
O. Gervasi and M. Gavrilova (Eds.): ICCSA 2007, LNCS 4707, Part III, pp. 507 – 519, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Decentralized Replica Exchange Parallel Tempering: An
Efficient Implementation of Parallel Tempering Using

MPI and SPRNG

Yaohang Li1, Michael Mascagni2, and Andrey Gorin3

1 Department of Computer Science
North Carolina A&T State University, Greensboro, NC 27411

yaohang@ncat.edu
2 Department of Computer Science

Florida State University, Tallahassee, FL 32306
mascagni@cs.fsu.edu

3 Division of Computer Science and Mathematics
Oak Ridge National Laboratory, Oak Ridge, TN 37831

agor@ornl.gov

Abstract. Parallel Tempering (PT), also known as Replica Exchange, is a pow-
erful Markov Chain Monte Carlo sampling approach which aims at reducing the
relaxation time in simulations of physical systems. In this paper, we present a
novel implementation of PT, so-called decentralized replica exchange PT, using
MPI and the Scalable Parallel Random Number Generators (SPRNG) libraries.
By adjusting the replica exchange operations in the original PT algorithm, and
taking advantage of the characteristics of pseudorandom number generators, this
implementation minimizes the overhead caused by interprocessor communica-
tion in replica exchange in PT. This enables one to efficiently apply PT to large-
scale massively parallel systems. The efficiency of this implementation has been
demonstrated in the context of various benchmark energy functions, such as the
high-dimensional Rosenbrock function, and a rugged funnel-like function.

Keywords: Parallel Tempering, Monte Carlo Methods, Parallel Programming.

1 Introduction

Parallel Tempering (PT), also known as Replica Exchange or the Multi-Markov
Chain method, is a powerful Markov Chain Monte Carlo (MCMC) sampling scheme
proposed by Geyer and Thompson [1], and Marinari and Parisi [2]. In parallel temper-
ing, multiple independent replicas of a system are simulated simultaneously under
different thermodynamic conditions, the differences defined by temperatures in most
cases. Replicas at high temperature are generally capable of experiencing a larger
volume of the phase space while those at low temperature are able to explore the
“local detail” of the energy landscape. During the process of simulation, neighboring
replicas are allowed to exchange configurations from time to time, subject to the ac-
ceptance criterion. By carefully setting up the temperature ladder and the number of

508 Y. Li, M. Mascagni, and A. Gorin

replicas, PT can reduce the relaxation time of the Monte Carlo simulations in the
physical systems, and improve convergence to a global minimum. PT is ideal for
complex physical systems that are characterized by rough energy landscapes. Suc-
cessful PT applications include the simulation of biomolecules [3], determination of
X-ray structures [4], polymers [5], and structure prediction in small proteins [6], [7].

Intuitively, PT simulation is a natural fit for parallel computing systems because
multiple replicas are allowed to run simultaneously at different temperatures. Each
replica simulation can be realized as an independent process running on its own CPU.
However, replica exchange operations in PT can become computationally expensive
for large-scale simulations, due to the number of replicas needed as well as the inter-
processor communication overhead between replicas.

In this paper, we present our novel decentralized replica exchange parallel temper-
ing implementation. Our implementation is based on the MPI and SPRNG (Scalable
Parallel Random Number Generators) [8] libraries. Functions in the MPI library are
used for necessary interprocessor communication in the parallel computing environ-
ment. The SPRNG library provides parameterized pseudorandom number generators
to produce independent random number streams for parallel processes. By taking
advantage of the determinism and reproducibility characteristics of pseudorandom
number streams, distributed processes can come to a common decision without per-
forming interprocessor communication. Moreover, temperature exchange instead of
configuration exchange is used to reduce the amount of communication in replica
exchange. To eliminate the additional global synchronization posed by temperature
exchange, we extend the neighboring replica exchange in the original PT scheme to a
more generalized random replica exchange. All these efforts lead to a decentralized
implementation of replica exchange transitions in PT, and thus minimize the inter-
processor communication overhead in parallel PT applications.

