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Abstract — Accurately predicting protein disulfide bonds 
from sequences is important for modeling the structural and 
functional characteristics of many proteins. In this paper, we 
introduce a new approach to enhance disulfide bonding 
prediction accuracy. We firstly generate the first-order and 
second-order mean-force potentials according to the amino 
acid environment around cysteine residues from large number 
of cysteine samples. The mean-force potentials are integrated 
as context-based scores to estimate the favorability of a 
cysteine residue in disulfide bonding state as well as a cysteine 
pair in disulfide bond connectivity. These context-based scores 
are then incorporated as features together with other protein 
sequence and evolutionary information to train neural 
networks for disulfide bonding state prediction and 
connectivity prediction. Our computational results have 
shown that the context-based scores are effective features to 
enhance the prediction accuracies of both disulfide bonding 
state prediction and connectivity prediction. The 10-fold cross 
validated accuracy is 90.8% at residue-level and 85.6% at 
protein-level in classifying an individual cysteine residue as 
bonded or free, which is around 2% accuracy improvement. 
The average accuracy for disulfide bonding connectivity 
prediction is improved as well, which yields overall sensitivity 
of 73.42% and specificity of 91.61%. 

Index Terms — Disulfide bonds, Context-based scores, 
Mean-force potentials, Neural Networks 

I. INTRODUCTION 
Disulfide bonds are covalent bonds formed between two 

sulfur atoms in nonadjacent cysteine pairs of a protein 
structure. They play an important role in folding and 
enhancing thermodynamic and mechanical stability [1]. 
Furthermore, certain disulfide configurations provide 
mechanisms for sensing and responding to tensile forces, 
diversifying and functionalizing protein folds, minimizing 
aggregation, confining and coupling conformational 
changes, and controlling packaging and releasing for 
intercellular transport [2]. Therefore, correctly predicting 
the formation and connectivity of disulfide bonds can not 
only reduce the conformational space to aid modeling 
protein structures in three dimensions, but also help predict 
important protein functions. 

Typically, most of the disulfide bonding prediction 
approaches include two stages. The first stage is the 
bonding state prediction, aimed at determining whether 

each cysteine residue in a protein sequence is involved in 
forming a disulfide bond or not. Afterward, the second 
stage carries out the connectivity prediction, where cysteine 
pairs likely to form disulfide bonds are identified. 

The early methods of predicting the bonding states of 
cysteine residues used sequence information alone and 
small training sets. Muskal et al. [3] implemented a neural 
network to predict disulfide bonding states and achieved 
81% accuracy. Fiser et al. [4] proposed a prediction method 
based on statistical analysis of residue frequencies near the 
cysteine residues and obtained 71% accuracy.  

Substantial improvements were achieved by later 
disulfide bonding state prediction methods upon using 
evolutionary information contained in multiple sequence 
alignments (MSA). Fariselli et al. [5] designed a jury of 
neural networks trained by sequence profiles using MSA 
and resulted in 81% accuracy. Fiser and Simon [6] derived 
conservation scores from MSA to predict the oxidation state 
of cysteine residues and obtained an accuracy of 82%. More 
recent methods with enhanced strategies and additional 
features lead to continuing improvements of bonding state 
prediction accuracy. Mucchielli-Giorgi et al. [7] 
investigated the contribution of the overall amino acid 
composition of the protein and managed to increase the 
accuracy to 84%. Ceroni et al. [8] proposed a method using 
spectrum kernel in Support Vector Machines, which yielded 
85% prediction accuracy. Martelli et al. [9] combined a 
hybrid hidden Markov model and a neural network in their 
prediction system and reached 84% and 88% accuracy 
measured on protein basis and cysteine basis, respectively. 
Song et al. [10] incorporated dipeptide composition as 
features in prediction and gained similar accuracy. 

The pioneered method of connectivity prediction was 
proposed by Fariselli and Casadio [11] based on graph 
matching, where edges are weighted by residue contact 
potentials. The reported accuracy is 17 times higher than a 
random predictor, which is not comparable to the modern 
predictors with incorporation of evolutionary information in 
advanced machine learning technologies. Ceroni et al. [12] 
encoded MSA data into Recursive Neural Networks in their 
DISULFIND server with 54.5% pattern precision and 
60.2% bonded pair accuracy. Ferre and Clote [13] took 
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advantage of secondary structure encoding in their 
DiANNA server and reached 86% accuracy. Cheng et al. 
[14] performed large-scale prediction of disulfide 
connectivity using kernel methods, two-dimensional 
recursive neural networks, and weighted graph matching 
and obtained accuracy of 51% pattern precision. Vincent et 
al. [15] took advantage of decomposition kernels for 
classifying chains instead of individual residues and 
achieved prediction accuracy comparable to the other 
prediction methods. 

