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Abstract — Solvent-accessible surface areas of residues in proteins are key factors in protein folding. Predicting solvent accessibility 

from protein sequences is significant for modeling the structural and functional characteristics of many proteins. In this work, we 

introduce an approach of enhancing solvent accessibility prediction accuracy. We derive pseudo-potentials, by considering high-order-

inter-residue interactions, according to the amino acid environment around protein residues from large number of protein samples. 

These context-dependent pseudo-potentials are integrated as scores to estimate the favorability of a residue in solvent accessibility 

state. The context-based scores are then incorporated as features together with other sequence and evolutionary information to train 2-

stage neural networks for solvent accessibility prediction. Our computational results have shown that the context-based scores are 

effective features to enhance the prediction accuracies of protein solvent accessibility. The 7-fold cross validated Q2 accuracy reached 

80.76% when context-based scores are incorporated in the training process of the solvent accessibility predictor.  

 

Index Terms — Solvent accessibility, Context-based scores, Pseudo-potentials, Neural Networks 

I. INTRODUCTION 

The solvent-accessible surface area, or accessibility, of a residue is the surface area of the residue that is exposed to solvent. 

The residue accessibility is a useful indicator to the residue's location, on the surface or in the core. Figure1 shows the surface 

area surrounding a protein segment.  

Residue solvent accessibility is usually measured by rolling a spherical water molecule over a protein surface and summing 

the area that can be accessed by this molecule on each residue. To allow comparisons between the accessibility of the different 

amino acids in proteins, typically relative values are calculated as the ratio between the absolute solvent accessibility value and 

that in an extended tripeptide (Ala-X-Ala) conformation [1]; referred to as the percentage of maximally accessible area. 

Automated methods, like the DSSP program [2], can be used to calculate the absolute solvent accessibility values of proteins.  

Residue solvent accessibility plays an important role in folding and enhancing proteins‟ thermodynamic and mechanical 

stability. The burial of residues at core (hydrophobic residues) is a major driving force for folding [3]. Moreover, the 

hydrophobic free energies are directly related to residues‟ solvent accessibilities, of both polar and nonpolar groups [4]. 

Furthermore, active sites of proteins are located on its surface. Hence, prediction of the surface residues is considered an 

important step in determining proteins functions [5].  

Correctly predicting the solvent accessibility of residues can not only reduce the conformational space to aid modeling protein 

structures in three dimensions, but also help predict important protein functions.  

A number of methods have been developed using different protein datasets and different computational methods, including 

neural networks [6-11], support vector machines [12, 13], nearest neighbor [14, 15], information theory [16], and Bayesian 

statistics [17]. In most of these methods, the prediction is performed in a discrete fashion, where predictors discriminate among a 

number of predefined levels or states of residues‟ exposure with predefined thresholds.   

Predicting solvent accessibility using evolutionary information, revealed by multiple sequence alignments, led to a significant 

accuracy increase. Rost et al [18], Cuff et al [19], and Thompson et al [17] reported a two-state prediction accuracy of ~75% with 

0.25 threshold. More recent prediction methods benefit from PSI-BLAST derived profiles to reach higher accuracies of ~78% in 

two-state prediction with 0.25 threshold, and an accuracy of ~64% in three-state prediction with 0.9 and 0.36 thresholds [9, 13-

15]. 

Most of the current methods nowadays provide real value prediction, in addition to discrete-fashion prediction (in 2-state, 3-

state, or more). The Pearson correlation coefficient (between the predicted and true values) reported in real value predictors is 

~0.65 [14, 20]. 

Computational approaches for predicting solvent accessibility are mostly machine learning approaches, including statistical 

analysis, neural networks, SVM, hidden Markov Chains, etc. Features influencing the solvent accessibility of residues, such as 
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multiple sequence alignment, are encoded in the machine learning algorithms to improve prediction accuracy. Therefore, 

extracting and selecting “good” features are critical to the performance of the learning machines. Probably the most effective 

features for predicting the solvent accessibility state of a residue are the solvent accessibility states of its neighbors. For example, 

if both adjacent neighbors are buried, the middle residue is most likely to be buried, and vice versa. Unfortunately, using the true 

solvent accessibility states as features is not feasible since they cannot be known in advance. However, this inspires us that the 

favorability of a residue adopting a certain solvent accessibility state can be also an effective feature. 

