
J Supercomput (2008) 46: 124–138
DOI 10.1007/s11227-007-0160-2

An adaptive and trustworthy software testing
framework on the grid

Yaohang Li · Yong-Duan Song

Published online: 6 December 2007
© Springer Science+Business Media, LLC 2007

Abstract Grid computing, which is characterized by large-scale sharing and collabo-
ration of dynamic distributed resources has quickly become a mainstream technology
in distributed computing and is changing the traditional way of software develop-
ment. In this article, we present a grid-based software testing framework for unit and
integration test, which takes advantage of the large-scale and cost-efficient compu-
tational grid resources to establish a testbed for supporting automated software test
in complex software applications. Within this software testing framework, a dynamic
bag-of-tasks model using swarm intelligence is developed to adaptively schedule unit
test cases. Various high-confidence computing mechanisms, such as redundancy, in-
termediate value checks, verification code injection, and consistency checks are em-
ployed to verify the correctness of each test case execution on the grid. Grid workflow
is used to coordinate various test units for integration test. Overall, we expect that the
grid-based software testing framework can provide efficient and trustworthy services
to significantly accelerate the testing process with large-scale software testing.

Keywords Grid computing · Software testing

1 Introduction

During the last several decades, many revolutionary changes, such as object-oriented
programming, object modeling, and pattern design have taken place in software engi-
neering. The world of software development has undergone a lot of change these days

Y. Li (�) · Y.-D. Song
Department of Computer Science, North Carolina A&T State University, Greensboro, NC 27411,
USA
e-mail: yaohang@ncat.edu

Y.-D. Song
e-mail: songyd@ncat.edu

mailto:yaohang@ncat.edu
mailto:songyd@ncat.edu

An adaptive and trustworthy software testing framework on the grid 125

with the influx of modern methods, paradigms, technologies, and tools. At the same
time, the functionality and complexity of modern applications grow exponentially.
However, behind the evolution of software there has been one bigger challenge in
quality control techniques. Software testing, which is a fundamental part of software
engineering, lags behind the development ones and cannot provide the same level of
quality for complex applications with manageable growth of effort. Software testing
is an integral, costly, and time-consuming activity in the software development life
cycle. In a complex software development project, time, resources, and effort seem
to be never allocated enough to testing activities. The ISSRE’97 panel [1] concluded
the following facets of large-scale software testing.

“Large software product organizations spend 50% or more of their budgets on
testing. Testers comprise 20% to 50% of software personnel in many compa-
nies. With all this effort, best in class software products still may contain 400
faults per million lines of fielded code. The cost of repairing field failures is
growing rather than shrinking.”

As one can foresee, reducing software testing cost will directly lead to significant
overall software development cost and time reduction.

Grid computing is characterized by large-scale sharing and cooperation of dynam-
ically distributed resources, such as CPU cycles, communication bandwidth, and data
to constitute a computational environment [2–4]. A computational grid can, in princi-
ple, provide a tremendously large amount of low-cost CPU cycles, which may be uti-
lized to speed up software testing or to examine many more test cases [5]. Moreover,
software portability testing on different computer system architectures and config-
urations is always a formidable task within the traditional software testing process.
A computational grid is a heterogeneous computing environment, which is usually
comprised of a large array of hardware architecture, operating systems, and middle-
ware library combinations. All these make a computational grid a natural and possi-
bly an ideal testbed for large-scale software testing. Several conceptual models [6, 7]
have been developed with intention to speedup the software testing process by taking
advantage of the grid computing resources.

Despite the attractive characteristics of grid computing, successfully fostering
new approaches using the grid techniques for large-scale software testing depends
on overcoming a number of challenges. First of all, the computational resources
in the grid exhibit greatly heterogeneous performances which may change unpre-
dictably as time evolves. Also, due to unreliable network connections and the pos-
sible unavailability of a grid service, a test case may be halted at any time. Effi-
ciently taking advantage of these resources requires an adaptive scheduling algorithm.
A more serious problem is a computational grid in a potentially untrustworthy com-
puting environment [8]. Many grid computing projects, such as SETI@home [9, 34],
Folding@home [10], and distributed.net [11] have recorded various misbehaviors of
grid computational service providers, malicious grid users, or malfunctioned grid
applications. Indeed, untrustworthy grid components post significant threats to the
correctness of software testing projects being carried out on the grid. Identifying and
excluding the untrustworthy test results is critical to the success of grid-based soft-
ware testing.