It is well known that extracting and selecting “good” 
features are critical to the performance of the learning 
machines. In the literature, features influencing the 
formation of disulfide bonds, such as MSA, secondary 
structures, number of cysteine residues in a protein chain, 
etc., have been encoded in the machine learning algorithms 
and have achieved prediction accuracy improvement.  

In this paper, we investigate the approaches of deriving 
context-based scores based on the mean-force potentials 
[21] derived from a large cysteine sample set. We consider 
the first-order and the second-order interactions. Afterward, 
context-based scores for cysteine residues considering 
nearby neighbors at different distances are generated. These 
context-based scores are then incorporated as features 
together with the MSA data to train neural networks for 
disulfide bonding state and connectivity predictions. 10-
fold cross validations are performed. We also test our 
method on several popular protein benchmarks, including 
Manesh215 [24], Carugo338 [25], and CASP9 [26]. 

II. MATERIAL AND METHOD  

A. The Protein Data Sets 
We use the protein chain dataset Cull16633 generated by 

the PISCES server [16] to collect cysteine samples to 
generate context-based statistics and for neural network 
training as well. Cull16633 contains 16633 chains with at 
most 50% sequence identity, 3.0A resolution cutoff, and 1.0 
R-factor. Chains with less than 2 cysteine residues are 
eliminated. We also eliminate very short chains whose 
lengths are less than 40 residues since the PSI-BLAST 
program [22] is usually unable to generate profiles for very 
short sequences. The disulfide bond assignments are 
determined by the DSSP program [23]. Inter-chain disulfide 
bonded cysteines and cysteines with undetermined 
structures are excluded. After this elimination, the total 
number of protein chains remained in Cull16633 is 9781 
and the total number of cysteine residues is 47655 where 
21.27% of these cysteine residues are bonded. We refer to 
this protein set as Cull50. 

We also use another dataset Cull7986 generated from 
PISCES server with maximum 25% sequence identity, 3.0A 
resolution and 1.0 R-factor. After filtering, the total number 
of protein chains is 4340 with a total of 20309 cysteine 
residues, where 21.28% of those are bonded. This protein 
chain set is referred to as Cull25. We compare the 
performance of our prediction methods when Cull50 and 

Cull25 are used as training sets. 
The recent CASP9 targets [26] as well as the public 

protein data sets Manesh215 [24] and Carugo338 [25], 
which are popularly employed as benchmarks for secondary 
structure predictions, are used to benchmark our method. 
Therefore, any sequences with greater than 25% similarity 
with the test benchmarks sequences are excluded from the 
Cull50 and Cull25 when the neural networks are trained 
and also when the context-based scores are generated.  

B. Context-based Statistics 
It is well known that there exist general short range 

regularities in the primary structure of proteins [17]. 
Presumably, the neighboring residues have strong and 
probably deterministic influence to the chemical property of 
cysteine in forming disulfide bond [3, 28]. Actually, 
cysteine often forms particular motifs of biochemical 
functions with neighboring residues, such as Cys-X-X-Ser 
[18], Cys-X-X-Cys [19], Leu-X-Cys-X-Glu [20], Cys-X-X-
Asp-X-X-Cys [27], etc.  

In this paper, we generate the mean-force potentials [21] 
to estimate the favorability of a cysteine residue in a 
bonding state within its amino acid environment. The 
mean-force potential is based on the derived statistics of 
correlations between the cysteine residue and its nearby 
neighbors. In particular, the recent increasing number of 
experimentally determined protein structures in PDB has 
provided sufficient number of samples to enable derivation 
statistics for second-order mean-force potential. In our 
method, the first-order statistics estimate the correlations 
between a cysteine residue and one of its neighboring 
residues while the second-order statistics estimate the 
correlations between a cysteine residue and the coexistence 
of two neighboring residues. Both first-order and second-
order statistics are extracted from protein chains in the Cull 
datasets. For a cysteine sample with window size of K, 
there are K - 1 position combinations for first-order 
statistics and 𝐾 − 1

2  position combinations for the second-
order statistics of a cysteine residue in bonding state. 

Similarly, the first-order and second-order statistics of a 
disulfide bonded cysteine pair and its neighboring residues 
are also extracted to estimate the probability of a cysteine 
pair in forming disulfide connectivity. Compared to the 
statistics in estimating a cysteine residue in a bonding state, 
the main difference lies in the different number of position 
combinations in second-order statistics since the two 
neighboring residues may belong to two different cysteine 
residues. As a result, considering a window size of K for 
both cysteine residues connected in a disulfide bond, there 
are totally 2𝐾 − 22 /2 position combinations for the second-
order statistics of a bonding cysteine pair. 

