

Abstract – Security has become an increasingly important topic

in software engineering. In this paper, an approach of using the

workflow technology in teaching secure software engineering

courses is presented. This approach can free students from low-

level tools manipulation and command line interactions so that

students can focus on learning the important secure software

principles. Four case studies using the workflow technology,

including using a local static analysis tool for code review, using

a remote tool for code analysis, integrating local and remote

tools, and implementing a web service fuzzer for penetration

tests, are presented. Our educational practice has shown that the

benefits of using the workflow technology in teaching secure

software engineering classes have been well received by the

students.��

Index terms – workflow technology, secure software
engineering

I. INTRODUCTION

In recent years, the use of distributed software applications
in industry and academy has been increasing significantly,
enabled by enhancing Internet bandwidth and availability,
development of web technologies, and emergence of Grid
computing [1] and cloud computing [2]. More and more
software engineering practice is moving toward the Service-
Oriented Architecture (SOA) [3] based applications, where
the focus of software development is shifting from program
writing to service composition. The premise of SOA is to
erase application boundaries and technology difference to
allow interoperability among potentially distributed
software services. On one hand, SOA adds a new dimension
to software engineering practice by adapting and integrating
a variety of distributed services and tools [4]. On the other
hand, engineering of software based on SOA faces a lot of
new challenges, where security is probably the most critical
one [5] – the traditional security techniques built into
individual software packages are not good enough for
interoperable services.

Corresponding Author: Yaohang Li (yaohang@ncat.edu)
�Department of Computer Science
North Carolina A&T State University
1601 East Market St.,
Greensboro, NC 27411, USA

Consequently, the security requirement of distributed
software poses new challenges in secure software
engineering education, where the traditional techniques for
enhancing software security is not sufficient to handle
distributed software engineering practice in SOA paradigm.
Unfortunately, teaching modern secure software engineering
based on SOA is a technically difficult endeavor. A secure
software engineering course typically requires a series of
analysis and testing services and tools [6]. Due to the fact
that most of these services and tools used in secure software
engineering education are developed by different groups,
each of them has extremely heterogeneous platform
preferences, installation/configuration instructions, user
interfaces, and usage parameters. Lacking of a common user
interface, students and instructors may end up distracting
and even struggling in low-level and complicated software
installation, system setup, service configuration, and data
manipulation while losing concentration in learning the
important secure software engineering principles.

In this paper, we describe a new approach of using the
workflow technology [7] in teaching secure software
engineering. The workflow technology provides unified,
interactive graphical interfaces for students and enables
secure software engineering cases to be built without the
need for low level programming or command-line
interactions. Moreover, the workflow technology enables
seamless integration of distributed and local services/tools
to support secure software engineering practice. Four case
studies using the Kepler scientific workflow system [8] are
presented to show how we use our approach to author and
enact workflows for secure software engineering scenarios.
These case studies include using a local static analysis tool
for code review, using a remote tool for code analysis,
integrating local and remote tools, and implementing a web
service fuzzer for penetration test. Student feedbacks on
using the workflow technology in teaching secure software
engineering class are also discussed.

The rest of the paper is organized as follows. Section 2
describes the workflow technology in general and its
applications in education. Sections 3 and 4 illustrate several
secure software engineering case studies using workflow
and discuss the effectiveness of the workflow approach in
our secure software engineering class, respectively. Finally,
section 5 summarizes our conclusions and future directions.

Using the Workflow Technology in Secure Software
Engineering Education

India Waddell, Nadia Jones, Crystal Steed, Xiaohong Yuan, and Yaohang Li, North Carolina A&T State University

76ISBN 1-933510-99-4 ©2010 CISSE

Proceedings of the 14th Colloquium for Information Systems Security Education
Baltimore Marriott Inner Harbor

Baltimore, Maryland June 7 - 9, 2010

II. WORKFLOW TECHNOLOGY AND ITS APPLICATIONS IN
EDUCATION

Originally, workflow is an administrative concept from the
field of managing business operation, referring to a business
process that delivers services from one participant agent to
another. In 1996, getting its definition from the Workflow
Management Coalition, a workflow is described as [9]:

“The automation of a business process, in whole or
part, during which documents, information or tasks are
passed from one participant to another for action, according
to a set of procedural rules.”

