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Abstract. Parallel Tempering (PT), also known as Replica Exchange, is a pow-
erful Markov Chain Monte Carlo sampling approach which aims at reducing the 
relaxation time in simulations of physical systems. In this paper, we present a 
novel implementation of PT, so-called decentralized replica exchange PT, using 
MPI and the Scalable Parallel Random Number Generators (SPRNG) libraries. 
By adjusting the replica exchange operations in the original PT algorithm, and 
taking advantage of the characteristics of pseudorandom number generators, this 
implementation minimizes the overhead caused by interprocessor communica-
tion in replica exchange in PT. This enables one to efficiently apply PT to large-
scale massively parallel systems. The efficiency of this implementation has been 
demonstrated in the context of various benchmark energy functions, such as the 
high-dimensional Rosenbrock function, and a rugged funnel-like function. 
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1   Introduction 

Parallel Tempering (PT), also known as Replica Exchange or the Multi-Markov 
Chain method, is a powerful Markov Chain Monte Carlo (MCMC) sampling scheme 
proposed by Geyer and Thompson [1], and Marinari and Parisi [2]. In parallel temper-
ing, multiple independent replicas of a system are simulated simultaneously under 
different thermodynamic conditions, the differences defined by temperatures in most 
cases. Replicas at high temperature are generally capable of experiencing a larger 
volume of the phase space while those at low temperature are able to explore the 
“local detail” of the energy landscape. During the process of simulation, neighboring 
replicas are allowed to exchange configurations from time to time, subject to the ac-
ceptance criterion. By carefully setting up the temperature ladder and the number of 



508 Y. Li, M. Mascagni, and A. Gorin 

replicas, PT can reduce the relaxation time of the Monte Carlo simulations in the 
physical systems, and improve convergence to a global minimum. PT is ideal for 
complex physical systems that are characterized by rough energy landscapes. Suc-
cessful PT applications include the simulation of biomolecules [3], determination of 
X-ray structures [4], polymers [5], and structure prediction in small proteins [6], [7]. 

Intuitively, PT simulation is a natural fit for parallel computing systems because 
multiple replicas are allowed to run simultaneously at different temperatures. Each 
replica simulation can be realized as an independent process running on its own CPU. 
However, replica exchange operations in PT can become computationally expensive 
for large-scale simulations, due to the number of replicas needed as well as the inter-
processor communication overhead between replicas. 

In this paper, we present our novel decentralized replica exchange parallel temper-
ing implementation. Our implementation is based on the MPI and SPRNG (Scalable 
Parallel Random Number Generators) [8] libraries. Functions in the MPI library are 
used for necessary interprocessor communication in the parallel computing environ-
ment. The SPRNG library provides parameterized pseudorandom number generators 
to produce independent random number streams for parallel processes. By taking 
advantage of the determinism and reproducibility characteristics of pseudorandom 
number streams, distributed processes can come to a common decision without per-
forming interprocessor communication. Moreover, temperature exchange instead of 
configuration exchange is used to reduce the amount of communication in replica 
exchange. To eliminate the additional global synchronization posed by temperature 
exchange, we extend the neighboring replica exchange in the original PT scheme to a 
more generalized random replica exchange. All these efforts lead to a decentralized 
implementation of replica exchange transitions in PT, and thus minimize the inter-
processor communication overhead in parallel PT applications.  

2   The Parallel Tempering Scheme 

In a general, the PT algorithm using MCMC for local sampling works as follows.  A 
composite system with N sets of replicas is constructed with one replica per tempera-
ture level, Ti. Multiple temperature levels form a temperature ladder. A state of the 
composite system is specified by X = {x1, x2, …, xN}, where xi is the replica at tem-
perature level i. The equilibrium distribution of the composite system, X, is,  
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At each iteration step, t, the Markov chains can be realized with two types of tran-

sitions – the Metropolis transition and the replica transition: 

1. Metropolis Transition: The Metropolis transition is employed for local Monte 
Carlo moves for the conformation at each temperature level. The transition prob-
ability only depends on the change of in the objective function, )( ixE , where xi is 
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the conformation at temperature level Ti. A new configuration xi’ is sampled from 
the proposal distribution qi(.|xi). The Metropolis-Hastings ratio at temperature 
level Ti is calculated as: 

))()'(()'( iiiii xExEE
iiLocal eexxw −−Δ− ==→ ββ , (2) 

 The new state is accepted with the probability ))'(,1min( iiLocal xxw → . The de-

tailed balance condition holds for each replica in Metropolis transition and there-
fore, it also holds for the composite system. 

