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Abstract 

In this paper, we present an approach of reusing random walks in Monte Carlo methods for linear systems. The fundamental idea 
is, during the Monte Carlo sampling process, the random walks generated to estimate one unknown element can also be 
effectively reused to estimate the other unknowns in the solution vector. As a result, when the random walks are reused, a single 
random walk can contribute samples for estimations of multiple unknowns in the solution simultaneously while ensuring that the 
samples for the same unknown element are statistically independent. Consequently, the total number of random walk transition 
steps needed for estimating the overall solution vector is reduced, which improves the performance of the Monte Carlo algorithm. 
We apply this approach to the Monte Carlo algorithm in two linear algebra applications, including solving a system of linear 
equations and approximating the inversion of a matrix. Our computational results show that compared to the conventional 
implementations of Monte Carlo algorithms for linear systems without random walk reusing, our approach can significantly 
improve the performance of Monte Carlo sampling process by reducing the overall number of transition steps in random walks to 
obtain the entire solution within desired precision. 

Keywords: Monte Carlo Method; Random Walk; Linear System; Inverse Matrix 

1. Introduction 

The Monte Carlo method is base on experimental mathematics using statistical sampling. Applying Monte Carlo 
methods to applications in linear systems is originally proposed by von Neumann and Ulam [1]. Considering a linear 
system of  
  x = Hx + b 
where H is an M x M matrix, b is a given constant vector, and x is the unknown vector, the fundamental idea of the 
Monte Carlo solver is to construct Markov chains by generating random walks to statistically sample the underlying 
Neumann series 
  I + H + H2 + H3  
of the linear system. If ||H|| < 1, the Neumann series converge to (I - H)-1 and hence the mathematical expectation of 
the random walks starting from the ith row of matrix H equals to the solution xi. 

Other techniques have also been developed to improve the Monte Carlo algorithm for estimating the solutions of 
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a linear system. Wasow [2] modified the scheme by von Neumann and Ulam by designing another unbiased 
estimator, which has been shown to have smaller variance under some special conditions. Halton [3] proposed a 
sequential Monte Carlo method to accelerate the Monte Carlo process by taking advantage of the rough estimate of 
the solution to transform the original linear system x = Hx + b to a new system y = Hy + d, where ||d|| < ||b||. Dimov 
et al. [4] developed an accelerating Monte Carlo scheme to control the convergence of the Monte Carlo algorithm 
for different unknown elements with different relaxation parameters, which can increase the efficiency of the 
random walk estimators. This iterative scheme is also used to approximate evaluation of the inverse matrix. Tan [5] 
studied the antithetic variates techniques for variance reduction in Monte Carlo linear solvers. Srinivasan and 
Aggarwal [6] used non-diagonal splitting to improve the Monte Carlo linear solvers. Moreover, for applications with 
large linear systems, Sabelfeld and Mozartova [7] designed a sparsified randomization algorithm by using a sparse, 
random matrix G, which is an unbiased estimator of H, to replace the original matrix H during the sampling process. 
Furthermore, Mascagni and Karaivanova [8] investigated the usage of quasirandom numbers in the Monte Carlo 
solver. Nevertheless, the fundamental mechanism of these Monte Carlo solvers, i.e., constructing Markov chains 
based on random walks to estimate solutions of the linear systems, remains the same. 

The main drawback of the Monte Carlo methods is that they can only provide statistical estimates for a given 
linear system with a slow convergence rate of O(N -1/2) [9], where N is the number of samples. Consequently, the 
Monte Carlo solvers are usually not as efficient as the modern deterministic direct or iterative solvers to obtain very 
precise solutions. However, in many important applications such as preconditioning [10], machine learning [11], and 
information retrieval [12], where the matrices are large while not very accurate solutions can be satisfactory, the 
Monte Carlo algorithms become attractive due to the fact that the Monte Carlo convergence rate is independent of 
the size of the matrix [9]. Moreover, similar to many Monte Carlo algorithms, most Monte Carlo methods for linear 
system are embarrassingly parallel [17], which are efficient and scalable on traditional parallel systems as well as a 
variety of emerging high performance computing platforms such as multi-core systems [13], the computational 
Grids [14], the Cloud computing architectures [15], and the General Purpose Graphics Processing Unit (GPGPU) 
clusters [16].   

