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Abstract. Protein loop structure modeling is regarded as a mini protein folding 
problem with significant scientific importance. Efficiently sampling the loop 
conformation space is a key step to computationally obtain accurate loop 
structure models. Due to the large size of the conformation space and the 
complication of the scoring functions describing protein energy, it is difficult to 
obtain broad, diverse coverage of the loop conformations with low energy 
(score). In this article, we present a new population-based approach to sample 
the backbone conformations of protein loops. The main advantage of the 
population-based approaches is that various selection schemes can be applied to 
enforce the conformations in a population to satisfy certain constraints. In our 
sampling approach, conformations are generated in the dihedral angles (φ,ψ)-
space and the Differential Evolution (DE) method is employed to implement 
dihedral angle crossover for generating new conformations. A diversity 
selection scheme is applied to achieve diversified sampling. Using a narrowing 
gap selection scheme, decoys satisfying loop closure condition are obtained by 
gradually eliminating conformations with large terminal gaps in a population. 
Our computational results on modeling long loop targets have shown diverse 
and broad coverage of the loop conformation space, which leads to consistently 
reaching the native-like decoys in the sampling process. 

1. Introduction 

Protein loop structure modeling is important in structural biology for its wide 
applications, including determining the surface loop regions in homology modeling 
[1], defining segments in NMR spectroscopy experiments [2], designing antibody [3], 
and modeling ion channel [4]. The value of computer-generated protein loop models 
in biological research and practice relies critically on their accuracy. Protein loop 
structure modeling can be considered as a mini version of the ab initio protein folding 
problem. Despite their short length, protein loops exhibit greater structural flexibility 
than strands and helices and have few contacts with the remainder of the protein, 
which make it more difficult to predict than the geometrically regular β-strands and α-
helices [5]. Currently, development of high-resolution computational approaches that 
can reliably produce accurate protein loop models, particularly in long loop targets, 
remains an unsolved problem. The main difficulties include the large protein loop 
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conformation space as well as the complicated landscape of the scoring functions 
describing the loop energy. 

Similar to ab initio protein folding, the rationale of ab initio protein loop structure 
modeling is to optimize a protein loop energy function to discover the native-like 
conformations [7]. Typically, in protein modeling, the physics-based energy functions 
yield a rugged, funnel-like energy landscape, which can easily trap the optimization 
process and is extremely difficult to search. Several approaches, such as replacing the 
van der Waals potential with a soft-sphere potential [8], switching to a statistics-based 
term [9], etc., have been developed to produce scoring functions with “softened” 
energy landscape to facilitate the search process. However, such scoring functions 
also come with insensitivity and potentially inaccuracy, i.e., a conformation with the 
absolutely lowest score may not be a native-like conformation while a conformation 
with a relatively higher score may in fact be a more reasonable structure than the one 
with a lower score. Therefore, it is well-known that an optimization method seeking 
the very global minimum of a scoring function is usually not effective in finding the 
true native conformation. Instead, a sampling approach that can efficiently explore the 
low score regions in the scoring function landscape is more desirable [10].  

For very short protein loop targets, one may be able to traverse the discretized 
dihedral angles (φ, ψ)-space to completely sample all possible conformations. 
However, for longer protein loops, the size of the conformation space grows 
exponentially where complete sampling becomes infeasible. Markov Chain Monte 
Carlo [6, 11] and genetic algorithms [12] have been applied to sample the loop 
conformation space to discover feasible structures with low scores (energy). The 
existing problems in these sampling methods include oversampling – the same 
conformations are repeatedly generated as well as undersampling – some 
conformations with low scores are not reachable during the sampling procedure. 
Oversampling will lead to wasted computational efforts while more seriously, 
undersampling may miss good, native-like conformations. 