2 The Parallel Tempering Scheme

In a general, the PT algorithm using MCMC for local sampling works as follows. A
composite system with N sets of replicas is constructed with one replica per tempera-
ture level, Ti. Multiple temperature levels form a temperature ladder. A state of the
composite system is specified by X = {x1, x2, …, xN}, where xi is the replica at tem-
perature level i. The equilibrium distribution of the composite system, X, is,

∏
=

−

=Π
N

i i

xE

TZ

e
X

ii

1

)(

)(
)(

β
, (1)

where
ii T/1=β , E(xi) is the energy function, and ∫ −= i

xE
i dxeTZ ii)()(β , is the parti-

tion function of the replica at Ti.
At each iteration step, t, the Markov chains can be realized with two types of tran-

sitions – the Metropolis transition and the replica transition:

1. Metropolis Transition: The Metropolis transition is employed for local Monte
Carlo moves for the conformation at each temperature level. The transition prob-
ability only depends on the change of in the objective function,)(ixE , where xi is

 Decentralized Replica Exchange Parallel Tempering 509

the conformation at temperature level Ti. A new configuration xi’ is sampled from
the proposal distribution qi(.|xi). The Metropolis-Hastings ratio at temperature
level Ti is calculated as:

))()'(()'(iiiii xExEE
iiLocal eexxw −−Δ− ==→ ββ , (2)

 The new state is accepted with the probability))'(,1min(iiLocal xxw → . The de-

tailed balance condition holds for each replica in Metropolis transition and there-
fore, it also holds for the composite system.

2. Replica Transition: The replica transition takes place with the probability θ and is
used to exchange conformations at two neighboring temperature levels, i and i+1.

1+↔ ii xx . (3)

The exchange is accepted according to the Metropolis-Hastings criterion with
probability

),1min(

)
}),...,,,...,({

}),...,,,...,({
,1min(

}),...,,,...,{|},...,,,...,({)(

)()()()(

11

11

11111Re

1111 iiiiiiii xExExExE

Nii

Nii

NiiNiiiiplica

e

xxxx

xxxx

xxxxxxxxPxxP

ββββ ++−−

+

+

+++

++++=

Π
Π

=

=↔

. (4)

The relaxation rate [9] can be characterized by the ergodic measure via the so-
called fluctuation metric,

 ∑
=

−=Ω
N

j

tt
jj

t NxExEX
1

2 /])()([)(ββ , (5)

where
∑

=

=
N

k

t
kk

t NxExE
1

/)()(ββ
 is the ergodic average at iteration step t. The replica

transitions lead to an improvement of the relaxation rate of the overall simulation
of the composite system. Using the definition of the replica exchange probability,
the detailed balance equation can be obtained for replica transition.

}),...,,,...,({}),...,,,...,{|},...,,,...,({

}),...,,,...,({}),...,,,...,{|},...,,,...,({

111111

111111

NiiNiiNii

NiiNiiNii

xxxxxxxxxxxxP

xxxxxxxxxxxxP

+++

+++

Π=
Π (6)

Descriptive pseudo code of the PT algorithm follows.

Initialize N replica x1, x2, …, xN and their corre-
sponding temperatures T1, T2, …, TN
Initialize t ← 0
Repeat {
 // Perform Metropolis Transition
 for each replica i {
 Sample a point xi’ from qi(. | xi)
 Sample a uniform [0, 1) random variable UM