Workflows introduce automation that enforces data
validation and verification within business operations,
overcomes constraints in time and space, maintains
consistency in the business system, and significantly
eliminates possible human errors. While workflow
contributes importantly to many types of businesses, the
concept extends beyond conventional business process
management and is now applied more broadly in scientific
computing [10], bioinformatics [11], sensor networks [12],
engineering [13], image processing [14], e-commerce [15],
and many other areas.

A fundamental element in a workflow is a task. A task can
basically be defined by three parameters: input description,
transformation (actor), and output description. The input
description provides the information required to complete
the task. The transformation is composed of the algorithms
carried out in the task. The output is the information
produced in this task which can be provided as input to the
downstream tasks. Typically, a workflow is composed of
various tasks performing operations of accessing a service
or executing a specific function. Closely related tasks can
also be organized as a sub-workflow which can be reused in
composition of other workflows. In general, the structure of
a workflow can be represented as a DAG (Direct Acyclic
Graph) where tasks are connected by arcs. The relationship
between tasks can be sequential, parallel, or selective [16].

There are a number of systems to facilitate the composition
of workflows. In addition to Kepler used in this paper, the
others include Triana [17], Taverna [18], Karajan [19],
Gridflow [20], ScyFlow [21], and GridNexus [22].
Typically, a workflow system provides GUI layout for users
to drag and drop and connect services or logic components
to build a workflow. Given input and output parameters, a
correctly composed workflow can be compiled to a format
described by a workflow description language, such as the
Web Services Flow Language (WSFL) [23], the Grid
Service Flow Language (GSFL) [24], JXPL [25], or other
XML-based languages. The workflow can then be executed.
There are numerous examples demonstrating workflow
techniques in important biology, chemistry, business, and

mathematics applications. The key advantage of workflow
is its capability of extricating people from many
complicated and low-level system configurations and data
manipulations and thereby allowing them to focus on the
application development.

In addition to workflow’s popularity in applications of
scientific computing and e-business, educators have begun
to investigate the feasibility of using workflow technology
to support education practice. Van der Veen et al. [26] has
found that using workflow in projects on business
applications has provided added value to students. Santoro
et al. [27] integrated the workflow concept to support
collaborative project-based learning. Hiekata et al. [28] used
a semantic web-based workflow framework to support
design engineering education, which helped shorten the
students’ learning duration. Wilkinson and Ferner [29] used
the GridNexus workflow editor to teach Grid Computing
classes across universities in North Carolina. The workflow
technology has also been adopted into e-learning tools to
enhance undergraduate bioinformatics teaching and learning
in Singapore [30]. In this paper, we propose to apply the
workflow technology to secure software engineering
education.

III. SECURE SOFTWARE ENGINEERING CASE STUDIES WITH
WORKFLOW

A. Using a Local Tool for Code Review

Code review is one of the most important phases in secure
software development life cycle. Many security bugs can be
discovered, identified, and eliminated in this phase. In the
code review phase in secure software engineering class,
students learn to examine various programs using a variety
of static analysis tools. We first present a simple example of
using Rough Auditing Tool for Security (RATS) [31] to
perform code review using the Kepler workflow system, as
shown in Figure 1. In this example, the RATS software
package is installed on the local computer and the “running
RATS” actor is used to execute the RATS program. A string
accumulator is used to specify the location of the RATS
command, options, and the target test file. The execution
results will be displayed in text format as well as a
visualization analysis program. Figure 2 shows an extension
of the simple RATS workflow in Figure 1 for reviewing
multiple test programs and visualizing the summarized test
results.