126 Y. Li, Y.-D. Song

In this article, we try to address a question—can we compose the heterogeneous,
widely-distributed, dynamic, and even potentially untrustworthy grid resources effi-
ciently to support trustworthy and reliable large-scale distributed software testing?
We present our undergoing development of the grid-based software testing frame-
work to facilitate the automated process of utilizing the grid resources for software
unit and integration testing. Inside the grid-based software testing framework, sev-
eral novel techniques are developed to address the challenges posted by the char-
acteristics of the grid. A bio-inspired scheduling algorithm is developed to provide
adaptive test case scheduling; mechanisms supporting consistency checking, such
as redundancy, intermediate values checking, separation of test execution and result
comparison, and verification code injection are used to identify and exclude poten-
tially untrustworthy test results; and grid workflow is employed to coordinate various
test units for integration test. Overall, we expect that the grid-based software test-
ing framework can provide trustworthy and efficient services for large-scale complex
software testing.

2 Unit testing and integration testing

In software testing, within all levels, unit test is the fundamental one, which goes
together to make the “big picture” of testing a software system. In software engineer-
ing literature [12], a unit is defined as the smallest collection of code which can be
usefully tested. Typically, a unit would be a nontrivial object class, a subroutine, a
script, or a module of source code. A unit test is a procedure used to verify whether a
particular unit is working correctly or not. The main idea about unit tests is to write
test cases for all units so that whenever a change causes a regression, it can be quickly
identified and fixed. Ideally, each test case is separate from the others, constructing
mock objects that can assist in separating unit tests. A software system with nontriv-
ial complexity is usually composed of a large number of units while each unit may
have test cases ranging from several to thousands or even more. Every test case must
be executed many times along the software development life cycle when a new mod-
ule is added, an existing functionality is modified, or a software defect is fixed. As a
result, in a large and complex software system, running a large number of unit test
cases is rather computationally costly.

The integration testing is the phrase of software testing in which individual units
are combined and tested as a group. In integration testing phrase, units that have been
checked out by unit testing are grouped in a particular order into larger aggregates and
applied tests defined in an integration test case to these aggregates. All integration
test cases are constructed to test that all components within an aggregate interact
correctly. As a result, compared to the unit testing phrases, more complicated test
cases with different combination of units are demanded in the integration testing
phrase.

Therefore, a powerful testbed with large-scale of computational capability, which
can effectively carry as many unit test cases as possible and automatically integrate
individual units is desired for complex software system testing. Fortunately, most of
these unit or integration test cases are embarrassingly parallel, which is a natural fit
for a massively parallel computing environment like a computational grid.

An adaptive and trustworthy software testing framework on the grid 127

3 Issues of software testing on a computational grid

Since the late 1990s, grid computing has emerged as an important new area in par-
allel computing, distinguished from traditional distributed computing by its focus on
large-scale dynamic, distributed, and heterogeneous resource sharing, cooperation of
organizations, innovative applications, and high-performance orientation. Many ap-
plications have been developed to take advantage of grid computing facilities and
have already achieved elementary success. However, as the field grew, so also did the
problems associated with it. Traditional assumptions that are more or less valid in
traditional distributed and parallel computing settings break down on the grid. In tra-
ditional distributed computing settings, one often assumes a “well-behaved” system:
no faults or failures, minimal security requirements, consistency of state among ap-
plication components, availability of global information, and simple resource sharing
policies. While these assumptions are arguably valid in tightly coupled systems, they
break down as systems become much more widely distributed [8]. First of all, the
grid is a dynamic computing environment without centralized control. Nodes provid-
ing grid services join and leave dynamically, possibly without any notice. Secondly,
grid service providers in a computational grid exhibit heterogeneous performances.
The capabilities of each grid service vary greatly. A service provider might be a high-
end supercomputer, or a low-end personal computer, even just an intelligent widget.
As a result, a task running on different grid service providers will yield a huge range
of completion times. In [5], Durate et al. showed that the instability of network signif-
icantly affects the performance of distributed software testing. Thirdly, there may be
untrustworthy or unreliable services existing in the grid [34]. Collaborating with the
potentially untrustworthy grid services may pose a security threat to the target tested
software. Fourthly, hundreds or even thousands of various test units may be carried
out in different distributed grid services. Integrating and managing these test units
can be a complicated job. As a result, all these issues mentioned above must be ad-
dressed before a large-scale computational grid can be efficiently utilized to speedup
software testing in complex systems.