In the original Monte Carlo algorithm proposed by von Neumann and Ulam [1], a random walk can be used to 
estimate only one element in the unknown vector x. Therefore, for applications interested in the general shape of x, 
the original Monte Carlo algorithm is rather inefficient since separate random walks need to be generated for 
estimating different elements in x. Reusing the random walks can improve the efficiency of Monte Carlo algorithms. 
Sbert et al. has shown that reusing the paths of random walks can reduce the cost of Monte Carlo algorithms in 
radiosity applications [19]. Moreover, Hammersley and Hamscomb [9] described an adjoint method for von 

Monte Carlo scheme, where a random walk can be used for estimate the overall solution x. 
However, a potential problem is that the samples generated by the adjoint method are correlated, which may lead to 
biases in estimation of the solutions. 

 In this paper, we present a new approach of reusing random walks in the Monte Carlo algorithms for linear 
systems. In this reusing random walk scheme, during the Monte Carlo sampling process, a random walk can 
contribute samples for estimation of multiple unknown elements in x simultaneously and ensure that the samples for 
the same unknown element are independent in statistical sense. As a result, reusing random walks can significantly 
improve efficiency of Monte Carlo linear solver in estimating the entire solution x in a linear system. We use the 
iterative Monte Carlo scheme developed by Dimov et al. [4] as an example to demonstrate the effectiveness of our 
approach of reusing random walks. In addition to solving systems of linear equations, our approach of reusing 
random walks can be applied to Monte Carlo approximate evaluation of an inverse matrix, which is also shown in 
this paper. 

The rest of the paper is organized as follows. We review the random walk method in the Monte Carlo linear 
system solver proposed by von Neumann and Ulam as well as the iterative scheme developed by Dimov et al. in 
Section 2. Sections 3 and 4 describe our reusing random walks approach and its applications in solving linear system 
and inverse matrix approximation, respectively. Section 5 presents our computational results. Finally, Section 6 
concludes our summary and future research directions.  

2. Random Walks and Monte Carlo Linear Solvers  

Although different estimators are proposed in different Monte Carlo linear solvers, the fundamental mechanism 
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of the Monte Carlo algorithm is to construct Markov chains based on random walks to estimate the solutions of the 
linear systems.  

The original Monte Carlo linear solver proposed by von Neumann and Ulam [1] employs a terminating random 
walk (terminating Markov chain). Considering a linear system of  

x = Hx + b, 
where H is an M x M matrix and b is a given constant vector, an M x M transition probability matrix P is 
constructed by satisfying the following conditions: 

The terminating probability vector T is defined as 

Then, a random walk starting at i0 and terminating after k steps is defined as 
i0, i1 ik), 

where the integers i1 ik are the row numbers visited during the random walk. The transition probability of random 
  

 P(in+1 = j | in = i, n < k) = Pij 
and terminating probability is 
 P(k = n | in = i, n - 1 < k) = Ti. 
Also, define X( ) such that  

As a result, if the underlying Neumann series converges, X( ) is an unbiased estimator of component xi in the 
unknown vector x where i = i0.  

Dimov et al. proposed an accelerating Monte Carlo scheme to improve the efficiency of the random walk 
estimator. The M x M transition probability matrix Q is defined as 

Instead of defining an explicit terminating probability, for a random walk i0, 
i0, i1  

a weight quantity Wn is calculated at each transition step by 

The random walk will be terminated at the kth step when |Wk|   for the first time, where  is a given tolerance. 
Similarly, if the underlying Neumann series converges, 

is an unbiased estimator for xi where i = i0. 