77ISBN 1-933510-99-4 ©2010 CISSE

Proceedings of the 14th Colloquium for Information Systems Security Education
Baltimore Marriott Inner Harbor

Baltimore, Maryland June 7 - 9, 2010

Figure 1: Kepler Workflow of Using RATS for Code

Review

Figure 2: RATS Workflow for Reviewing Multiple

Programs

B. Using Software Tools on a Remote Server

In secure software engineering education, we want to
expose our students to various software analysis tools.
However, these tools have heterogeneous platform,

installation, and configuration requirements. One of the
difficulties is that our students have to spend a lot of time in
installing and setting up various software packages, which
leads to loosing focus in learning the secure software
engineering concepts. One practical solution is to install the
software packages in a public server and allow students to
connect to the server to use the software tools. Kepler
provides a straightforward way to build a workflow to
execute software tools on a remote server. Figure 3 shows a
Kepler workflow example of using the Flawfinder package
[32] installed on a remote Linux server for code review. The
SSH file copier and SSH execution actor are used to upload
test files to the remote server and to remotely execute the
Flawfinder commands, respectively. Instead of typing
various commands such as logging on to the server,
uploading files, and executing commands, students
manipulate the workflow and its parameters to perform code
review practice.

Figure 3: Workflow of using Flawfinder Installed on a

Remote Computer for Code Review

C. Integrating Remote and Local Tools

One of the key strengths of the workflow technology is its
capability of integrating and orchestrating remote and local
services or tools. In our secure software engineering class
[6], students use various tools to analyze the security
vulnerabilities of code samples and compare their results.

78ISBN 1-933510-99-4 ©2010 CISSE

Proceedings of the 14th Colloquium for Information Systems Security Education
Baltimore Marriott Inner Harbor

Baltimore, Maryland June 7 - 9, 2010

Consider a typical student laboratory assignment of using
RATS and Flawfinder to analyze vulnerability of a C++
program. Because RATS can be executed in Windows and
Flawfinder can only be installed on UNIX-based platforms,
using command lines to complete this laboratory assignment
is rather cumbersome. A student has to install and configure
these two software packages on different operating systems,
run code review separately using these tools, and then
collects result data for comparison.

Figure 4(c) shows the Kepler workflow with seamless
integration of locally installed RATS and remotely installed
Flawfinder. Modules of Flawfinder and RATS are provided
as composite actors, which contains definitions of
subworkflows of executing Flawfinder and RATS shown in
Figures 4(a) and 4(b), respectively. Implementation details
and local variables are hidden in the implementation of the
composite actors. These encapsulated composite actors can
be provided to the students and allow them to concentrate
on building workflows and comparing analysis results. This
example can be extended to incorporate and orchestrate
more software tools into the workflow to implement more
complicated tasks.

Figure 4(a): Composite Actor of Flawfinder Subworkflow

Figure 4(b): Composite Actor of RATS Subworkflow

Figure 4(c): Workflow using Remote and Local Tools

D. Penetration Testing of Web Service

Figure 5: Workflow of Performing SQL Injection Test on a

Web Service

Analyzing vulnerability of Web applications is an important
topic in modern secure software engineering curriculum
[33]. The workflow technology can be a useful tool to build
penetration test cases for analyzing vulnerability of various
Web applications and Web services. Figure 5 shows a
Kepler workflow example of performing an SQL injection

79ISBN 1-933510-99-4 ©2010 CISSE

Proceedings of the 14th Colloquium for Information Systems Security Education
Baltimore Marriott Inner Harbor

Baltimore, Maryland June 7 - 9, 2010

attack test on a target Web service. Strings with incorrectly
filtered escape characters are delivered to the username and
password fields of a target web service to test whether it is
vulnerable to the SQL injection attack or not. After all,
workflow technology provides an intuitive way to build and
illustrate penetration test cases for web applications.

The workflow technology is also an easy-to-use tool to
incorporate various attack patterns [35] to Web-based
applications. WSFuzzer [34] is a powerful fuzzing
penetration testing tool used against HTTP SOAP based
web services. In our educational practice, many students
have difficulty in installing WSFuzzer due to
incompatibility of the PyXML package required in
WSFuzzer. In our secure software engineering class, we use
Kepler workflow to implement a simple Web Service fuzzer
to illustrate the mechanism of WSFuzzer, which is shown in
Figure 6. Attack patterns recorded in the attack data file,
which is used for WSFuzzer, are extracted to attack a target
web service. After executing the workflow, students can
then examine the outputs to uncover security vulnerability
in a certain attack. Students can also easily manipulate the
workflow and the attack data to incorporate other more
sophisticated attack patterns.

