 
only the control point locations or knots, those of modifying 
only the weights are insignificant. Furthermore, evaluation of 
surface points of a rational B-spline surface is more time-
consuming. Figure 5 compares the results obtained by 
modifying control point locations and knots. Modifying control 
point locations yields better results. Setting both the control 
point locations and knots as variables increases the dimension 
of variables. As a result, tuning the optimization parameters is 
more difficult. Therefore, only control point locations are set as 
variables. 

 

Figure 5 Comparison of maximum error convergence from 
setting control point locations and knots as variables 

IMPLEMENTATION OF HYBRID PT/SA METHOD IN B-
SPLINE SURFACE TRIMMING OPTIMIZATION 

At each iteration a proposed point (variable vector) is 
created by a random move from the current point. The scheme 
of creating the random move is important. The new point can 
be located far away from the current point to speed up the 
search process and to avoid getting trapped at a local minimum, 
or located nearby to focus on the local area. This can be 
4 Copyright © 2005 by ASME 
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controlled by a step size procedure. If a single variable is 
moved, the convergence of the system is slow.  Allowing every 
variable to make a small move from the current value is more 
efficient. The step size in different coordinates should be 
adjusted to provide efficient moves. For example, the cross-
section (airfoil profile) of a wing surface might have greater 
curvature changes and greater changes of the distances from the 
surface to the target points, and thus applying step sizes, which 
allow greater movement in this direction, is more efficient.  

Point projection is a computationally costly operation, 
since every point projection is an optimization process per se 
[12]. Though good initial values can reduce the convergence 
time, doing point projection during each iteration slows down 
the process. However, without doing point projection, the 
images of target points in the u-v parametric space are fixed and 
the system will be trapped in local minima. Allowing the 
images of target points in the u-v parametric space to move is 
critical. An alternative way is to perform point projection every 
certain number of iterations. To further improve the efficiency, 
the old values are used as the initial values in point projection. 
 

RESULTS AND DISCUSSION 
We apply the hybrid PT/SA method to trimmed wing 

surfaces. The interpolation points for trimmed surfaces are 
sampled uniformly in the parametric space of the original 
surface when the construction of the original surface is 
unknown.  First the method is validated by using target points 
on a plane. 

Validation for a Plane 
If the target points are on a plane, the control points are on 

the plane. The method should be able to move the control 
points to the plane. We set the 1010!  target points to be 
uniformly distributed on the plane 

! 

z = 0 bounded by lines 
x = 0, x = 1, y = 0, y = 1 , and a bicubic NURBS surface has 

44!  control points and clamped end knots. Though the 
solution is not unique, the control points on the boundary 
should lie on these lines and the z coordinates of all the control 

 

 
 Figure 6 The distance plot of the initial and optimized 

surfaces (the max error of the initial surface is 9.8887e-2; 
the max error of the optimized surface is 3.993e-5) 
 

points should move toward 0. For different initial surfaces, the 
optimization process converges to these solutions. Figure 6 
gives the distance plots. Figure 7 plots initial and optimized 
control points. Four temperature levels are applied in this 
example. The smallest step size is 2e-4. The resulting surface 
has a maximum distance of 3.99e-5 from the target points.   

 

 

(a) Initial control hull 

 

(b) Optimized control hull 

Figure 7 Target points and control hulls 

Optimization of Trimmed Wing Surfaces 
In this example, the trimmed wing is a bicubic B-spline 

surface created by interpolating 513!  surface points (13 along 
the trimming curve and 5 on each isoparametric curve). Control 
point locations are set as variables and the problem has a 
dimension of 195. The target points are 1749!  surface points 
on the retained part of the original surface (Figure 8). 

 
Figure 8 Target points  
5 Copyright © 2005 by ASME 



 
 

 
Figure 9 Control hulls of the initial and optimized surfaces 

 
 
 

 
 
 

Figure 10 Distance plots after optimization with the same 
scale of Figure 4(a) 

 
The temperatures are lowered proportionally. Four 

temperature levels start with 4, 16, 64 and 256, and decrease 
proportionally by a fraction of 0.997 of (T-1.0) every 1000 
steps. The step size varies from 2.0e-6 to 1.28e-4 for x 
coordinates, 4.0e-7 to 4.58e-5 for y and z coordinates. The 
optimized surface has the maximum error reduced from 
2.0259e-3 to 2.1903e-4 and the distances from the target points 
distributed evenly. The average error decreases from 6.5665e-4 
to 1.0109e-4. The errors are close to the errors of the surface 
trimmed with prior knowledge of the original surface. Figure 9 
and 10 show the control hulls and the distance plots before and 
after the optimization. 

The optimization process is faster on a smaller number of 
targets points since the complexity of the problem reduces and 
the time for evaluating the objective function is less. An 
alternative approach to fit a large number of points is to start 
with a coarser target point net and refine it progressively. The 
 

maximum error of fitting the 1749!  target points by the 
optimized surface obtained from fitting 925!  points is 
4.0203e-4, compared to that of 2.0259e-3 for the original 
trimmed surface.  

 

Discussion 
For high dimension problems with rough energy 

landscapes, traditional local optimization methods such as 
quasi-Newton experiences difficulties in finding good initial 
values, while the hybrid PT/SA method is not sensitive to initial 
values. A major problem for using the SA method is the setting 
of the step size. A big step size misses the details and a small 
step size leads to slow convergence. Figure 11 compares the 
convergence of SA and the hybrid PT/SA for fitting 

925! points of a trimmed wing surface. Four temperature 
levels are used in the hybrid PT/SA method. The SA with large 
step size and small step size employ the configuration of the 
lowest and highest temperature levels of those of the hybrid 
PT/SA respectively. The number of iterations of the hybrid 
PT/SA method, which converges to the same level of accuracy, 
is about 2/3 of that of SA method with small step size. In SA 
with a big step size, the objective function decreases rapidly at 
beginning, but is trapped in a local minimum of 4.9 e3. Overall, 
the hybrid PT/SA approach yields a better convergence rate 
than both cases in SA. Though these preliminary results are 
encouraging, studies on setting the parameters are expected to 
further improve the results. 

 

 
Figure 11 Convergence comparison 

 

CONCLUSIONS 
In this work, the hybrid PT/SA method has been shown to 

be an appropriate method for reducing trimming errors. In our 
application, the number of the control points and the surface 
degree are fixed. Control point locations are selected to be 
variables. Examples are given to reduce geometrically trimmed 
wing surfaces. In  future work, parameter tuning will be 
explored and trimmed B-spline surfaces and the hybrid PT/SA 
method will be applied to aerodynamic optimization of aircraft 
wing components.   
6 Copyright © 2005 by ASME 
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