In this article, we present a population-based sampling algorithm to achieve broad 
exploration of protein loop backbone conformation space. We use the backbone 
dihedral angles (φ,ψ) array as a reduced representation of a loop conformation. A 
modified Differential Evolution (DE) scheme [13] is used to crossover dihedral angles 
of selected conformations in an old population to generate new conformations in 
(φ,ψ)-space. A diversity selection scheme is developed to filter conformations in a 
population similar to those already generated during the sampling procedure, which 
favors the sampling process to explore undiscovered conformations with low scores 
and thus reduces the chance of repeatedly generating decoys with similar structures. 
By gradually eliminating the conformations in a population not satisfying the loop 
closure condition, our narrowing gap selection scheme can also lead to decoys with 
loop closure satisfaction. We verify our sampling approach by applying it to the long 
targets provided in Jacobson’s protein loop benchmark [14].  

The remainder of the article is organized as follows. Sections 2 and 3 describe the 
general protein loop structure modeling procedure and our population-based sampling 
method, respectively. Section 4 shows our computational results on the 12-residue 
loop benchmark targets. Section 5 summarizes our conclusions and future research 
directions. 
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2. General Protein Loop Structure Modeling Paradigm 

The ab initio protein loop structure modeling procedure [15, 16, 17] typically 
involves the phases of sampling, filtering, clustering, and refining, although some 
additional steps may be employed in different programs. Figure 1 shows a conceptual 
illustration of these phases.  

decoys with low scores

Sampling

Filtering

filtered decoys

Clustering

representative decoys

Refining

refined structures with side chains

cluster cluster cluster

Final 
Selectionfinal model  

Fig. 1. Typical steps in high resolution ab initio protein loop structure modeling 

In the sampling phase, the loop conformation space is explored and decoys with 
low scores are produced. In order to reduce the degree of freedom, usually only loop 
backbone with reduced representation are used in this phase with simplified, smooth 
scoring functions. Afterward, the infeasible, bad decoys will be eliminated in the 
filtering phase. Then, in the clustering phase, decoys with similar structures will be 
grouped into a cluster and representative decoys for each cluster will be selected. 
Next, in the refining phase, side chains are added and complicated all-atom energy 
functions are used to locally optimize the representative decoys. Finally, the refined 
representative decoy with the lowest energy will be selected as the predicted model.  

Broadly sampling the loop conformation space to generate low-score decoys with 
diverse structures in the sampling phase is critical in successfully predicting high-
resolution protein loop models. This is due to the fact that if a native-like decoy is not 
reachable in loop conformation sampling, it is unlikely to obtain a high-resolution 
model close to the native structure in the refining phase. For the population-based 
sampling approach described in this article, we only consider the modeling 
computation in the sampling phase. 
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3. Population-based Diversified Sampling Approach 

We develop a population-based sampling approach which intends to diversely 
sample the loop conformation space. Initially, a population with N conformations, C1, 
…, CN, is randomly generated. Each loop structure conformation Ci with n residues is 
represented by a vector (θ1, …, θ2n), which represents the backbone dihedral angles of 
(φ1, ψ1, …, φn, ψn). The dihedral angles of ωi are kept constants at their average value 
of 180°. A statistical distance-based atom pair-wise scoring function is used as the 
sampling scoring function [18]. When scoring function evaluation or structure 
comparison is needed, the dihedral angles representation of Ci is converted to the 
backbone atom representation. We adopt the Differential Evolution (DE) [13] 
approach to produce new conformations for the next population. A diversity selection 
scheme is designed to achieve diversified sampling and a narrowing gap selection 
scheme is used to guarantee loop closure.  