Figure 6: Workflow Implementation of a Simple Web

Service Fuzzer

IV. EFFECTIVENESS EVALUATION OF WORKFLOW
TECHNOLOGY IN SECURE SOFTWARE ENGINEERING CLASS

The workflow technology was introduced to our secure
software engineering course in the Spring 2010 semester.
The students first finished an assignment in which they were
asked to install RATS and FlawFinder on their computers,
and use the tools to scan security vulnerabilities of three
sample programs. The students were asked to compare the
results from RATs and from FlawFinder. As a result, a
number of students had great difficulty in installing and
configuring these tools to run on their computers.

The students were then introduced to the four case studies
using the Kepler scientific workflow system for code
analysis and security testing. Afterwards, the students were
asked to complete a survey on using workflow technology
for teaching secure software engineering. Eleven students
participated in the survey. The results of the survey are
summarized as below.

The students were asked to compare the advantages and
drawbacks of using workflow method and using command
line methods. The students mentioned the following
advantages of using workflow over using command line
methods:
� Workflow makes it much easier to execute code

analysis tools. The students do not need to worry
about how to configure and install these tools;

� Workflow allows concurrent execution of code
analysis and penetration tools;

� Workflow provides a unified GUI interface, and is
more interactive;

� Workflow does not require programming. It is easy to
understand and use;

� Workflow can use remote computer servers easily;
� Workflow can be used on many different systems; and
� With workflow, many testing scenarios can be created

conveniently.

As to disadvantage of workflow, some are concerned that
there are lots of actors in workflow which increases the
learning curve. However, from the above comments, the
students obviously conceived the benefits of using
workflow technology for executing software security tools
compared with using command line method.

The students were also asked to rate the degree of their
agreement with the following statements: (1) The workflow
technology is very useful for learning secure software
engineering; (2) You enjoyed learning this module; (3) You
are interested in learning more about the workflow for
secure software engineering. The students can give a rating

80ISBN 1-933510-99-4 ©2010 CISSE

Proceedings of the 14th Colloquium for Information Systems Security Education
Baltimore Marriott Inner Harbor

Baltimore, Maryland June 7 - 9, 2010

from 0 to 5, while 0 represents strongly disagree, and 5
indicates strongly agree. The average ratings of the three
statements are 4.5, 4.6 and 4.3 respectively. This shows on
average they agree or strongly agree with the above
statements. Overall, student feedback is very positive on the
effectiveness of using workflow to study secure software
engineering.

V. CONCLUSIONS AND FUTURE DIRECTIONS

This paper describes a new approach of teaching secure
software engineering using the workflow technology. The
workflow technology provides unified, interactive graphical
interfaces for students and enables secure software
engineering cases to be built without the need for low level
programming or command-line interactions. It also enables
seamless integration of distributed and local services to
support secure software engineering practice. Four case
studies using the Kepler scientific workflow system are
presented to demonstrate how to author and enact
workflows for secure software engineering scenarios. These
case studies include using a local static analysis tool for
code review, using a remote tool for code analysis,
integrating local and remote tools, and implementing a web
service fuzzer for penetration tests. The workflow
technology was introduced to a secure software engineering
class, and the student feedback on the benefits of the
workflow technology in teaching secure software
engineering is very positive. The students enjoyed learning
this course module and are very interested in learning more
about workflow technology for secure software engineering.

Our future direction will focus on using the workflow
technology to implement more sophisticated case studies for
our secure software engineering curriculum. For example,
we plan to implement workflows using at least some of the
attack patterns described in [35] to illustrate the mechanisms
of various attacks. We will also continue evaluating the
effectiveness of this method in teaching secure software
engineering classes.