In this paper, we investigate the approaches of extracting context-based statistical scores, to measure the favorability of 

residues‟ solvent exposure in presence of its neighbors in sequence, from a large training sample set based on the mean-field 

potentials [21]. The fundamental idea is based on the fact that the residue‟s solvent accessibility exhibit strong local dependency. 

We derive statistics for singlets, doublets, and triplets in a sequence window from experimentally determined structures in PDB 

[22]. Then scores measuring the pseudo-energy of a residue adopting a certain accessibility state are calculated using potentials 

of mean force approach. These scores are then incorporated as features together with the multiple sequence alignment data to 

train neural networks for solvent accessibility prediction. 7-fold cross validations are performed. We apply our approach to 

predict solvent accessibility in 2-state. We also test our method on several commonly used protein benchmarks, including 

Manesh215 [1], Carugo338 [23], and CASP9 [24] targets. Lastly, we compare our method with a set of popular methods for 

solvent accessibility prediction, including  NETASA [8], Sable [9], Netsurf [9], SPINE [6], ACCpro [11] and SANN [14]. 

II. METHOD  

A. The Protein Data Sets 

We use the protein chain dataset Cull16633 generated by the PISCES server [25] on 10/21/2011 to collect samples to generate 

context-based statistics. Cull16633 contains 16,633 chains with at most 50% sequence identity, 3.0A resolution cutoff, and 1.0 

R-factor. For neural network training, we use the Cull7987 data set which includes 7,987 chains with at most 25% pair-wise 

sequence identity, 3.0A resolution cutoff, and 1.0 R-factor cutoff. 

We use the PSI-BLAST program [26] to generate Position Specific Scoring Matrix (PSSM) data. Short chains less than 40 

residues are eliminated, since the PSI-BLAST program is usually unable to generate profiles for very short sequences, and very 

large chains whose lengths are greater than 1000 residues. We also exclude residues with undetermined accessibility state from 

the training set. 

The recent CASP9 targets as well as the public protein data sets Manesh215 and Carugo338, which are popularly employed as 

benchmarks for secondary structure predictions, are used to benchmark our method. Therefore, any sequences with greater than 

25% similarity with the test benchmarks sequences are excluded from the Cull16633 and Cull7987 when context-based scores 

are generated and when the neural networks are trained. The resulting total number of proteins in Cull7987 and Cull16633 are 

6,985 and 14,481, respectively. 

The solvent accessibility values are determined by the DSSP program [2]. Relative values for residues‟ solvent accessibility 

are calculated as the ratio between the absolute solvent accessibility value and that in an extended tripeptide (Ala-X-Ala) 

conformation. Table 1 shows the extended state value of each amino acid reported by Ahmad et al. [1] and used in many 

prediction methods. A threshold of 0.25 is used to define the 2-state solvent accessibility (Buried when the relative solvent 

accessibility value is less than 0.25, and Exposed otherwise). 

B. Context-based Statistics 

It is well known that there exist general short range regularities in the primary structure of proteins [27]. Presumably, the 

neighboring residues have strong and probably deterministic influence to the chemical property of a residue in its accessibility to 

solvent [3]. 

Figure 2 shows the probability of residue K at position i in buried accessibility state with the neighboring residues at i - 1 and i 

+ 1, i - 2 and i + 2, and i - 3 and i + 3 positions, respectively. One can notice that the residues separated by two residues in the 

middle still have strong influences on the state of the center residue.   

In this work, we extract statistics of singlets (  ), doublets (      ), and triplets (            ) residues at different relative 

positions in protein sequences, which is further used to generate pseudo-potentials to be incorporated as new features in neural 

network training. 

The statistics of singlets, doublets, and triplets represent estimations of the probabilities of residues adopting a specific solvent 

accessibility state when none, one, or two of their neighbors in context are taken into consideration, respectively. 