4 Grid-based software testing framework

The grid-based software testing framework is designed on top of the fundamental grid
services provided by the Globus toolkit [13, 14], including GRAM (Globus Resource
Allocation Manager), GIS (Grid Information Service), GSI (Grid Security Infrastruc-
ture), and GridFTP (File Transportation Protocol on the Grid). Via the fundamental
grid services provided by Globus, the grid-based unit test framework can invoke the
local unit test tools for various programming languages, such as JUnit [15], NUnit
[16], dbUnit [17], pyUnit [18], or other unit test tools according to the programming
language requirement of the target software system to carry out various unit test cases.
Multiple unit testing grid services can be plugged into a grid workflow [19, 20] to for-
mulate a particular integration testing case. Moreover, an adaptive scheduling scheme
using swarm intelligence is employed to efficiently use the computational resources
and mechanisms, such as redundancy, internal consistency check, and external con-
sistency check are used to enforce trustworthiness in the test cases. Figure 1 illustrates
the overall system architecture of the grid-based software testing framework.

128 Y. Li, Y.-D. Song

Fig. 1 System architecture of
grid-based software testing
framework

5 Adaptive test tasks scheduling on the grid

A computational grid is usually a dynamic computing environment, where participant
computational services potentially exhibit unpredictably and dynamically changing
behaviors. To effectively and efficiently take advantage of the computational grid for
large-scale software testing, an adaptive testing task scheduling mechanism for the
dynamically changing computing environment is necessary.

The nature is an excellent teacher of showing adaptability. One interesting exam-
ple is referred as swarm intelligence [20], where social insects, such as bacteria [21],
ants [22], and caterpillars [23], exhibit a collective problem solving capability, which
shows strong adaptability and robustness to dynamically changing environment.
Algorithms that take inspiration from swarm intelligence in finding shortest paths
have recently been successfully applied to combinatorial optimization [24], circuit
switched communications network problem [25], and adaptive routing problem [26].
In our grid-based software testing framework, we adopt the swarm intelligence ap-
proaches to develop an adaptive mechanism for scheduling unit test cases on the grid.

5.1 Dynamic bag-of-tasks model

The grid-based unit test framework manages test cases using the dynamic bag-of-
tasks (also called bag-of-work) model [27–29], which applies to the situation when
embarrassingly parallel computational tasks are to be executed a large number of
times. The dynamic bag-of-tasks computing paradigm favors applications with em-
barrassingly parallel characteristics, i.e., situations where the overall computing task
can be easily divided into smaller independent subtasks. This situation arises natu-
rally in large-scale unit test scenarios, where every test case is independent. A set of
parameters for a software unit forms a test case and a set of test cases constitutes a
testing task. The collection of all tasks to be executed is called the bag of tasks, since
they do not need to be solved in any particular order. A testing task may contain thou-
sands of test cases and may come to the bag of tasks at any time. Also, to improve
reliability of the software testing, replicated testing tasks may be present in the bag
of tasks [30].

An adaptive and trustworthy software testing framework on the grid 129

Fig. 2 The dynamic
bag-of-tasks paradigm

The dynamic bag-of-tasks model usually employs the master-slave scheduling par-
adigm, where the master is responsible of dispatching appropriate tasks while multi-
ple slaves carry out their tasks. When a slave is free, the master will select an appro-
priate testing task from the bag and assign it to the slave. After successfully receiving
the task, the slave then computes a partial test result. Finally, the master collects the
distributed partial test results to generate a testing report. Figure 2 shows the master-
slave scheduling paradigm in the dynamic bag-of tasks model for large-scale unit
tests.