3.1 Differential Evolution for Conformation Crossover 

DE [13] is a powerful computational method for continuous function optimization, 
which has demonstrated its effectiveness on several hard optimization problems with 
complicated objective functions [22]. In our loop sampling approach, DE is used to 
crossover old conformations to produce new ones in continuous dihedral angles 
space. For each loop conformation Ci, a mutant vector Vi is formed by  

)( 321 rrri CCFCV −+= , (1) 

where r1, r2, and r3 are mutually distinct, uniformly distributed integer random 
numbers in the interval [1, N] and F > 0 is a tunable amplification control constant as 
described in [4]. Then, a new conformation Ci’(θ1’, …, θ2n’) is generated by the 
crossover operation on Vi and Ci: 
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where 
n2

.  denotes the modulo operation with modulus 2n, s is a randomly generated 
integer from the interval [0, 2n-1], L is an integer drawn from [0, 2n-1] with 
probability Pr(L = k) = (CR)L, and CR ∈ [0, 1) is the crossover probability. Practical 
advice suggests that CR = 0.9 and F = 0.8 are favorable choices in the DE scheme 
[13], which is also adopted in our program. Our slight modification to the DE scheme 
is to always keep θi in the ranged of [-π,π]. 

3.2 Diversity Selection Scheme 

The diversity selection scheme encodes the capability of enforcing the 
conformations in a population to satisfy the diversified sampling requirement. Our 



A Population-based Approach for Diversified Protein Loop Structure Sampling      5 

diversity selection scheme is based on the similarity of a conformation s to a given set 
of generated decoys D = {d1, …, dk}, which is measured by 

),(min)( ii
dsdistsS =  (3) 

where dist(.) is a distance function measuring the structural difference.  
In our implementation, we keep track of the already generated decoys d1, …, dk by 

recording their Cα atoms in an array. To reduce computation time of evaluating loop 
structure similarity, instead of calculating the Root Mean Square Deviation (RMSD) 
of all backbone atoms, we use the Cα RMSD between conformations in a population 
and the generated decoys as the distance function. Then, in diversity selection, all 
conformations in the current population are sorted according to their similarity to the 
generated decoys and the top μ% of the candidates are eliminated, where μ is a 
tunable constant. 

3.3 Narrowing Gap Selection Scheme for Loop Closure 

The so-called loop closure problem is defined as follows: given the N- and C-
terminals, find a loop backbone conformation of a certain length that can bridge the 
ends seamlessly [19]. Inverse kinematics [23] is a common method to solve the loop 
closure problem. Unfortunately, inverse kinematics has difficulty to be applied to our 
population-based sampling approach because crossing over the dihedral angles of two 
or more conformations satisfying the loop closure condition does not automatically 
guarantee loop closure in the new conformation.  

In our population-based sampling approach, we develop a narrowing gap selection 
scheme to produce decoys satisfying the loop closure condition. We fix the position 
of the N-terminal, produce the loop based on the dihedral angle values in loop 
conformation Ci, and then calculate the gap distance, G(Ci), from the C-terminal in 
the generated loop to the target C-terminal. G(Ci) is then used to measure the loop 
closure gap. To produce loops closely approximating the loop closure condition, in 
the gap selection scheme, we eliminate conformations Ci where G(Ci) >δ. Here δ is a 
variable, which specifies the acceptable gap between the predicted C-terminal and the 
target C-terminal. At the beginning, δ is initialized to a large value to allow 
aggressive loop conformation sampling. The value of δ is decreasing in every 
iteration toward a small value so as to gradually eliminate conformations with gaps 
larger than δ and eventually lead to conformations approximately satisfying the loop 
closure condition. When the final conformation with the lowest score is selected to 
output as a decoy, the C-terminal gap can continue to be reduced by slightly adjusting 
the dihedral angles of φi, ψi, and ωi in the loop structure. 

3.4 Algorithm Description  

By putting every piece of the puzzle together, the descriptive pseudo code of the 
population-based diversified sampling algorithm is described as follows. The 
algorithm can be repeatedly executed to produce multiple loop decoy structures. 