510 Y. Li, M. Mascagni, and A. Gorin

 if UM <= wlocal(xi → xi’) then xi ← xi’
 }
 //Perform Replica Transition
 Sample a uniform [0, 1) random variable UR

 if UR <= θ then {
 Sample an integer variable i from U[1, N-1]
 Sample a uniform [0, 1) random variable US

 if US <= PReplica(xi↔xi+1) then
 xi ↔ xi+1
 }
 Increment t
}

3 Decentralized Parallel Implementation

3.1 Pseudorandom Number Reproducibility for Global Process
Synchronization

In PT algorithms, a common decision has to be made among multiple processes to
determine whether the replica transition should occur. The common decision is based
on a uniform [0, 1) random number. Instead of producing a uniform pseudorandom
number and then broadcasting it to other processes, a clever implementation is to use
a random number generator with the same parameters and seed, for the replica transi-
tion decision in each individual process. A pseudorandom number generator is deter-
ministic and reproducible, i.e., with the same parameters and seed, the generator will
always produce the identical random number stream. Taking advantage of the repro-
ducibility characteristic of good pseudorandom number generators, distributed
processes can come to a common decision without global process synchronization.
Similarly, the common decisions in which two processes will participate in replica
exchange and whether the replica exchange attempt will be accepted can be made by
using the same random number streams in multiple processes without communication
among processes.

In our parallel implementation of the PT algorithm, multiple random number
streams are used to minimize interprocessor communication; however, the problem of
possible correlation among the random number streams arises. Intra-stream correla-
tion will form sophisticated pattern, which may lead to defective or even erroneous
results in Monte Carlo simulations. To avoid the intra-stream correlation problem, we
employ the SPRNG library, which can produce up to 278000 - 1 independent random
number streams with sufficiently long period and good quality via appropriate param-
eterization. Properly configuring the random number generators in the SPRNG li-
brary, independence of the parallel random number streams used in a parallel PT
implementation can be ensured [8], [12].

3.2 Configuration Exchange or Temperature Exchange in Replica Exchange?

Replica exchange is employed in the PT scheme for improving mixing among
the Markov chains running at various temperature levels. Replica exchange requires

 Decentralized Replica Exchange Parallel Tempering 511

system passing configuration information between two processes carrying out the
corresponding Markov chains. In many practical simulation applications, e.g., a large
protein with hundreds of residues, or a physical system with thousands of molecules,
replica exchange by swapping the system configurations will be rather costly because
of large amount of interprocessor communication required. An alternative way to
reduce the communication is to use temperature exchange instead. Compared to con-
figuration exchange, temperature exchange only requires swapping of the temperature
Ti, energy function value E(xi), and proposal distribution function qi(.|.) for index i, if
different proposal functions are used in different processes. Temperature exchange
only requires swapping of at most two floating point numbers and one integer index.
As a result, temperature exchange is much more communication friendly than con-
figuration exchange in complex system simulations.

3.3 Neighboring Replica Exchange or Random Replica Exchange?

If temperature exchange is used instead of configuration exchange for our replica
exchange, the amount of interprocessor communication can be significantly reduced
in complex systems with large amounts of configuration information. However, the
temperature order is disturbed in temperature exchange, which is no longer ordered by
process rank. As a result, after several steps of temperature exchange, swapping of
neighboring processes does not lead to exchange of neighboring temperature levels.
Performing replica exchange at neighboring temperatures requires global awareness
of the temperature distribution at different processes, which demands additional
global process synchronization by gathering the temperature values distributed on
different processes.

Instead of replica exchange at neighboring temperature levels, a more general form
of replica exchange is random replica exchange, where replica exchange takes place
between any two randomly selected temperature levels, i and j.

ji xx ↔ . (7)

Neighboring replica exchange is a special case of random replica exchange where
i = j + 1. Accordingly, the exchange is accepted according to the Metropolis-Hastings
criterion with probability

),1min(

)
}),...,,...,,...,({

}),...,,...,,...,({
,1min(

}),...,,...,,...,{|},...,,...,,...,({)(

)()()()(

1

1

11Re

iijjijji xExExExE

Nji

Nij

NijNjijiplica

e

xxxx

xxxx

xxxxxxxxPxxP

ββββ ++−−=

Π
Π

=

=↔

(8)

Notice that the detailed balance condition still holds for random replica exchange
transitions.