5.2 Swarm intelligence approach for test units scheduling

The goal of a task-scheduling algorithm of the grid-based unit test framework is to
minimize the execution time of the unit test tasks by efficiently taking advantage of
the large amount of distributed computational resources available in the grid. In our
implementation of the grid-based unit test framework, we extend the dynamic bag-
of-tasks scheduling model by a swarm intelligent approach based on Ant Colony
Optimization (ACO) to tackle the performance heterogeneity and resource dynamism
problems presented in the grid computing environment.

5.3 Ant colony optimization

Ant colonies are distributed systems and exhibit a collective problem solving capabil-
ity, which shows strong autonomous adaptability in dynamically changing computing
environment as well as robustness to system failures. This property is a famous ex-
ample the swarm intelligence. Within an ant colony, ants are specialized in particular
unsophisticated functionalities and interact with their environment to exhibit globally
collective intelligence. As a result, a swarm of ants in an ant colony can accomplish
astonishingly complex tasks such as “foraging,” i.e., finding the shortest paths be-
tween food sources and their nest. These tasks could never be performed by a single
ant. The foraging behavior and the collaboration of specialized type of ants in an ant
colony inspire us to investigate in the ant colony’s behavior and adopt this mechanism
in adaptive unit test task scheduling on the computational grid.

130 Y. Li, Y.-D. Song

5.4 Agents in a testing task scheduling ant colony

In our scheduling mechanism using swarm intelligence, we design various software
ant agents with simple functionalities. No direct communications occur among these
ants. The only indirect communication is via the pheromone values stored in a grid
resource table. These specialized ants are categorized as follows:

• Scout: The responsibility of the scout is to discover the new grid services providing
appropriate computational services. Once such a new grid service is found, the
scout adds it to the available resource table with an initial pheromone value.

• Worker: A worker chooses an available grid services and carries out a testing task
in the system. The grid services with higher pheromone value will be assigned a
“bigger” task with possibly more test cases.

• Collector: When a testing task is complete on a grid service, a collector will re-
trieve the partial testing results. Also, according to the task completion time and
the number of test cases in the task, the collector updates the pheromone value of
this particular grid service.

• Cleaner: A cleaner maintains the available grid resource table in the system. It re-
moves the unavailable resources (with low pheromone value) from the grid re-
source table.

• Queen: The queen is responsible of producing the specialized ants, including the
scouts, testers, cleaners, and workers.

All these ants fulfill their own simple functionalities. There is no direct communi-
cations among all these ants.

5.5 Scheduling mechanism

Let us put all the pieces of the scheduling algorithm together. The swarm intelligence
mechanism of testing task scheduling on the computational grid is depicted as fol-
lows:

1. Initially, the queen spawns scouts, cleaners, and workers. The queen also produces
testers at a time period of T .

2. A scout visits the information services providers of the grid and explores those
software unit testing service providers. The scout finds the available grid services
and adds them to the grid resource table with initial pheromone value, θ .

3. Once a testing task is submitted to the computational grid, a worker will try to
schedule this task to an available grid services in the grid resource table. A grid
service having a higher pheromone value will be selected with a higher probability.
A grid service i will be selected with probability, qi , of

qi = pi

/ n∑
j=1

pj ,

where pi is the pheromone value of grid service i and n is the total number of
available grid services in the grid computing environment.

An adaptive and trustworthy software testing framework on the grid 131

4. Global and local pheromone updates are presented in the algorithm. In local up-
date, when a test task is complete on a grid service, the collector will retrieve the
test result and update the pheromone value

pi ← pi + �pi,

where �pi is the newly added pheromone amount.
Global updates take place at every period of time T1. The grid service who

completes most schedule units will obtain an extra bonus update of its pheromone
value

pi ← pi + ρ,

where ρ is the bonus pheromone value. The global update increases the chance
of a fast grid service to be selected, and thus accelerates the convergence to the
optimal grid path.

5. The pheromone values of grid services evaporate. At every period of time T2, the
pheromone value of every grid service is updated as

pi ← γpi,

where γ < 1 is the evaporation constant.
6. When the pheromone value of a grid service is lower than some threshold value,

τ , which usually means that this grid service has been unavailable for a long time
or this grid service is an extremely slow with an undesired task completion time,
the cleaner will remove it from the grid resource table.

In this swarm intelligence scheduling algorithm, variables T1, T2, θ , γ , and τ are
tunable parameters subject to the specific grid computing environment.