6      Yaohang Li 

 
Initialize N conformations, C1, …, CN, randomly and initialize δ 
Repeat { 

Generate M new conformations, C1’, …, CM’, based on the previous 
population’s N conformations using DE 

Run diversity selection scheme to eliminate conformations close to 
the already generated decoys stored in the decoy array 

Run gap selection scheme to eliminate conformations that G(Ci’>δ) 
 Evaluate the remaining C1’, …, CM’ use scoring function f(.) 

 Replace C1, …, CN  with top N conformations in C1, …, CN and the 
remaining C1’, …, CM’ 

 Reduce δ 
} Until convergence or reaching the expected iteration number 
Produce the decoy in the current population with the lowest score 
If there is serious steric clash or large loop closure gap 
 Discard this decoy 
Else { 

 Save Cα atoms to the generated decoy array 
 Minimize the terminal gap of by slightly adjusting the dihedral 

angles of •i, •i, and •i 

 Output the loop decoy} 

4. Computational Results 

We applied our methods to the long loop benchmark targets specified in [14], 
including 17 12-residue, 35 11-residue, and 49 10-residue loops. Due to space 
restrictions, we can only report a fraction of our results in this article. Therefore, we 
use our computational results on 12-residue loop targets to illustrate the effectiveness 
of our population-based diversified sampling scheme. Our computations on the other 
targets actually yield similar results. 

We use the path length of the Minimum Spanning Tree (MST) [20] based on the 
pair-wised RMSD matrix of the generated decoys to measure sampling diversity. 
Table 1 shows the comparison of the MST path lengths of the 1,000 decoys generated 
by our population-based loop conformation sampling algorithm with and without the 
diversity selection scheme. It is important to notice that the diversity selection scheme 
plays an important role in the sampling process, which leads to significantly larger 
MST path length in all 12-residue loop targets when the diversity selection scheme is 
employed. In other words, the decoys generated using the diversity selection scheme 
are more structurally different from each other than those without using the diversity 
selection scheme. This indicates that the sampling process with the diversity selection 
scheme has a broader coverage of the loop structure conformation space and leads to 
decoys with more diversified representation of structures. 

The diversified sampling of the loop conformation space directly improves the 
chance of generating decoys with close structure to the native one. Table 1 also 
compares the best decoys with the smallest backbone RMSD to the corresponding 
native structure generated with and without using the diversity selection scheme in 
12-residue targets. One can find that in all loop targets except for 5nul(54:65), the 
population-based sampling process with the diversity selection scheme can 
consistently reach decoys with backbone RMSD less than 2A, which is within the 
experimental X-ray crystallization resolution. In contrast, sampling without the 
diversity selection scheme cannot reach decoys with RMSD less than 2A in 5 out of 
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the 17 targets. Moreover, there is averagely 0.37A RMSD shift in the best decoys of 
the 12-residue targets when the diversity selection scheme is used. 

Our further structural analysis shows that the native 5nul loop (54:65) interacts 
with a flavin mononucleotide ligand. The distance-based scoring function used in our 
sampling program makes no assumption on any ligands. This explains why in 
5nul(54:65) no decoys with RMSD under 2A are generated in our sampling approach 
even when the diversity selection scheme is used.    

Table 1. MST path length of the pair-wise RMSD matrix and the best decoy with the smallest 
backbone RMSD of the 1,000 decoys generated in our population-based sampling with and 
without the diversity selection scheme in 12-residue loop targets 

 With Diversity  
Selection Scheme 

Without Diversity  
Selection Scheme 

Protein Start 
Res. 

End 
Res. 