C. Context-based Potential 
The context-based potential for cysteine bonding state is 

generated based on Sippl’s mean-force potential method 
[21]. In this paper, we consider the first-order and the 
second-order mean-force potentials only. Currently, there is 
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insufficient number of available protein structures in PDB 
to derive meaningful statistics for estimating higher order 
interactions. 

According to the inverse-Boltzmann theorem, we 
introduce the first-order mean-force potential 
𝑈 𝑅(!),𝐵𝑜𝑛𝑑𝑒𝑑  to treat the interaction between residue 𝑅(!) 
and cysteine in forming a disulfide bond, 

𝑈 𝑅(!),𝐵𝑜𝑛𝑑𝑒𝑑 = −𝑅𝑇𝑙𝑛
!!"# !"#$%$|!(!)
!!"# !"#$%$|!(!)

.  

Here R is the gas constant, T is the temperature, 
𝑃!"# 𝐵𝑜𝑛𝑑𝑒𝑑|𝑅(!)  is the observed probability, and 
𝑃!"# 𝐵𝑜𝑛𝑑𝑒𝑑|𝑅(!)   is the reference probability. 

Similarly, the second-order mean-force potential 
𝑈 𝑅(!!),𝑅(!!),𝐵𝑜𝑛𝑑𝑒𝑑  is calculated as  
𝑈 𝑅(!!),𝑅(!!),𝐵𝑜𝑛𝑑𝑒𝑑

= −𝑅𝑇𝑙𝑛
𝑃!"# 𝐵𝑜𝑛𝑑𝑒𝑑|𝑅(!!),𝑅(!!) 𝑃!"# 𝐵𝑜𝑛𝑑𝑒𝑑|𝑅(!!) 𝑃!"# 𝐵𝑜𝑛𝑑𝑒𝑑|𝑅(!!)
𝑃!"# 𝐵𝑜𝑛𝑑𝑒𝑑|𝑅(!!),𝑅(!!) 𝑃!"# 𝐵𝑜𝑛𝑑𝑒𝑑|𝑅(!!) 𝑃!"# 𝐵𝑜𝑛𝑑𝑒𝑑|𝑅(!!)

.  

Influenced by all of its neighboring residues, the overall 
mean-force potential for the interactions of a cysteine 
residue in bonding state is the summation of all first-order 
and second-order potentials while the higher-order 
interactions are ignored 
𝑈 = 𝑈 𝑅(!),𝐵𝑜𝑛𝑑𝑒𝑑!!!

! + 𝑈 𝑅(!!),𝑅(!!),𝐵𝑜𝑛𝑑𝑒𝑑
!!!!
!!

!!!!
!! .  

The potential for a bonded cysteine pair can be obtained 
in a similar way. These potentials are used as context-based 
scores to be encoded in neural network training for bonding 
state and connectivity predictions. 

D. Neural Network Model 

 
Fig. 1. Neural network architecture for disulfide bonding state prediction 

We adopt the standard feed-forward back-propagation 
neural network architecture for both bonding state and 
connectivity prediction. The neural network (Fig. 1) for 
bonding state prediction uses a window size of 15 residues 
for input encodings. Each residue is represented with 20 
values from the PSSM data and 1 extra input to indicate if 
the window overlaps C-terminal or N-terminal. When 
incorporating the context-based scores in training the neural 
network predictor, two more inputs specifying the scores of 
the cysteine residue being in free and bonding state are 
added. Hence, a total number of 317 values are used to 
describe each cysteine residue. 100 hidden nodes are used 
in the neural network for bonding state prediction. 

The neural network for connectivity prediction 

incorporates two windows, each with size of 15 residues, 
for input encoding, each window for a cysteine residue in a 
cysteine pair. Each residue is encoded with 20 PSSM values 
and 1 boundary indicator. The predicted results (bonded or 
free) from the bonding state prediction for both cysteine 
residues and the context-based scores for connectivity are 
also encoded as input. As a result, there are totally 636 
input values for each cysteine pair. 150 hidden nodes are 
used in the neural network for connectivity prediction.  