5.6 Preliminary simulation results

To validate the effectiveness of the swarm intelligence scheduling algorithm, we sim-
ulate a computational grid with participant grid services exhibiting heterogeneous
computational capabilities. Grid services have a variety of computational capabili-
ties s, which indicates the number of test cases they can process at each time step,
assuming that each test case requires roughly the same number of operations with an
arrival rate conforming to a Poisson distribution. We assume that the computational
capabilities of the grid service providers are normally distributed with mean, m and
standard deviation, σ . We also assume that comparing to the execution time of a test
task, the scheduling time, including decision time and data transportation time, of a
testing task is trivial, and thus not considered in our simulation program. To introduce
dynamism to the simulated grid, we allow the performance of a grid service change
with a probability of ρ at each time step. The performance value of a grid service may
change to 0, which indicates that the grid service leaves the grid-computing environ-
ment and its assigned testing task has to be rescheduled to an available grid service
to rerun.

We compare the swarm intelligence scheduling approach with two widely used
scheduling approaches, random scheduling and heuristic scheduling [31]. Random

132 Y. Li, Y.-D. Song

Fig. 3 Comparison of swarm
intelligence mechanism,
heuristic mechanism, and
random mechanism in testing
task scheduling on a simulated
computational grid
(performance changing
probability ρ = 0.0001)

Fig. 4 Performance comparison
of swarm intelligence
mechanism, heuristic
mechanism, and random
mechanism in job scheduling on
a simulated computational grid
with different probabilities of
grid service provider
performance changing

scheduling approach has no extra information of the performance of a grid service,
and thus schedules testing tasks to its grid services in a random manner. Heuristic
scheduling approach considers the previous overall performance of a grid service
provider in managing workload on different grid services. Figure 3 illustrates the
testing task completion times verse task arrival rates on our simulated computational
grid. At each time step, the performance of every grid service within the simulated
grid changes with a probability of ρ = 0.0001. The swarm intelligence mechanism
shows a better average task completion time than the random mechanism and the
heuristic mechanism.

Figure 3 depicts the adaptability of the swarm intelligence scheduling mechanism.
As the grid service provider performance changes probability, ρ, increases, and the
simulated grid with the fixed task arrival rate evolves from a slightly dynamic system
to a heavily dynamic system. The curves in Fig. 4 show that the performances of the
heuristic mechanism and the random mechanism change dramatically; in contrast,
the swarm intelligence mechanism exhibits a rather steady task completion time and
yields almost the best task completion time in all these situations.

6 Trustworthiness enforcement

A computational grid is usually a potentially untrustworthy computing environment.
For software testing on the grid, confidence must be obtained for testing cases carried

An adaptive and trustworthy software testing framework on the grid 133

out on untrusted grid service providers. Noises generated by malicious or erroneous
grid services may mislead the testing result analysis process and eventually increase
the software testing cost.

In many grid-based applications, for example, Monte Carlo computation [32] or
matrix computation [8], the problem itself can provide a way of validating the cor-
rectness of the computational results and an error caused by a grid service can be
easily caught. Unfortunately, such a way does not exist in software testing on the
grid because an error that deviates the computational results from the expected re-
sults may be caused by the malfunction of the grid service or a bug of the target
code in the test case. As a result, consistency checking mechanisms, either internally
or externally, must be used to obtain confidence for software testing on the grid. In
our grid-based software testing framework, various mechanisms supporting consis-
tency checking are employed to verify whether a test case is faithfully executed in
the grid service and its test results are correctly transmitted. These trustworthiness
enforcement mechanisms are described as follows.

(1) Redundant test cases.
Instead of submitting a single copy, redundant test cases are submitted to the
grid and forced to be executed on different service providers. Inconsistency of
test results indicates either a bug existing in the tested program or errors in the
computation on the grid. At the same time, redundancy can also tolerate those test
services that does not return test results due to unreliable network connections or
temporary service unavailability [35].

(2) Check pointing and intermediate value checking.
In addition to checking the final results of a test case, intermediate values gen-
erated during the test process are saved at checkpoints in a test case and will be
verified to ensure that the test task is faithfully executed.