3. Reusing Random Walks in Monte Carlo Solver for Linear Systems 

3.1.  Analysis of Random Walk Reusing 
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In the original Monte Carlo linear solver by von Neumann and Ulam or the alternative scheme by Dimov et al., a 
random walk is used to generate a sample for a single component xi in the unknown vector x by initiating the 
random walk at the ith row in the transition matrix. Generally, Monte Carlo algorithms require sufficient number of 
independent samples to obtain a reasonably accurate estimation of a solution. Assuming that averagely each element 
in the unknown vector x requires N independent samples to achieve certain accuracy, finding the overall solution of 
x with M unknown components demands M * N random walks. Figure 1 illustrates 50 independent random walks 
generated for producing 50 samples to compute every unknown element in a 6 x 6 system of linear equations 
without being reused. This is rather costly particularly when the linear system is large. 

Figure 1: 50 Independent Random Walks Generated for Estimating Each Unknown Element in a 6 x 6 System of 
Linear Equations without Being Reused 

 
Our further analysis finds that Monte Carlo algorithms require statistical independence of samples when 

estimating the same element in the unknown vector x; however, such independence is not necessary among samples 
for different elements. In other words, the samples for one element can be correlated with those for a different 
element. As a result, a random walk, or at least part of it, for generating samples for one element can be reused for 
estimating another different one.  

Consider the 1st random walk for estimating x5 shown in Figure 1 
5 . 

After transition from 5 to 3, the partial random walk  can be regarded as part of a 
random walk starting at 3 and thus it can be reused to estimate element x3. Similarly, after the random walk reach 1, 
the partial random walk  can also be reused to estimate element x1 and so on. Reusing the 
random walks can reduce the total number random walk steps needed for estimating the overall solution vector x 
and therefore improve the performance of the Monte Carlo solver.  

3.2. Monte Carlo Linear Solver with Random Walk Reusing 

We use the iterative Monte Carlo scheme developed by Dimov et al. [4] as an example to illustrate our 
implementation of reusing random walks in Monte Carlo linear solvers. Figure 2 shows the pseudocode of the 
Monte Carlo linear solver with random walk reusing. The main difference between the conventional scheme and the 
reusing random walk scheme is that a reusing random walk will not terminate until the current random walk no 
longer contributes to any unknown elements demanding more samples. During the sampling process, a contribution 
set S is used to keep track of the indices of the unknown elements in the solution vector being contributed by the 
current random walk and an array flag is used to indicate if there is sufficient number of samples for each unknown 
element. For each unknown element xi, a data structure is used to store the current weight quantity (W) and the 
current sample value (X). A random walk starts from the index of a randomly selected unknown element requiring 

1st:   1   4   4   5   5   4   4   5   5   4
2nd:   1   3   3   5   5   2   2   5   5   4   4   1
3rd:   1   3   3   6   6   3   3   6   6   3
                  
50th:   1   4   4   1   1   3   3   6   6   3

1st:   4   5   5   3   3   1   1   3   3   6   6   3
2nd:   4   1   1   4   4   5   5   4   4   5
3rd:   4   5   5   4   4   5   5   2

50th:   4   5   5   2   2   5   5   2   2   5

x1 x4

Random Walks

1st:   5   3   3   1   1   3   3   6   6   3
2nd:   5   4   4   1   1   3   3   5   5   4   4   1
3rd:   5   2   2   5   5   2   2   5   5   4 

50th:   5   4   4   5   5   4   4   1

x5

1st:   3   1   1   3   3   5   5   4   4   5   5   2   2   5
2nd:   3   5   5   2   2   5   5   2   2   5   5   2  
3rd:   3   6   6   3   3   6   6   3

50th:   3   1   1   3   3   6   6   3   3   6   6   3

1st:   6   3   3   5   5   2   2   5
2nd:   6   3   3   6   6   3
3rd:   6   3   3   1   1   3   3   5   5   2