VI. ACKNOWLEDGEMENTS

This work is partially supported by NSF under grants DUE-
0737208, DUE-0737304, and DUE-0737355, and by
Department of Education under grant P120A090049.

VII. REFERENCES

[1] I. Foster, C. Kesselman, S. Tueske, “The Anatomy of
the Grid,” International Journal of Supercomputer
Applications, 15(3), 2001.

[2] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, I.
Brandic, “Cloud Computing and Emerging IT
Platforms: Vision, Hype, and Reality for Delivering

Computing as the 5th Utility,” Future Generation
Computer Systems, 25: 599-616, 2009.

[3] T. Erl, “Service-Oriented Architecture: Concepts,
Technology, and Design,” Prentice Hall, 2005.

[4] Z. Stojanovic, A. Dahanayake, “Service-oriented
software system engineering: challenges and practices,”
IGI Publishing, 2005.

[5] J. Epstein, S. Matsumoto, G. McGraw, “Software
Security and SOA: Danger, Will Robinson!,” IEEE
Security and Privacy, 4(1): 80-83, 2006.

[6] A. Frazier, S. Hudson, Y. Li, X. Yuan, “Developing
Software System Security Modules,” Proceedings of
12th Colloquium for Information Systems Security
Education, Dallas (ISSE08), 2008.

[7] D. Georgakopoulos, M. Hornick, A. Sheth, “An
Overview of Workflow Management: From Process
Modeling to Workflow Automation Infrastructure,”
Distributed and Parallel Database, 3: 119-153, 1995.

[8] A. Ilkay, C. Berkley, E. Jaeger, M. Jones, B. Ludascher,
S. Mock, “Kepler: An Extensible System for Design
and Execution of Scientific Workflows,” Proceedings
of the 16th Conference on Scientific and Statistical
Database Management (SSDBM 2004). Santorini
Island, 2004.

[9] R. Allen, “Workflow: an Introduction”, Workflow
Handbook, 2001, Workflow Management Coalition.

[10] M. P. Singh, M. A. Vouk, “Scientific Workflows:
Scientific Computing Meets Transactional Workflows,”
Proceedings of NSF Workshop on Workflow and
Process Automation, 1996.

[11] M. Addis, J. Ferris, M. Greenwood, P. Li, D. Marvin,
T. Oinn, A. Wipat, “Experiences with e-Science
Workflow Specification and Enactment in
Bioinformatics,” Proceedings of the UK e-Science All
Hands Meeting, 2003.

[12] Y. Li, A. C. Esterline, C. Baber, K. Fuller, M. Burns, T.
Hansen, T. LeFebvre, M. Schultz, M. Govett, P. Hamer,
A. Mysore, “A Sensor Information Framework for
Integrating and Orchestrating Distributed Sensor
Services,” Proceedings of the International Conference
on Parallel and Distributed Processing Techniques and
Applications, 2008.

[13] D. Vucina, Z. Lozina, I. Pehnec, “Reverse Engineering
with Shape Optimization using Workflow-based
Computation and Distributed Computing,” Proceedings
of the World Congress on Engineering, 2009.

[14] A. Radu, D. V. Gorgan, “Diagrammatic Description of
Satellite Image Processing Workflow,” Proceedings of
International Symposium on Symbolic and Numeric
Algorithm for Scientific Computing, 2007.

[15] Y. Li, Q. Cai, Y. Li, “Toward a Dynamic E-Commerce
Automation with XML and Workflow Techniques on
the Grid,” Proceedings of IEEE SoutheastCon, 2004.

81ISBN 1-933510-99-4 ©2010 CISSE

Proceedings of the 14th Colloquium for Information Systems Security Education
Baltimore Marriott Inner Harbor

Baltimore, Maryland June 7 - 9, 2010

[16] J. Yu, R. Buyya, “A Taxonomy of Scientific Workflow

Systems for Grid Computing,” SIGMOD Record,
34(3): 44-49, 2005.