(3) Separation of test case execution and test result comparison.
When performing software testing on the grid, a malicious grid service may fool
the testers by simply supplying the expected results as the computational results
and reporting “correctness” of the target code without actually executing the test
case, if both test case execution and test result comparison are carried out on
the same grid service. Our solution is to separate the test case execution and
test result comparison. The software testing grid service only executes the test
cases while the expected results are not provided. A designate trusted server is
designated to retrieve the test results from the grid services and perform test result
comparison. Using this mechanism, the grid service has to come up with its own
computational result for a test case and a bogus result can be identified in the
trusted server.

(4) Verification code injection.
One approach to check the validity of a test case carried out on a potentially
untrustworthy grid service is to cleverly inject some verification codes into the
beginning or the end of the target test unit program. To the grid services that run
the test case, the computational result of the verification code is unknown until
the subtask is actually executed. On the other hand, to the testers, the result of
the verification is either preknown or easy to verify. A good candidate of this
verification code is a program of calculating the inverse matrix [8]. A randomly

134 Y. Li, Y.-D. Song

produced matrix A is produced and the verification code intends to compute the
inverse matrix of A−1. Then if the product of A and A−1 is not equal to the
identity matrix I, a malfunction in the grid service can be concluded.

7 Grid workflow for integration testing

An integration testing task on the grid is normally composed of a number of tasks—
each is composed of the operations of multiple software units. A grid workflow is
used to describe the execution of the integration testing task. Correspondingly, the
testing workflow of an integration test case on the grid can as well be decomposed
into smaller components. These components can be described as follows [33]:

• Testing unit: Testing units are the smallest elements in a grid workflow of an inte-
gration test case. Each testing unit executes the computing operations of a software
unit and is usually carried out on an individual grid service.

• Sub-workflow: A sub-workflow is a flow of closely related testing units that is to be
executed on the grid services within a virtual organization in an order predefined
by the integration testing case. Each sub-workflow represents a specific task in the
integration testing case. Multiple sub-workflows may be executed in parallel.

Fig. 5 Example of a grid-based
integration testing workflow
diagram with collaborations of
9 units

An adaptive and trustworthy software testing framework on the grid 135

• Intermediate-workflow: An intermediate-workflow mediates sub-workflows run-
ning in different organizations. It carries out management tasks such as sub-
workflows coordination, check pointing, computation consistency verification, and
result validation operations.

• Workflow: A workflow can be represented as a flow of several loosely coupled
activities described in an integration testing case. Each activity consumes various
grid resources and can be represented by a sub-workflow.

The grid-based software testing framework takes advantage of the grid workflow
management service to schedule the sub-workflows within a workflow to the ap-
propriate target organizations. Then, testing units are executed on the grid resources
within the organizations. The intermediate-workflow coordinates the execution of
sub-workflows. XML (eXtensible Markup Language) is used to describe a grid work-
flow of integration testing case. Figure 5 illustrates an example of a grid workflow
diagram and Fig. 6 shows the corresponding XML description. The workflow is de-
composed into three sub-workflows with each sub-workflow to be scheduled on a
grid organization specified by the “organization” tag. The “DataTransfer” tag spec-

<WorkFlow id = “mainworkflow”>
<SubWorkFlow id = “subworkflow1”, order = 1>

<Organization id = “organizationA”> </Organization>
<DataTransfer> . . . < /DataTransfer>
<Unit> description of unit tests 1 and 2
</Unit>
<DataTransfer> . . . < /DataTransfer>

</SubWorkFlow>
<IntermediateWorkFlow id =”intermediateworkflow1”>

<DataTransfer> . . . < /DataTransfer>
<Operation> checkpointing, validation, . . .

</Operation>
<DataTransfer> . . . < /DataTransfer>

</IntermediateWorkFlow>
<SubWorkFlow id = “subworkflow2”, order = 2>

<Organization id = “organizationB”> </Organization>
<DataTransfer> . . . < /DataTransfer>
<Unit> description of unit tests 3, 4, 5, 6
</Unit>
<DataTransfer> . . . < /DataTransfer>

</SubWorkFlow>
<SubWorkFlow id = “subworkflow3”, order = 2>

<Organization id = “organizationC”> </Organization>
<DataTransfer> . . . < /DataTransfer>
<Unit> description of unit tests 7,8,9
</Unit>
<DataTransfer> . . . < /DataTransfer>

</SubWorkFlow>
</WorkFlow>

Fig. 6 Workflow described in XML

136 Y. Li, Y.-D. Song

ifies the I/O interface of each unit in the workflow. The “order” tag indicates the
execution order of these sub-workflows, and the “unit” tag carries out the software
unit operations.