 

Fig. 2. The probability of Lysine (K) as the middle residue of a triplet with neighboring residues at 1~3 positions away when adopting buried accessibility state. 

x, y, and - represent the left neighbor, right neighbor, and gap, respectively. The neighboring residues are ordered alphabetically. 

The observed probabilities of the i
th

 residue    in a singlet (  ), doublet (      ), and triplet (            ) adopting a 

specific solvent accessibility    are respectively estimated by  
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Here     (     ),     (         ), and     (               ) are the weighted observed number of singlet (  ), doublet 

(      ), and triplet (            ) with    adopting conformation    (B, E for 2-state prediction) in the protein structure 

database (Cull16633).     (  ),     (      ), and     (            ) are the weighted observed number of singlets, doublets, 

and triplets  

The frequency weights are obtained from the PSSM frequencies at each residue position in a protein sequence, which are 

generated by PSI-BLAST using three iterations of searching with e-value of 0.001 against the non-redundant (NR) database of 

protein sequences. The observed numbers are calculated as 
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where      (  ) is the PSSM frequency for residue type    at the jth position of a protein sequence. 

C. Context-based Potential 

The context-dependent pseudo-potentials are generated based on the potentials of mean force method. According to the 

inverse-Boltzmann theorem, we calculate the mean-force potential         (     ) for a singlet residue    adopting solvent 

accessibility state   , 
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where R is the gas constant, T is the temperature, and     (  |  ) is the referenced probability. In our method, we employ the 

conditional probability approach described in Samudrala and Moult to estimate the referenced probability by  
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Then, the context-dependent pseudo-potential for    under its amino acid environment is  
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These context-dependent pseudo-potentials are used as context-based scores to encode in neural network training. 

D. Neural Network Model 

Our method incorporates two phases of neural network training. We adopt the standard feed-forward back-propagation neural 

network architecture. The first neural network phase is sequence-to-structure and the second phase is structure-to-structure 

training. The number of hidden nodes is 170 and 30 in the first and second networks, respectively.  

In the sequence-to-structure training, a sliding window of 15 residues was selected, where each neural network is trained to 

predict the class of that residue in the middle of the window. Each residue is represented by 20 PSSM values and 1 extra value to 

indicate C- or N-terminals overlap. When the context-based scores are incorporated, additional 2 encoding values for each 

residue are needed. Overall, 360 input values are used to encode each residue in 2-state prediction.  

After sequence-to-structure training, the next phase is to carry out a structure-to-structure training to eliminate impossible 

solvent accessibility predictions. Figure 3 depicts the encoding and neural network architecture for solvent accessibility 

prediction. 

E. N-fold Cross validation 

To have a reliable estimation of the prediction accuracy, we employ the 7-fold cross validation approach on the Cull data sets. 

The protein chains in the cull data sets are divided into 7 subsets with approximately the equal size. At each step, 5 subsets are 

used for neural network training while the other 2 are used separately for testing and validation. The process is repeated 7 times. 

The overall prediction accuracy is calculated as the average of the accuracies of the 7 folds. 

III. RESULTS  

We use Q2 to measure the quality of our prediction method. Q2 equals the total number of residues correctly predicted divided 

by the total number of residues. We also use QB and QE to measure the quality of predicting the buried state and the exposed 

state respectively. 

Table II compares the prediction qualities of solvent accessibility with PSSM-only encoding and PSSM with context-based 

scores encoding after 7-fold cross validation. Compared to the one trained with PSSM data only, the neural network using 

context-based scores as additional features results in improvements in the Q2 accuracy, which is higher than the reported 

accuracies, 72-79%, in [7-16]. 

TABLE II 
Comparison of prediction performance of Solvent Accessibility using PSSM only and PSSM with context-based scores on Cull using 7-fold cross validation 

 QB QE Q2 

PSSM Only 78.44% 80.61% 79.50% 

PSSM+Score 79.21% 82.00% 80.76% 

The context-based scores are effective features for the neural network training process. When context-based scores are 

incorporated, the prediction accuracies are improved on all three benchmarks compared to using PSSM data only.   