}),...,,...,,...,({}),...,,...,,...,{|},...,,...,,...,({

}),...,,...,,...,({}),...,,...,,...,{|},...,,...,,...,({

111

111

NjiNjiNij

NijNijNji

xxxxxxxxxxxxP

xxxxxxxxxxxxP

Π=

Π

(9)

512 Y. Li, M. Mascagni, and A. Gorin

Two unbiased participant processes in random replica exchange can be determined
by a shared global random number, where global synchronization is not necessary.
The random replica exchange can be thought of as a “larger” replica transition step in
PT, which allows replica exchange attempts at a larger temperature difference.
However, random replica exchange will have a lower success rate compared to
neighboring replica exchange. Yet, using large transition steps in combination with
small transition steps usually results in reduced waiting time when a system is trapped
by deep local minima in a MCMC evolution [10, 11].

3.4 Random Number Streams

Various independent SPRNG random number streams, including local streams and
global streams, are involved in decision making in our parallel implementation of PT.
These random number streams are shown in Table 1.

Table 1. Independent Random Number Streams and Their Roles in Decentralized PT Scheme

stream name sharing number decision
proposal stream local N Proposal new configuration xi’ for

local Metropolis transition
local acceptance
stream

local N Acceptance of local transition
according to Metropolis ratio

replica
exchange
stream

same in all
processes

1 Whether to perform replica exchange
at current time step

participant
stream

same in all
processes

1 Whether the current process should
participate in replica exchange at this
time

swap stream same in
any process
pair

N*(N-1)/2 Acceptance of replica exchange
transition according to exchange ratio

3.5 Efficient Parallel PT Implementation

Fig. 1 shows the flowchart of our decentralized replica exchange PT scheme. At the
beginning, the system configuration, temperature, SPRNG random number genera-
tors, and other necessary variables are initialized in each process. In Metropolis tran-
sitions, random numbers from the proposal stream are used to produce a proposal
transition and then a random number from the local acceptance stream is used to de-
termine whether the proposal transition will be accepted. Both proposal stream and
local acceptance stream are local streams which are different and independent in dif-
ferent processes. After a Metropolis transition, in each process, a random number
from the replica exchange stream is drawn to decide whether a replica transition will
be performed. Both the replica exchange stream and participant stream are globally
shared, where random number sequences are exactly the same in all processes. If yes,
random numbers are generated in the participant stream to determine which two proc-
esses will participate in replica exchange. The non-selected processes skip replica
transition. For the two randomly selected participant processes, temperature and

 Decentralized Replica Exchange Parallel Tempering 513

energy function values are exchanged via the MPI function call MPI_Sendrecv(). A
random number from the swap stream which is identical in both participant processes
is drawn to decide whether the replica exchange attempt will be accepted. In this
parallel PT implementation, the only interprocessor communication required is that
for the exchange of temperature and the energy function value.

Fig. 1. Flowchart of the Decentralized Replica Exchange PT Scheme

514 Y. Li, M. Mascagni, and A. Gorin

3.6 Implementation Analysis

1. Efficiency
This parallel implementation of PT eliminates global synchronization operations in
PT processes. Replica exchanges, provided that they involve different processes, can
be executed in parallel. The amount of communication information is also minimized
by using temperature exchange and randomly choosing participant processes.

2. Reproducibility
Notice that the simulation this parallel implementation of PT is reproducible. First of
all, all SPRNG random number streams involved can be exactly reproduced by retriev-
ing the same parameters and seeds in each pseudorandom number generator. Secondly,
in each process, the Metropolis transition can be reproduced by reproducing the local
random numbers in the proposal stream and the local acceptance stream. Thirdly, de-
ciding when to perform replica exchange and the participant processes are reproducible
by retrieving the global random number sequences of the replica exchange stream and
participant stream, respectively. Finally, when a replica exchange is attempted, each
process pair can be reproduced by reproducing the corresponding swap stream.