8 Conclusion and future research direction

In this paper, we presented our ongoing project of a grid-based software testing
framework by taking advantage of the large-scale and cost-efficient computational
grid resources to build a testbed for accelerating software testing process and re-
ducing testing cost in complex software systems. In this grid-based software testing
framework, to achieve adaptability and efficiency of grid resources usage, a dynamic
bag-of-tasks model using a swarm intelligence approach is developed to schedule unit
test cases. Mechanisms supporting consistency checks are employed to obtain high
confidence of each test case execution on a potentially untrustworthy grid. We also
discuss using the workflow for describing the test task, the tasks scheduling mecha-
nism, and the grid services to support grid-based software testing.

Currently, our grid-based unit test framework is an ongoing project. We have de-
veloped approaches and mechanisms discussed in this paper. Our presented prelim-
inary results are based on simulations, which are just for “proof-of-concept.” At the
next step, we must verify the practical feasibility of the grid-based software testing
framework as well as our approaches and mechanisms to achieve adaptability and
trustworthiness.

Acknowledgements This work is partially supported by the “Building an NCA&T Campus Grid
Project” of the University of North Carolina General Administration and the NC-HPC Project of the Uni-
versity of North Carolina Office of the President.

References

1. Horgan R (1998) Panel statement: large scale software testing. In: Proceedings of 8th international
symposium on software reliability engineering

2. Foster I, Kesselman C, Tueske S (2001) The anatomy of the grid. Int J Supercomput Appl 15(3):200–
222

3. Goble C, Roure DD (2003) The grid: an application of the semantic web. In: Grid computing: making
the global infrastructure a reality, pp 437–470

4. Foster I, Kesselman C, Nick JM, Tuecke S (2003) The physiology of grid: open grid services archi-
tecture for distributed systems integration (draft)

5. Duarte AN, Cirne W, Brasileiro F, Duarte P, Machado L (2005) Using the computational grid to speed
up software testing. In: Proceedings of 19th Brazilian symposium on software engineering

6. Li Y, Dong T, Zhang X, Song Y, Yuan X (2006) Large-scale software unit testing on the grid. In: Pro-
ceedings of IEEE international conference on granular computing, Atlanta

7. Duarte A, Cirne W, Brasileiro F, Machado P (2006) GridUnit, software testing on the grid. In: Pro-
ceedings of ICSE

8. Beck M, Dongarra J, Eijkhout V, Langston M, Moore T, Plank J (2003) Scalable, trustworthy network
computing using untrusted intermediaries: a position paper. DOE/NSF workshop on new directions
in cyber-security in large-scale networks: development obstacles

9. SETI@home (2002) SETI@home: the Search for Extraterrestrial Intelligence. http://setiathome.ssl.
berkeley.edu

10. Folding@home (2003) Distributed computing. http://folding.stanford.edu

http://setiathome.ssl.berkeley.edu
http://setiathome.ssl.berkeley.edu
http://folding.stanford.edu

An adaptive and trustworthy software testing framework on the grid 137

11. distributed.net (2006) http://www.distributed.net

12. Pressman R (2005) Software engineering: a practitioner’s approach. McGraw–Hill, New York

13. Foster I, Kesselman C (1997) Globus: a metacomputing infrastructure toolkit. Int J Supercomput Appl
11(2):115–128

14. Globus website (2005) http://www.globus.org

15. JUnit (2005) http://www.junit.org/index.htm

16. NUnit (2005) http://www.nunit.org

17. DbUnit (2005) http://dbunit.sourceforge.net

18. pyUnit (2005) http://pyunit.sourceforge.net

19. Fisher L (2002) Workflow handbook. Workflow Management Coalition

20. Bonabeau E, Théraulaz G (2000) Swarm smarts. Sci Am 282:72–79

21. Bivens HP (2001) Grid workflow. Grid computing environments working group. Global grid forum

22. Denebourg JL, Pasteels JM, Verhaeghe JC (1983) Probabilistic behavior in ants: a strategy of errors?
J Theor Biol 105:259–271