MST Path 
Length (A) 

RMSD (A) of 
the Best Decoy 

MST Path 
Length (A) 

RMSD (A) of 
the Best Decoy 

1ixh 160 171 1436 1.519 1297 2.786 
1cex 40 51 1294 1.780 1201 2.265 
5pti 36 47 1389 1.610 1295 1.844 
1rge 57 68 1178 1.005 1132 1.403 
1arb 74 85 1211 1.376 1115 1.500 
7rsa 13 24 1343 1.509 1207 2.102 
1xyz 813 824 1281 1.510 1151 1.687 
1cyo 32 43 1368 1.341 1243 1.444 
1akz 181 192 1370 1.197 1255 1.912 
153l 98 109 1399 1.791 1308 2.245 
1bkf 9 20 1296 1.102 1206 1.443 
1dad 204 215 1382 1.423 1270 1.717 
1dim 213 224 1262 1.109 1190 1.624 
1kuh 90 101 1371 1.214 1258 1.188 
2ayh 21 32 1392 1.678 1245 1.540 
351c 15 26 1383 1.914 1271 1.612 
5nul 54 65 1341 2.141 1235 3.218 
Average 1335 1.483 1228 1.855 
Standard Deviation 71 0.312 57 0.529 

 
Due to the broad structure representations in the generated decoys, sampling with 

the diversity selection scheme will also lead to diversified clusters and representative 
decoys in the clustering phase of protein loop structure modeling.  Figures 2 and 3 
show the representative decoys in clustering the 1,000 decoys in loop target 
1akz(181:192) using sampling with and without the diversity selection scheme, 
respectively. We use a simple agglomerative clustering algorithm [21] with 2.0A 
cutoff. One representative decoy is selected for each cluster. For the 1,000 decoys 
generated without using the diversity selection scheme, 9 clusters are produced. For 
each representative one of the 9 clusters, a similar structure can be found in the 
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representative decoys from the 19 clusters generated by sampling using the diversity 
scheme. However, several representative decoys exhibiting significantly different 
structures found in sampling using the diversity selection scheme are not presented in 
these 9 clusters generated by sampling without diversity selection scheme, including a 
native-like one with 1.25A RMSD. 

 
Fig. 2. Representative decoys in clustering the 1,000 decoys generated with diversity selection 
scheme in loop target 1akz(181:192). (purple – native conformation, blue – decoy 
conformation)  

Fig. 3. Representative decoys in clustering the 1,000 decoys generated without diversity 
selection scheme in loop target 1akz(181:192). (purple – native conformation, blue – decoy 
conformation) 

A minor disadvantage of the diversified sampling method is that it may also 
increase the production of “bad” decoys. This is due to the fact that the diversity 
selection scheme will increase the chance of discovering not only the “good”, native-
like conformations but also the “bad”, far-deviated ones yielding low scores. As an 
example depicted in Figure 4 showing the RMSD distribution of the 1,000 decoys in 
loop target 1rge(57:68), sampling with the diversity selection scheme leads to larger 
population of decoys with RMSD less than 2.0A as well as those with RMSD higher 



A Population-based Approach for Diversified Protein Loop Structure Sampling      9 

than 3.0A than sampling without diversity selection scheme. This problem can be 
relatively easy to address in the filtering phase of loop structure modeling – when a 
high-resolution, all-atom scoring function is employed, the “bad”, far-deviated decoys 
can usually be identified and then eliminated. 
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Fig. 4. RMSD distribution of the 1,000 decoys generated in sampling with the diversity 
selection scheme and without the diversity selection scheme in loop target 1rge(57:68) 

5. Conclusions and Future Research Directions 

In this article, we present a population-based sampling algorithm for diversified 
sampling protein loop backbone conformations. A diversity selection scheme is 
designed to diversify predicted decoys and a narrowing gap selection scheme is used 
to achieve loop closure condition satisfaction. Our computational results on 12-
residue protein loop benchmark targets have shown diversified decoy structure 
distributions and improved chance of reaching native-like conformations.  

It is important to notice that our approach only targets the backbone sampling 
phase in ab initio protein loop structure modeling and the decoy generation time is 
usually less than a minute. As a result, our decoys have relatively lower quality 
compared to the all-atom modeling method such as PLOP [15], which typically takes 
days to deliver a model. In the future, we are interested in studying how diversified 
backbone sampling can benefit all-atom simulation in high-resolution loop modeling. 
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