III. RESULTS & DISCUSSION 

A. Bonding State Prediction 
TABLE I 

COMPARISON OF PREDICTION PERFORMANCE OF BONDING STATES USING 
PSSM ONLY AND PSSM WITH CONTEXT-BASED SCORES ON CULL25 AND 

CULL50 USING 10-FOLD CROSS VALIDATION 
 Cull25 Cull50 

PSSM Only PSSM+Score PSSM Only PSSM+Score 
Qc1 0.870 0.888 0.885 0.908 
Qp2 0.719 0.751 0.829 0.856 
Sn3 0.554 0.616 0.655 0.720 
Sp4 0.945 0.956 0.947 0.959 
MCC5 0.574 0.646 0.734 0.801 

 
 

Table I compares the prediction qualities of bonding 
states with PSSM-only encoding and PSSM with context-
based scores encoding after 10-fold cross validation. 
Compared to the one trained with PSSM data only, the 
neural network using context-based scores as additional 
features results in improvements in all performance 
indexes, including Qc, Qp, Sn, Sp, and Mcc. The residue-
level prediction accuracy (0.908) and protein-level 
prediction accuracy (0.856) are higher than the reported 
accuracies in [3-15]. Table I also compares the prediction 
qualities when Cull25 and Cull50 are used as training sets. 
Cull50 has more than twice cysteine samples as Cull25, 
which leads to better prediction performance.  

 
TABLE II 

COMPARISON OF RESIDUE-LEVEL ACCURACIES (QC) ON BENCHMARKS OF 
MANESH215, CARUGO338, AND CASP9 USING CULL25 AND CULL50 AS 

TRAINING SETS 
 Cull25 Cull50 

PSSM 

Only 

PSSM+Score PSSM 

Only 

PSSM+Score 
Manesh215 0.830 0.848 0.879 0.900 
Carugo338 0.808 0.821 0.872 0.884 
CASP9 0.950 0.951 0.955 0.963 

 
Table II shows the comparison of residue-level 

accuracies (𝑄!) on the public benchmarks, including 
Manesh215, Carugo338, and CASP9. Cull50 training set 
yields better prediction performance than Cull25. 

1. Qc (residue-level accuracy)=Pc/Nc, where Pc is the total number of correctly 
predicted cysteine residues and Nc is the total number of cysteine residues 

2. Qp (protein-level accuracy) =Pp/Np , where Pp is the total number of proteins 
with all of its cysteine residues being correctly predicted and Np is the total 
number of proteins in the data set 

3. Sn(Sensitivity) =TN/(TP+FN) 
4. Sp(specificity) =TN/(TN+FP) 
5. MCC (Matthew’s correlation coefficient) 

=
(TP ∗ TN − FN ∗ FP)

!(TP + FN) ∗ (TN + FP) ∗ (TP + FP) ∗ (TN+ FN)
, 

where TP, TN, FP, and FN are the number of true positives, the number of true 
negatives, the number of false positives, and the number of false negatives, 
respectively. 
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Moreover, the context-based scores are effective features 
for the training process. When context-based scores are 
incorporated, the prediction accuracies are improved on all 
three benchmarks compared to using PSSM data only.  

B. Connectivity prediction 
We compare the 10-fold cross validation for disulfide 

bond connectivity predictions on Cull50 using PSSM-only 
and PSSM with context-based scores for neural network 
encoding. Similar to bonding state prediction, incorporating 
the context-based scores as features in neural network 
training enhances the connectivity prediction accuracy, 
where sensitivity (Sn), specificity (Sp), and overall accuracy 
(Qc) are improved from 73.07%, 91.03%, and 86.91% to 
73.42%, 91.61%, and 87.34%, respectively, compared to 
PSSM only encoding. These prediction results are also 
higher than the reported disulfide connectivity accuracies in 
the popular disulfide bond prediction servers [11-15]. 

IV. CONCLUSIONS  
An approach of deriving context-based scores based on 

the mean-field potentials for characterizing the favorability 
of cysteine residues in disulfide bond according to their 
amino acid environment is developed in this paper. 
Recently, the increasing number of experimentally 
determined protein structures in PDB has made sufficient 
number of cysteine samples available. This enables us to 
obtain reliable statistics for second-order mean-field 
potentials and thus leads to context-based scores with better 
accuracy. These context-based scores are selected as 
features together with other sequence and evolutionary 
information in neural network training for disulfide bonding 
state and connectivity predictions. The effectiveness of 
using context-based features has been demonstrated in our 
computational results in 10-fold cross validation as well as 
on benchmarks of Manesh215, Carugo338, and CASP9, 
where enhancements of prediction accuracies in both 
bonding state and connectivity predictions are observed.  

A web server implementing our disulfide bonding 
prediction program is currently under development. 
Services of both bonding state and connectivity predictions 
will be provided.  
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