50th:   6   3   3   5   5   4   4   5

x3 x6

Random Walks

Random Walks

Random Walks

Random Walks

1st:   2   5   5   4   4   5   5   4   4   5
2nd:   2   5   5   2   2   5   5   4   4   5
3rd:   2   5   5   3   3   5   5   2   2   5   5   4
                   
50th:   2   5   5   2   2   5   5   4   4   5

x2

Random Walks
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more samples. When convergence of the random walk on an unknown element xi is observed, a sample for xi is 
generated and index i is removed from contribution set S, i.e., the current random walk no longer contribute to xi. 
Afterward, the statistical variance of xi is estimated. If the statistical error is less than the statistical error bound , 
the corresponding value in the flag array is set, indicating that xi does not need more samples. If contribution set S is 
empty indicating that the current random walk no longer contributes to any unknown elements in need of more 
samples, the random walk will stop. Then, a new random walk is spawn starting from the index of one of the 
unknown elements still requiring more samples. This process repeats until all unknown elements in solution vector x 
obtain sufficient number of random samples to achieve desired statistical accuracy. 

 
Input:  
           Coefficient matrix , constant vector , tolerance , and statistical error bound  
Preprocessing:   
           Calculate the probability matrix  and the row sum vector  where rsum(i)= ; 
Monte Carlo algorithm with random walks reusing:  
           While  is not empty  
 Begin // starting a new random walk 
 Select a starting state  
 Set   
                    Set  and  
                          While the set  is not empty 
  Begin 
                                    Generate an uniformly distributed random number  
                                    Locate index  satisfying  
                                    For each element   whose index  // contribute to multiple elements 
 Begin 
                                                   Calculate  
                                                   Calculate  
                                                   If , then  // convergence 
 Begin 
                                                             Generate  as a sample for  
                                                             Delete  from the set   
                                                             Calculate variance of  
 If statistical error of  <  then  
 Begin   // random walk no longer contribute to  
  Set  
 End 
 End 
 End 
                                     Set   // update the random walk state 
                                     If  and , then 
 Begin 
                                                    Add  into the set  // contribute to a new element 
  Set  and  
 End 
  End 
 End 

  
 

 
Figure 2: Pseudocode of Monte Carlo Linear Solver with Reusing Random Walks 
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Figure 3: Example of a Random Walk being Reused for Estimating 6 Unknown Elements in a 6x6 Linear System 
 
Figure 3 illustrates an example of a hypothetical random walk starting from 1 being reused for estimating 6 

unknown elements in a 6 x 6 linear system. The reusing random walk implementation shown in Figure 2 ensures 
that the random samples generated for the same element are statistically independent without overlapping 
trajectories.  

4. Reusing Random Walks for Approximating an Inverse Matrix 

One can rewrite the linear system x = Hx + b into a more common form   
Ax = b, 

where A = I  H is another M x M matrix. Setting 

solution vector xi = (x1i, x2i, , xMi )T of Axi = bi is the ith column of the inverse matrix A-1. Therefore, repeatedly 
using Monte Carlo linear solver to evaluate the each column of the inverse matrix of A-1, one can have an 
approximate estimation of the inverse matrix A-1. 

Reusing random walks can be also extended to the application of approximating an inverse matrix. Figure 4 
depicts a scheme of reusing a random walk in approximating the inverse matrix of a 6 x 6 matrix. A single random 
walk step can contribute to the evaluations of the elements in an entire row while statistical estimations of multiple 
rows in A-1 can share the same random walk.  