[17] I. Taylor, M. Shields, I. Wang, “Resource Management
of Triana P2P Services,” Grid Resource Management,
Kluwer, Netherlands, 2003

[18] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M.
Greenwood, T. Carver and K. Glover, M.R. Pocock, A.
Wipat, P. Li, “Taverna: a tool for the composition and
enactment of bioinformatics workflows,”
Bioinformatics, 20(17):3045-3054, Oxford University
Press, London, UK, 2004.

[19] G. von Laszewski, M. Hategan, “Java CoG Kit
Workflow Concepts,” Journal of Grid Computing,
2006.

[20] J. Cao, S. A. Jarvis, S. Saini, G. R. Nudd.
GridFlow:Workflow Management for Grid Computing.
In Proceedings of 3rd International Symposium on
Cluster Computing and the Grid (CCGrid), Tokyo,
Japan, 2003.

[21] K. M. McCann, M. Yarrow, A. DeVivo, P. Mehrotra,
“ScyFlow: an environment for the visual specification
and execution of scientific workflows,” Concurrency
and Computation: Practice & Experience, 18(10): 1155-
1167, 2006.

[22] J. L. Brown, C. S. Ferner, T. C. Hudson, A. E.
Stapleton, R. J. Vetter, T. Carland, A. Martin, J. Martin,
A. Rawls, W. J. Shipman, M. Wood, “GridNexus: A
Grid Services Scientific Workflow System,”
International Journal of Computer and Information
Science, 6(2): 72-82, 2005.

[23] F. Leymann, “Web Services Flow Language
(WSFL1.0)”, IBM, 2001.

[24] S. Krishnan, P. Wagstrom, G. von Laszewski, “GSFL:
A Workflow Framework for Grid Services,” In Preprint
ANL/MCS-P980-0802, Argonne National Laboratory,
2002.

[25] C. S. Hunt, C. S. Ferner, J. L. Brown, “JXPL: an XML-
based scripting language for workflow execution in grid
environment,” Proceedings of IEEE SoutheastCon.,
2005.

[26] J. van der Veen, V. Jones, B. Collis, “Using Workflow
for Projects in Higher Education,” Computer Science
Education, 10(3): 283-301, 2000.

[27] F. M. Santoro, M. R. S. Borges, N. Santos, “Using
Workflow Concepts to Support Collaborative Project-
Based Learning,” Proceedings of World Conference in
Educational Multimedia, Hypermedia, and
Telecommunications, 2003.

[28] K. Hiekata, H. Yamato, P. Rojanakamolsan, W. Oishi,
“A Framework for Design Engineering Education with
Workflow-based e-Learning System,” Journal of
Software, 2(4): 88-95, 2007.

[29] B. Wilkinson, C. Ferner, “Towards a Top-down
Approach to Teaching an Undergraduate Grid
Computing Course,” Proceedings of SIGCSE, 2008.

[30] S. J. Lim, A. M. Khan, M. D. Silva, K. S. Lim, Y. Hu,
C. H. Tan, T. W. Tan, “The Implementation of e-
learning Tools to Enhance Undergraduate
Bioinformatics Teaching and Learning of Singapore,”
BMC Bioinformatics, 10: S12, 2009.

[31] Fortify Software RATS (Rough Auditing Tool for
Security) site,
http://www.fortifysoftware.com/securityresources/rats.j
sp

[32] Flawfinder site, http://www.dwheeler.com/flawfinder/.
[33] J. Walden, “Integrating Web Application Security into

the IT Curriculum,” Proceedings of the 9th ACM
SIGITE conference on Information Technology
Education, 2008.

[34] WSFuzzer site.
http://www.owasp.org/index.php/Category:OWASP_W
SFuzzer_Project.

[35] G. Hoglund, G. McGraw, “Exploiting Software: How
to break the code”, Ed: Addison-Wesley.

82ISBN 1-933510-99-4 ©2010 CISSE

Proceedings of the 14th Colloquium for Information Systems Security Education
Baltimore Marriott Inner Harbor

Baltimore, Maryland June 7 - 9, 2010

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Table of Contents