Figure 4 depicts an example of solvent accessibility prediction on protein 3NRF, chain „A‟ listed in CASP9 targets. The first 

line, underneath the native structure in figure 4, is the amino acid sequence, the second line is the DSSP assignments of each 

residue, the third line is the predicted solvent accessibility state when using PSSM information for encoding, and the last line is 

the prediction when incorporating context based scores with PSSM information. An improvement of 6.61% is achieved in this 

prediction example upon the incorporation of context based scores with PSSM information. 

Table II compares the Q2 accuracy between our method and the popularly used solvent accessibility prediction servers 

including NETASA [8], Sable [9], Netsurf [10], SPINE [6],  and ACCpro [11] on benchmarks of CASP9, Manesh215, and 

Carugo338. To guarantee fairness, we generate a new set of context-based scores by removing all sequences with 25% or higher 

sequence identity to the sequences in benchmark from Cull16633. 

The predictions of the benchmark sets are performed in 2-state for each method. Sable method provides 10-state predictions, 

with 10% difference among the states of solvent accessibility. Hence the results reported in Table II, for sable method, are using 

0.2 and 0.3 thresholds. 

We also compare our method with SANN [14] on benchmark of CASP9. The Q2 accuracy of SANN on CASP9 is 77.86% 
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such that the QB and QE are 69.68% and 86.66%, respectively. 

We observe that our method outperforms the other methods, where the Q2 performance is higher in all benchmarks. However, 

when considering the predictions of the accessibility states individually, SPINE predictions of the buried state (QB) outperforms 

our method, with an average of 1.49% improvement. On the other hand, our method provides a much higher exposed state 

prediction (QE) with an average of 5.75% difference compared to SPINE. Moreover, SANN predictions of the exposed state (QE) 

outperform our method. However, our method outperforms SANN in the buried state (QB) and the overall Q2 predictions. 

TABLE III 
Comparison of Q2 accuracy between OUR and other popularly used Solvent Accessibility prediction servers including Netsurfp, ACCpro, Sable, SANN, SPINE, 

and NETASA on benchmarks of CASP9, Manesh215, and Carugo338. 

  

CASP9 Manesh215 Carugo338 

NETASA 

Q2 69.32 71.09 69.7 

QB 70.86 72.1 72.04 

QE 67.59 69.9 67.22 

Sable 
t=0.2 

Q2 78.47 79.83 78.68 

QB 78.27 80.2 78.48 

QE 78.69 79.4 78.91 

Sable 
t=0.3 

Q2 75.13 77.04 75.94 

QB 89.55 91.08 90.29 

QE 59.58 60.35 60.33 

Netsurf 

Q2 79.15 80.83 80.04 

QB 80.04 83.35 81.27 

QE 78.19 78.49 78.13 

SPINE 

Q2 77.86 80.5 79.68 

QB 83.22 85.3 85.33 

QE 72.08 74.8 73.53 

ACCpro 

Q2 76.18 78.87 77.99 

QB 81.15 83.19 83.12 

QE 70.81 73.76 72.41 

Our-

Method 

Q2 80.82 81.93 81.14 

QB 81.46 84.27 83.65 

QE 80.13 79.14 78.39 

IV. CONCLUSIONS  

An approach of deriving context-based scores based on the mean-field potentials for characterizing the favorability of residues 

in solvent accessibility according to their amino acid environment is developed in this paper. Recently, the increasing number of 

experimentally determined protein structures in PDB has made sufficient number of samples available. This enables us to obtain 

reliable statistics for mean-field potentials and thus leads to context-based scores with better accuracy. These context-based 

scores are selected as features together with other sequence and evolutionary information in neural network training for solvent 

accessibility predictions. The effectiveness of using context-based features has been demonstrated in our computational results in 

7-fold cross validation as well as on benchmarks of Manesh215, Carugo338, and CASP9, where enhancements of prediction 

accuracies are observed.  

A web server implementing our solvent accessibility prediction program is currently under development. 2-state with different 

thresholds, 3-state and 10-state predictions will be added to our method. Also, real value prediction will be part of our future 

directions in this research. 
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