2. Replica Transition: The replica transition takes place with the probability θ and is 
used to exchange conformations at two neighboring temperature levels, i and i+1. 
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The exchange is accepted according to the Metropolis-Hastings criterion with 
probability  
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The relaxation rate [9] can be characterized by the ergodic measure via the so-
called fluctuation metric, 
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transitions lead to an improvement of the relaxation rate of the overall simulation 
of the composite system. Using the definition of the replica exchange probability, 
the detailed balance equation can be obtained for replica transition. 
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Descriptive pseudo code of the PT algorithm follows. 
 

Initialize N replica x1, x2, …, xN and their corre-
sponding temperatures T1, T2, …, TN 
Initialize t ← 0 
Repeat { 
 // Perform Metropolis Transition 
 for each replica i { 
  Sample a point xi’ from qi( . | xi ) 
  Sample a uniform [0, 1) random variable UM 
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  if UM <= wlocal(xi → xi’) then xi ← xi’ 
  } 
 //Perform Replica Transition 
 Sample a uniform [0, 1) random variable UR 

 if UR <= θ then { 
  Sample an integer variable i from U[1, N-1] 
  Sample a uniform [0, 1) random variable US 

  if  US <= PReplica(xi↔xi+1) then 
    xi ↔ xi+1 
  } 
 Increment t 
} 

3   Decentralized Parallel Implementation 

3.1   Pseudorandom Number Reproducibility for Global Process 
Synchronization 

In PT algorithms, a common decision has to be made among multiple processes to 
determine whether the replica transition should occur. The common decision is based 
on a uniform [0, 1) random number. Instead of producing a uniform pseudorandom 
number and then broadcasting it to other processes, a clever implementation is to use 
a random number generator with the same parameters and seed, for the replica transi-
tion decision in each individual process. A pseudorandom number generator is deter-
ministic and reproducible, i.e., with the same parameters and seed, the generator will 
always produce the identical random number stream. Taking advantage of the repro-
ducibility characteristic of good pseudorandom number generators, distributed  
processes can come to a common decision without global process synchronization. 
Similarly, the common decisions in which two processes will participate in replica 
exchange and whether the replica exchange attempt will be accepted can be made by 
using the same random number streams in multiple processes without communication 
among processes. 

In our parallel implementation of the PT algorithm, multiple random number 
streams are used to minimize interprocessor communication; however, the problem of 
possible correlation among the random number streams arises. Intra-stream correla-
tion will form sophisticated pattern, which may lead to defective or even erroneous 
results in Monte Carlo simulations. To avoid the intra-stream correlation problem, we 
employ the SPRNG library, which can produce up to 278000 - 1 independent random 
number streams with sufficiently long period and good quality via appropriate param-
eterization. Properly configuring the random number generators in the SPRNG li-
brary, independence of the parallel random number streams used in a parallel PT 
implementation can be ensured [8], [12]. 

3.2   Configuration Exchange or Temperature Exchange in Replica Exchange? 

Replica exchange is employed in the PT scheme for improving mixing among  
the Markov chains running at various temperature levels. Replica exchange requires 
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system passing configuration information between two processes carrying out the 
corresponding Markov chains. In many practical simulation applications, e.g., a large 
protein with hundreds of residues, or a physical system with thousands of molecules, 
replica exchange by swapping the system configurations will be rather costly because 
of large amount of interprocessor communication required. An alternative way to 
reduce the communication is to use temperature exchange instead. Compared to con-
figuration exchange, temperature exchange only requires swapping of the temperature 
Ti, energy function value E(xi), and proposal distribution function qi(.|.) for index i, if 
different proposal functions are used in different processes. Temperature exchange 
only requires swapping of at most two floating point numbers and one integer index. 
As a result, temperature exchange is much more communication friendly than con-
figuration exchange in complex system simulations.  

3.3   Neighboring Replica Exchange or Random Replica Exchange? 

If temperature exchange is used instead of configuration exchange for our replica 
exchange, the amount of interprocessor communication can be significantly reduced 
in complex systems with large amounts of configuration information. However, the 
temperature order is disturbed in temperature exchange, which is no longer ordered by 
process rank. As a result, after several steps of temperature exchange, swapping of 
neighboring processes does not lead to exchange of neighboring temperature levels. 
Performing replica exchange at neighboring temperatures requires global awareness 
of the temperature distribution at different processes, which demands additional 
global process synchronization by gathering the temperature values distributed on 
different processes. 