4 Computational Results

4.1 Rosenbrock’s Function

The generalized n-dimensional Rosenbrock’s function is defined as

∑
=

−− −+−=
n

i
iiin xxxxxf

2

2
1

22
11))1()(100(),...,(

,
(10)

where the global minimum is at (1.0, 1.0, …, 1.0). The Rosenbrock’s function is a
notorious benchmark function in optimization because of its slow convergence for

Rosenbrock Function

-1.5
-1

-0.5
 0

 0.5
 1

 1.5

x-0.5

 0

 0.5

 1

 1.5

y

 0.001
 0.01
 0.1

 1
 10

 100
 1000

f

global minimum

Fig. 2. Two-dimensional Rosenbrock’s Function. Note the logarithmic scale of the function’s
axis.

 Decentralized Replica Exchange Parallel Tempering 515

most optimization methods. Due to a long narrow valley present in this function,
gradient-based methods may have to spend a large number of iterations before the
global minimum is reached. Fig. 2 shows the two dimensional Rosenbrock’s function.

Fig. 3 shows the performance comparison of PT with decentralized replica ex-
change, PT using a master-slave paradigm [13], and parallel Metropolis in a 100-
dimensional Rosenbrock’s Function1. The replica exchange probability θ is 10%. In
the master-slave parallel PT, each process carries out local Metropolis transitions and
one process is designated as the master, which collects replica information from each
slave process, performs replica exchange, and then scatters replica information back
to each slave process. Global synchronizations are required in the master-slave para-
digm. Parallel Metropolis is an naturally parallel implementation, where each process
carries out a Metropolis transition, and no replica exchange takes place among the
processes. From Fig. 3, one can see that the global synchronization operations in
master-slave PT are costly and post heavy interprocessor communication overhead
(358.3%). In contrast, the interprocessor communication overhead introduced by PT
with decentralized replica exchange is small (approximately 10.2%) compared to that
of the naturally parallel Metropolis in the Rosenbrock’s function experiment. The
resulting curves of the best, worst, and average objective function values over the
number of iterations in 10 independent parallel Metropolis and PT runs are shown in
Fig. 4. In this experiment, parallel Metropolis has the same initial position, tempera-
ture, and transition step size configuration as PT but does not carry out replication
exchange between temperature levels. One can observe that PT exhibits a faster con-
vergence to global minimum compared to parallel Metropolis due to reduction of
relaxation time by the replication exchange transitions.

0

100

200

300

400

500

600

700

800

900

0.E+00 1.E+06 2.E+06 3.E+06 4.E+06 5.E+06 6.E+06 7.E+06 8.E+06 9.E+06 1.E+07

iterations

ti
m

e
(s

ec
)

parallel Metropolis

decentralized PT

master-slave PT

Fig. 3. Performance Comparison of Decentralized Parallel PT, Parallel Metropolis, and Master-
Slave Parallel PT in Rosenbrock’s Function Optimization on 8 processors

1 The computations are carried out on a Beowulf Linux cluster with 8 2.2GHZ Xeon processors,

with 1G Memory each node.

516 Y. Li, M. Mascagni, and A. Gorin

 0.01

 0.1

 1

 10

 100

 1000

 0 20 40 60 80 100

m
in

 f

loops

Parallel Metropolis

Parallel Tempering

Fig. 4. Experimental Runs of Parallel Metropolis and Parallel Tempering on the 100-
Dimensitonal Rosenbrock’s Function. Each loop includes 105 iterations and shows the best,
worst, and average function values.

4.2 Rugged Funnel-Like Function

In this experiment, we construct a “rugged” funnel-like function

∑ ∑
= = ⎭

⎬
⎫

⎩
⎨
⎧ +−=

n

k

m

i
k

ii
n xbaA

n

c
xxE

1 0
1)cos(1

2
),...,(, (11)

where A = (a-1)/(am+1-1), n is the dimension, and m, a, b, and c are some tunable con-
stants to determine the depth of the funnel and the number of local minima along it.

nikita function

-3-2-1 0 1 2 3
-3-2-1 0 1 2 3

-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

 0

Fig. 5. A two-dimensional “Rugged” Funnel-like Function (m = 4, a = 0.7, b = 3.0, c = 1.0)