23. Shapiro JA (1988) Bacteria as multicellular organisms. Sci Am 256:82–89

24. Fitzgerald TD, Peterson SC (1998) Cooperative foraging and communication in caterpillars. Bio-
science 38:20–25

25. Di Caro G, Dorigo M (1998) Ant colonies for adaptive routing in packet-switched communications
networks. In: Proceedings of fifth international conference on parallel problem solving from nature

26. Di Garo G, Dorigo M (1998) An adaptive multi-agent routing algorithm inspired by ants behavior.
In: Proceedings of 5th annual Australasian conf para & real-time sys

27. Carriero N, Gelernter D, Leichter J (1986) Distributed data structures in Linda. In: Proceedings of
13th ACM symp on principles of programming languages

28. Andrews GR (1991) Concurrent programming: principles and practice. Benjamin–Cummings, Red-
wood City

29. Kuang H, Bic LF, Dillencourt MB (2002) Iterative grid-based computing using mobile agents. In: Pro-
ceedings of 31st IEEE international conference on parallel processing, ICPP2002

30. Sarmenta LFG (2001) Sabotage-tolerance mechanisms for volunteer computing systems. In: Proceed-
ings of ACM/IEEE international symposium on cluster computing and the grid (CCGrid’01)

31. Wu M, Sun X (2003) A general self-adaptive task scheduling system for non-dedicated heterogeneous
computing. In: Proceedings of IEEE intl conf on cluster computing

32. Li Y, Mascagni M (2003) Analysis of large-scale grid-based Monte Carlo applications. Int J High
Perform Comput Appl 17(4):369–382

33. Li Y, Mascagni M (2004) E-science on the grid: toward a dynamic E-science automation with XML
and workflow techniques. In: Proceedings of the 8th world multi-conference on systemics, cybernet-
ics, and informatics, SCI’04, Orlando, Florida

34. Anderson DP, Cobb J, Korpela E, Lebofsky M, Werthimer D (2002) SETI@home: an experiment in
public-resource computing. Commun ACM 45(11):56–61

35. Li Y, Mascagni M (2003) Improving performance via computational replication on a large-scale com-
putational grid. In: Proceedings of the 3rd IEEE/ACM international symposium on cluster computing
and the grid

Yaohang Li received his B.S. in Computer Science from South China University
of Technology in 1997 and M.S. and Ph.D. degree from Department of Computer
Science, Florida State University in 2000 and 2003, respectively. After gradua-
tion, he worked as a research associate in the Computer Science and Mathematics
Division at Oak Ridge National Laboratory, TN. His research interest is in Grid
Computing, Computational Biology, and Monte Carlo Methods. Now he is an as-
sistant professor in Computer Science at North Carolina A&T State University.

http://www.distributed.net
http://www.globus.org
http://www.junit.org/index.htm
http://www.nunit.org
http://dbunit.sourceforge.net
http://pyunit.sourceforge.net

138 Y. Li, Y.-D. Song

Yong-Duan Song is a tenured professor at North Carolina A&T State Univer-
sity. He also holds the position of Langley Distinguished Professor at National
Institute of Aerospace. His expertise lies in robotics/biomimetics, micro robotic
UAVs/UGVs, adaptive and autonomous systems, bio-inspired guidance and con-
trol. He is an associate editor of the International Journal of Intelligent Automation
and the Soft Computing and International Journal of Structure Health Monitoring.
He also served as guest editor for the Journal of Robotic Systems and the Interna-
tional Journal of Wind Engineering and Industrial Aerodynamics.

	An adaptive and trustworthy software testing framework on the grid
	Abstract
	Introduction
	Unit testing and integration testing
	Issues of software testing on a computational grid
	Grid-based software testing framework
	Adaptive test tasks scheduling on the grid
	Dynamic bag-of-tasks model
	Swarm intelligence approach for test units scheduling
	Ant colony optimization
	Agents in a testing task scheduling ant colony
	Scheduling mechanism
	Preliminary simulation results

	Trustworthiness enforcement
	Grid workflow for integration testing
	Conclusion and future research direction
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