1   4   5   5   2   2   5   2   5   3   3   5   4   5   5   2   2   5   2   5   4   5   2   5   2   5   4   5   5   4   4   1   3   6   6   6   6 

1   4   5   5   2   2   5   2   5   3
1st

4   5   5   2   2   5   2   5   3   3

5   5   2   2   5   2   5   3   3   5 

2   2   5   2   5   3   3   5   4   5

3   3   5   4   5   5   2   2   5   2 

4   5   5   2   2   5   2   5   4

5   5   2   2   5   2   5   4   5

2   2   5   2   5   4   5   2   5

5   2   5   4   5   5   4   4 

2   5   4   5   5   4   4   1   3

4   5   5   4   4   1   3   6

1   3   6   6   6   6

3   6   6   6   6

6   6   6   6

2nd

2nd

2nd

2nd

2nd

1st

1st

1st

1st

1st

3rd

3rd

3rd

Random Walk

x1

x2

x3

x4

x5

x6

(Elements)

,)0...,,1...,,0,0(bi
T
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Figure 4: Reusing a Random Walk in Approximating the Inverse Matrix of a 6 x 6 Matrix 

 

5. Computational Results 

1   4   5   5   2   2   5   2   5   3   3   5   4   5   5   2   2   5   2   5   4   5   2   5   2   5   4   5   5   4   4   1   3   6   6   6   6 
Random Walk
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Figure 5: Performance comparison of Monte Carlo linear solver with random walks reusing and without random 

walks reusing under different precisions. The linear system uses  as coefficient matrix. The 
computational results are based on the averages of 20 runs. 

 
We use a strictly  UFL sparse matrix collection [18] as 

the coefficient matrix for a linear system in this computational experiment  306 x 306 matrix with 
2,018 nonzero elements. Figure 5 compares the numbers of random walk transitions in Monte Carlo linear solver to 
obtain the entire solution vector in different precisions with random walks reusing and the one without random 
walks reusing. One can find that our random walk reusing approach can reduce the number of random walk 
transitions by approximately 5.8 times. A random walk transition is a relatively costly operation in the Monte Carlo 
linear solvers. Considering a row in the coefficient matrix with K nonzero elements,  comparison 
operations are needed to find the next state by comparing the transition probabilities if binary search is used. 

Figure 6 compares the numbers of random walk transitions in the Monte Carlo algorithm of approximating the 
isions with random walks reusing and the one without random walks 

reusing. Reusing random walks in inverse matrix estimation is even more effective than its implementation in Monte 
Carlo linear solver. The total number of transition is reduced by about 56.9 times when the random walks are reused 
in calculating the inverse matrix of 
Monte Carlo algorithms, a random walk can contribute to more elements  a random walk can be potentially reused 
for estimating different rows and a transition in the random walk can also be used to evaluate the elements in the 
entire rows that it is contributing to.   
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Figure 6: Performance Comparison of Monte Carlo Algorithms of Approximating the Inverse Matrix 

with Reusing Random Walks and without Reusing Random Walks in different precisions. The computational results 
are based on the averages of 20 runs. 

 

6. Conclusions and Future Research Directions 

In this paper, we present an approach of reusing random walks in Monte Carlo algorithms for linear systems to 
improve their efficiency in obtaining the entire solution. When the random walks are shared, a single random walk 
can contribute to estimations of multiple unknowns in the solution vector simultaneously. We apply the reusing 
random walk techniques to the Monte Carlo algorithms of solving a linear system as well as approximating a 

ion. Our computational results show that compared to the conventional implementations of the Monte 
Carlo algorithms, our reusing random walks approach can significantly reduce the overall number of random walk 
transition steps during the Monte Carlo sampling process to obtain solutions within desired precision.  

We use the iterative scheme by Dimov et al. [4] as an example to illustrate our implementation of reusing random 
walk in this paper. In general, the random walk reusing approach is applicable to other Monte Carlo estimators as 
well.  

One of the main advantages of the Monte Carlo methods is their high parallel efficiency. Our future work will 
focus on developing efficient parallel Monte Carlo algorithms for linear algebra applications with reusing random 
walks on traditional and emerging parallel computing platforms. 
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