 Decentralized Replica Exchange Parallel Tempering 517

0

100

200

300

400

500

600

700

800

900

1000

0 1E+06 2E+06 3E+06 4E+06 5E+06 6E+06 7E+06 8E+06 9E+06 1E+07

iterations

ti
m

e
(s

ec
)

Parallel Metropolis

Decentralized PT

Master-Slave PT

Fig. 6. Figure 6: Performance Comparison of Decentralized Parallel PT, Parallel Metropolis,
and Master-Slave Parallel PT in Rugged Funnel-like Function Optimization on 8 processors

-1

-0.9

-0.8

-0.7

-0.6

-0.5

 0 20 40 60 80 100

m
in

 f

loops

Parallel Metropolis

Parallel Tempering

Fig. 7. Experimental Runs of Parallel Metropolis and Parallel Tempering on a 100-
Dimensitonal Rugged Funnel-like Function. Each loop includes 105 iterations and shows the
best, worst, and average function values.

The only global minimum is located at (0, …, 0) and is equal to -c. Fig. 5 shows the
two-dimensional “rugged” funnel-like function where c = 1.0.

Fig. 6 shows the performance comparison of master-slave PT, PT with decentral-
ized replica exchange and parallel Metropolis in a 100-dimensional rugged funnel-
like function. Similar to the computational experiments on the Rosenbrock’s function,

518 Y. Li, M. Mascagni, and A. Gorin

decentralized replica exchange PT yields almost indistinguishable interprocessor
communication overhead (0.35%) compared to parallel Metropolis and outperforms
master-slave PT. As the curves of the best, worst, and average objective function
values over the number of iterations in 10 independent runs shown in Fig. 7, PT
exhibits a faster convergence to global minimum (0.0) than parallel Metropolis.

Notice that PT is an effective sampling method, which may locate the valley lead-
ing to the global minimum but may not be able to actually approach global minimum
in high precision. Extended MCMC algorithm, such as the hybrid PT/SA algorithm
[14] or combining MCMC with local minimization (downhill) methods [15], can
more aggressively minimize the solution.

5 Summary

In this article, we developed a decentralized PT implementation, using the MPI and
SPRNG libraries. Taking advantage of the determinism and reproducibility character-
istics of parallel pseudorandom number streams in SPRNG, and using temperature
exchange instead of replica exchange, we are able to eliminate the need for global
synchronization and to minimize interprocessor communication. Our computational
experiments, based on applying the decentralized PT implementation to the high-
dimensional Rosenbrock’s function and rugged funnel-like function show that insig-
nificant amount of interprocessor communication overhead contributed to the overall
simulation time. Since this decentralized PT implementation can also be applied to
some extended PT algorithms, such as hybrid Parallel Tempering/Simulated Temper-
ing [14], adaptive PT [4], parallel sintering [17], and various Evolutionary Markov
Chain Monte Carlo methods [16], [18], [19], [20], this seems like a likely avenue for
future work.

Acknowledgments. Yaohang Li acknowledges support by the Ralph E. Powe Junior
Faculty Enhancement Award of Oak Ridge Associated Universities. The research was
also sponsored by the Laboratory Directed Research and Development Program of
Oak Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC for the U. S.
Department of Energy under Contract No. DE-AC05-00OR22725

References

1. Marinari, E., Parisi, G.: Simulated Tempering: a New Monte Carlo Scheme. Europhysics
Letters 19, 451–458 (1992)

2. Geyer, C.J., Thompson, E.A.: Annealing Markov Chain Monte Carlo with Applications to
Ancestral Inference. Journal of the American Statistical Association 90, 909–920 (1995)

3. Falcioni, M., Deem, M.W.: A Biased Monte Carlo Scheme for Zeolite Structure Solution.
J. Chem. Phys 110, 1754–1766 (1999)

4. Schug, A., Herges, T., Verma, A., Wenzel, W.: Investigation of the parallel tempering
method for protein folding. J. Phys: Condens. Matter 17, 1641–1650 (2005)