Instead of replica exchange at neighboring temperature levels, a more general form 
of replica exchange is random replica exchange, where replica exchange takes place 
between any two randomly selected temperature levels, i and j. 

ji xx ↔ . (7) 

Neighboring replica exchange is a special case of random replica exchange where  
i = j + 1. Accordingly, the exchange is accepted according to the Metropolis-Hastings 
criterion with probability  
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Notice that the detailed balance condition still holds for random replica exchange 
transitions. 
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Two unbiased participant processes in random replica exchange can be determined 
by a shared global random number, where global synchronization is not necessary. 
The random replica exchange can be thought of as a “larger” replica transition step in 
PT, which allows replica exchange attempts at a larger temperature difference.  
However, random replica exchange will have a lower success rate compared to 
neighboring replica exchange. Yet, using large transition steps in combination with 
small transition steps usually results in reduced waiting time when a system is trapped 
by deep local minima in a MCMC evolution [10, 11].  

3.4   Random Number Streams 

Various independent SPRNG random number streams, including local streams and 
global streams, are involved in decision making in our parallel implementation of PT. 
These random number streams are shown in Table 1. 

Table 1. Independent Random Number Streams and Their Roles in Decentralized PT Scheme 

stream name sharing number decision 
proposal stream local N Proposal new configuration xi’ for 

local Metropolis transition 
local acceptance 
stream 

local N Acceptance of local transition 
according to Metropolis ratio 

replica
exchange 
stream 

same in all 
processes

1 Whether to perform replica exchange 
at current time step 

participant 
stream 

same in all 
processes

1 Whether the current process should 
participate in replica exchange at this 
time 

swap stream same in 
any process 
pair 

N*(N-1)/2 Acceptance of replica exchange 
transition according to exchange ratio 

 

3.5   Efficient Parallel PT Implementation 

Fig. 1 shows the flowchart of our decentralized replica exchange PT scheme. At the 
beginning, the system configuration, temperature, SPRNG random number genera-
tors, and other necessary variables are initialized in each process. In Metropolis tran-
sitions, random numbers from the proposal stream are used to produce a proposal 
transition and then a random number from the local acceptance stream is used to de-
termine whether the proposal transition will be accepted. Both proposal stream and 
local acceptance stream are local streams which are different and independent in dif-
ferent processes. After a Metropolis transition, in each process, a random number 
from the replica exchange stream is drawn to decide whether a replica transition will 
be performed. Both the replica exchange stream and participant stream are globally 
shared, where random number sequences are exactly the same in all processes. If yes, 
random numbers are generated in the participant stream to determine which two proc-
esses will participate in replica exchange. The non-selected processes skip replica 
transition. For the two randomly selected participant processes, temperature and  
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energy function values are exchanged via the MPI function call MPI_Sendrecv(). A 
random number from the swap stream which is identical in both participant processes 
is drawn to decide whether the replica exchange attempt will be accepted. In this 
parallel PT implementation, the only interprocessor communication required is that 
for the exchange of temperature and the energy function value.  

 
Fig. 1. Flowchart of the Decentralized Replica Exchange PT Scheme 
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3.6   Implementation Analysis 

1. Efficiency 
This parallel implementation of PT eliminates global synchronization operations in 
PT processes. Replica exchanges, provided that they involve different processes, can 
be executed in parallel. The amount of communication information is also minimized 
by using temperature exchange and randomly choosing participant processes. 

2. Reproducibility 
Notice that the simulation this parallel implementation of PT is reproducible. First of 
all, all SPRNG random number streams involved can be exactly reproduced by retriev-
ing the same parameters and seeds in each pseudorandom number generator. Secondly, 
in each process, the Metropolis transition can be reproduced by reproducing the local 
random numbers in the proposal stream and the local acceptance stream. Thirdly, de-
ciding when to perform replica exchange and the participant processes are reproducible 
by retrieving the global random number sequences of the replica exchange stream and 
participant stream, respectively. Finally, when a replica exchange is attempted, each 
process pair can be reproduced by reproducing the corresponding swap stream. 

4   Computational Results 

4.1   Rosenbrock’s Function 

The generalized n-dimensional Rosenbrock’s function is defined as 
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where the global minimum is at (1.0, 1.0, …, 1.0). The Rosenbrock’s function is a 
notorious benchmark function in optimization because of its slow convergence for 
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Fig. 2. Two-dimensional Rosenbrock’s Function. Note the logarithmic scale of the function’s 
axis. 
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most optimization methods. Due to a long narrow valley present in this function, 
gradient-based methods may have to spend a large number of iterations before the 
global minimum is reached. Fig. 2 shows the two dimensional Rosenbrock’s function. 