5. Sikorski, A.: Properties of Star-Branched Polymer Chains – Application of the Replica Ex-
change Monte Carlo Method. Macromolecules 35(18), 7132–7137 (2002)

 Decentralized Replica Exchange Parallel Tempering 519

6. Schug, A., Wenzel, W.: Predictive in-silico all atom folding of a four helix protein with a
free energy model. J. Am. Chem. Soc. 126, 16737 (2004)

7. Li, Y., Strauss, C.E.M., Gorin, A.: Parallel Tempering in Rosetta Practice. In: Zhang, D.,
Jain, A.K. (eds.) ICBA 2004. LNCS, vol. 3072, Springer, Heidelberg (2004)

8. Mascagni, M., Srinivasan, A.: Algorithm 806: SPRNG: A Scalable Library for Pseudoran-
dom Number Generation. ACM Transactions on Mathematical Software 26, 436–461
(2000)

9. Bu, L., Straub, J.E.: Simulating Vibrational Energy Flow in Proteins: Relaxation Rate and
Mechanism for Heme Cooling in Cytochrome c. J. Phys. Chem. B 107, 12339–12345
(2003)

10. Li, Y., Protopopescu, V.A., Gorin, A.: Accelerated Simulated Tempering. Physics Letters
A 328(4), 274–283 (2004)

11. Liu, J.S., Liang, F., Wong, W.H.: The Use of Multiple-Try Method and Local Optimiza-
tion in Metropolis Sampling. Technical Report, Department of Statistics, Stanford Univer-
sity (1998)

12. Srinivasan, A., Mascagni, M., Ceperley, D.: Testing Parallel Random Number Generators.
Parallel Computing 29, 69–94 (2003)

13. Li, Y., Clark, J., Zhang, X.: Parallel Implementation of the Accelerated Simulated Temper-
ing Method. Proceedings of 3rd NPSC Conference, Atlanta (2006)

14. Li, Y., Protopopescu, V.A., Arnold, N., Zhang, X., Gorin, A.: Hybrid Parallel Temper-
ing/Simulated Annealing Method. submitted to Physical Review E (2006)

15. Du, Z., Li, S., Li, S., Wu, M., Zhu, J.: Massively parallel simulated annealing embedded
with downhill – a SPMD algorithm for cluster computing. In: Proceedings of 1st IEEE
Computer Society International Workshop on Cluster Computing (1999)

16. Drugan, M.M., Thierens, D.: Evolutionary Markov Chain Monte Carlo. Technical Report
UU-CS-2003-047, Utrecht university (2003)

17. Liu, J.S., Sabatti, C.: Simulated Sintering: Markov Chain Monte Carlo with Spaces of
Varying Dimensions. In: Bayesian Statistics 6, pp. 389–413. Oxford University Press, Ox-
ford (1999)

18. Cercueil, A., Francois, O.: Monte Carlo simulation and population-based optimization. In:
Congress on Evolutionary Computation, pp. 191–198 (2001)

19. Laskey, K.B., Myers, J.W.: Population Markov Chain Monte Carlo. Machine Learning ,
175–196 (2003)

20. Mahfoud, S.W., Goldberg, D.E.: Parallel Recombinative Simulated Annealing: a Genetic
Algorithm. Parallel Computing, 1–28 (1995)

	Decentralized Replica Exchange Parallel Tempering: An Efficient Implementation of Parallel Tempering Using MPI and SPRNG
	Introduction
	The Parallel Tempering Scheme
	Decentralized Parallel Implementation
	Pseudorandom Number Reproducibility for Global Process Synchronization
	Configuration Exchange or Temperature Exchange in Replica Exchange?
	Neighboring Replica Exchange or Random Replica Exchange?
	Random Number Streams
	Efficient Parallel PT Implementation
	Implementation Analysis

	Computational Results
	Rosenbrock’s Function
	Rugged Funnel-Like Function

	Summary
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