Fig. 3 shows the performance comparison of PT with decentralized replica ex-
change, PT using a master-slave paradigm [13], and parallel Metropolis in a 100-
dimensional Rosenbrock’s Function1. The replica exchange probability θ is 10%. In 
the master-slave parallel PT, each process carries out local Metropolis transitions and 
one process is designated as the master, which collects replica information from each 
slave process, performs replica exchange, and then scatters replica information back 
to each slave process. Global synchronizations are required in the master-slave para-
digm. Parallel Metropolis is an naturally parallel implementation, where each process 
carries out a Metropolis transition, and no replica exchange takes place among the 
processes. From Fig. 3, one can see that the global synchronization operations in 
master-slave PT are costly and post heavy interprocessor communication overhead 
(358.3%). In contrast, the interprocessor communication overhead introduced by PT 
with decentralized replica exchange is small (approximately 10.2%) compared to that 
of the naturally parallel Metropolis in the Rosenbrock’s function experiment. The 
resulting curves of the best, worst, and average objective function values over the 
number of iterations in 10 independent parallel Metropolis and PT runs are shown in 
Fig. 4. In this experiment, parallel Metropolis has the same initial position, tempera-
ture, and transition step size configuration as PT but does not carry out replication 
exchange between temperature levels. One can observe that PT exhibits a faster con-
vergence to global minimum compared to parallel Metropolis due to reduction of 
relaxation time by the replication exchange transitions. 
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Fig. 3. Performance Comparison of Decentralized Parallel PT, Parallel Metropolis, and Master-
Slave Parallel PT in Rosenbrock’s Function Optimization on 8 processors 

                                                           
1 The computations are carried out on a Beowulf Linux cluster with 8 2.2GHZ Xeon processors, 

with 1G Memory each node. 
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Fig. 4. Experimental Runs of Parallel Metropolis and Parallel Tempering on the 100-
Dimensitonal Rosenbrock’s Function. Each loop includes 105 iterations and shows the best, 
worst, and average function values. 

4.2   Rugged Funnel-Like Function 

In this experiment, we construct a “rugged” funnel-like function  

∑ ∑
= = ⎭

⎬
⎫

⎩
⎨
⎧ +−=

n

k

m

i
k

ii
n xbaA

n

c
xxE

1 0
1 )cos(1

2
),...,( , (11) 

where A = (a-1)/(am+1-1), n is the dimension, and m, a, b, and c are some tunable con-
stants to determine the depth of the funnel and the number of local minima along it.  
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Fig. 5. A two-dimensional “Rugged” Funnel-like Function (m = 4, a = 0.7, b = 3.0, c = 1.0) 
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Fig. 6. Figure 6: Performance Comparison of Decentralized Parallel PT, Parallel Metropolis, 
and Master-Slave Parallel PT in Rugged Funnel-like Function Optimization on 8 processors 
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Fig. 7. Experimental Runs of Parallel Metropolis and Parallel Tempering on a 100-
Dimensitonal Rugged Funnel-like Function. Each loop includes 105 iterations and shows the 
best, worst, and average function values. 

 

The only global minimum is located at (0, …, 0) and is equal to -c. Fig. 5 shows the 
two-dimensional “rugged” funnel-like function where c = 1.0.  

Fig. 6 shows the performance comparison of master-slave PT, PT with decentral-
ized replica exchange and parallel Metropolis in a 100-dimensional rugged funnel-
like function. Similar to the computational experiments on the Rosenbrock’s function, 
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decentralized replica exchange PT yields almost indistinguishable interprocessor 
communication overhead (0.35%) compared to parallel Metropolis and outperforms 
master-slave PT. As the curves of the best, worst, and average objective function 
values over the number of iterations in 10 independent runs shown in Fig. 7, PT  
exhibits a faster convergence to global minimum (0.0) than parallel Metropolis.  

Notice that PT is an effective sampling method, which may locate the valley lead-
ing to the global minimum but may not be able to actually approach global minimum 
in high precision. Extended MCMC algorithm, such as the hybrid PT/SA algorithm 
[14] or combining MCMC with local minimization (downhill) methods [15], can 
more aggressively minimize the solution. 

5   Summary 

In this article, we developed a decentralized PT implementation, using the MPI and 
SPRNG libraries. Taking advantage of the determinism and reproducibility character-
istics of parallel pseudorandom number streams in SPRNG, and using temperature 
exchange instead of replica exchange, we are able to eliminate the need for global 
synchronization and to minimize interprocessor communication. Our computational 
experiments, based on applying the decentralized PT implementation to the high-
dimensional Rosenbrock’s function and rugged funnel-like function show that insig-
nificant amount of interprocessor communication overhead contributed to the overall 
simulation time. Since this decentralized PT implementation can also be applied to 
some extended PT algorithms, such as hybrid Parallel Tempering/Simulated Temper-
ing [14], adaptive PT [4], parallel sintering [17], and various Evolutionary Markov 
Chain Monte Carlo methods [16], [18], [19], [20], this seems like a likely avenue for 
future work. 
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