Computational Infrastructure for Parallel,
Distributed, and Grid-based Monte Carlo
Computations

Michael Mascagni and Yaohang Li

Department of Computer Science and School of Computational Science and
Information Technology, Florida State University, Tallahassee, FL. 32306-4530 USA
E-mail: Michael.Mascagni@fsu.edu, yaohang@csit.fsu.edu,

Home page: http://www.cs.fsu.edu/ mascagni

Abstract. Monte Carlo applications are widely perceived as compu-
tationally intensive but naturally parallel. Therefore, they can be ef-
fectively executed using the dynamic bag-of-work model which is well
suited to parallel, distributed, and grid-based architectures. This paper
concentrates on providing computational infrastructure for Monte Carlo
applications on such architectures. This is accomplished by analyzing
the characteristics of large-scale Monte Carlo computations, and lever-
aging the existing Scalable Parallel Random Number Generators (SPRNG)
library. Based on these analyses, we improve the efficiency of subtask-
scheduling by implementing and analyzing the “N-out-of-M” strategy,
and develop a Monte Carlo-specific lightweight checkpointing technique,
which leads to a performance improvement. Also, we enhance the trust-
worthiness of Monte Carlo applications on these architectures by utilizing
the statistical nature of Monte Carlo and by cryptographically validating
intermediate results utilizing the random number generator already in
use in the Monte Carlo application. All these techniques lead to a high-
performance grid-computing infrastructure that is capable of providing
trustworthy Monte Carlo computation services.

1 Introduction

Readers are most likely already familiar with parallel and distributed computing
architectures, so we choose not to elaborate on them further. Thus, grid comput-
ing is characterized by the large-scale sharing and cooperation of dynamically
distributed resources, such as CPU cycles, communication bandwidth, and data,
to constitute a computational environment [1]. In the grid’s dynamic environ-
ment, from the application point-of-view, two issues are of prime importance:
performance — how quickly the grid-computing system can complete the submit-
ted tasks, and trustworthiness — that the results obtained are, in fact, due to the
computation requested. To meet these two requirements, many grid-computing
or distributed-computing systems, such as Condor [2], HARNESS [3], Javelin [4],
Globus [5], and Entropia [7], concentrate on developing high-performance and
trust-computing facilities through system-level approaches. In this paper, we are

going to analyze the characteristics of Monte Carlo applications, which are a
potentially large computational category of parallel, distributed, and grid ap-
plications, to develop approaches to address performance and trustworthiness
issues at the application level.

The remainder of this paper is organized as follows. In §2, we analyze the
characteristics of Monte Carlo applications. We also quickly describe the ran-
dom number generation requirements for these applications on parallel, dis-
tributed, and grid-based architectures. We then develop a generic grid-computing
paradigm for Monte Carlo computations. We discuss how to take advantage of
the characteristics of Monte Carlo applications to improve the performance and
trustworthiness of Monte Carlo grid computing in §3 and §4, respectively. Fi-
nally, §5 summarizes our conclusions and future research directions.

2 Grid-based Monte Carlo Applications

Among parallel, distributed, and grid applications, those using Monte Carlo
methods, which are widely used in scientific computing and simulation, have
been considered too simplistic for consideration due to their natural parallelism.
However, below we will show that many aspects of Monte Carlo applications can
be exploited to provide much higher levels of performance and trustworthiness
for computations on these architectures. According to word of mouth, about 50%
of the CPU time used on supercomputers at the U. S. Department of Energy
National Labs is spent on Monte Carlo computations. Unlike data-intensive ap-
plications, Monte Carlo applications are usually computation intensive [6], and
they tend to work on relatively small data sets. Parallelism is a way to acceler-
ate the convergence of a Monte Carlo computation. If N processors execute N
independent copies of a Monte Carlo computation, the accumulated result will
have a variance IV time smaller than that of a single copy. In a distributed Monte
Carlo application, once a distributed task starts, it can usually be executed inde-
pendently with almost no interprocess communication. Therefore, Monte Carlo
applications are perceived as naturally parallel, and they can usually be pro-
grammed via the so-called dynamic bag-of-work model. Here a large task is split
into smaller independent subtasks and each are then executed separately. Effec-
tively using the dynamic bag-of-work model for Monte Carlo requires that the
underlying random number streams in each subtask be independent in a statisti-
cal sense. The SPRNG (Scalable Parallel Random Number Generators) library [11]
was designed to use parameterized pseudorandom number generators to provide
independent random number streams to parallel processes. Some generators in
SPRNG can generate up to 27800 _ 1 independent random number streams with
sufficiently long period and good quality [13]. These generators meet the ran-
dom number requirements of most Monte Carlo applications for these types of
architectures.

SPRNG was originally designed to provide independent and dynamic streams of
random numbers for massively parallel supercomputers. The design of SPRNG was
based on the needs of Monte Carlo applications, like neutronics. In neutronics, it

is commonplace to associate a single random number stream with each neutron.
When a neutron splits into more neutrons, each child neutron is then associated
with a new (and hopefully independent) random number stream. Given such a
computation, SPRNG ensures that, when desired, such a computation performed
on a parallel or distributed machine can be entirely reproducible. The details of
how this is achieved is beyond the current scope [11]. However, these capabilities
of SPRNG are extensible to distributed and grid-based architectures, and form the
underpinnings for the grid services we will discuss. In the remainder of this paper
we thus focus exclusively on grid computing issues for Monte Carlo applications.

The intrinsically parallel aspect of Monte Carlo applications makes them an
ideal fit for the grid-computing paradigm. In general, grid-based Monte Carlo
applications can divide the Monte Carlo task into a number of subtasks by the
task-split service and utilize the grid’s schedule service to dispatch these in-
dependent subtasks to different nodes [15]. The connectivity services provide
communication facilities among nodes providing computational services. The ex-
ecution of a subtask takes advantage of the storage service of the grid to store
intermediate results and to store each subtask’s final (partial) result. When the
subtasks are done, the collection service can be used to gather the results and
generate the final result of the entire computation.

The inherent characteristics of Monte Carlo applications motivate the use
of grid computing to effectively perform large-scale Monte Carlo computations.
Furthermore, within this Monte Carlo grid-computing paradigm, we can use the
statistical nature of Monte Carlo computations and the cryptographic aspects of
random numbers to reduce the wallclock time and to enforce the trustworthiness
of the computation.

3 Improving the Performance of Grid-based Monte Carlo
Computing

3.1 The N-out-of-M Strategy

Subtask-Scheduling using the N-out-of-M Strategy The nodes that pro-
vide CPU cycles in a grid system will most likely have computational capabilities
that vary greatly. A node might be a high-end supercomputer, or a low-end per-
sonal computer, even just an intelligent widget. In addition, these nodes are
geographically widely distributed and not centrally manageable. A node may
go down or become inaccessible without notice while it is working on its task.
Therefore, a slow node might become the bottleneck of the whole computation
if the assembly of the final result must wait for the partial result generated on
this slow node. A delayed subtask might delay the accomplishment of the whole
task while a halted subtask might prevent the whole task from ever finishing. To
address this problem, system-level methods are used in many grid systems. For
example, Entropia [7] tracks the execution of each subtask to make sure none
of the subtasks are halted or delayed. However, the statistical nature of Monte
Carlo applications provides a shortcut to solve this problem at the application
level.

Suppose we are going to execute a Monte Carlo computation on a grid system.
We split it into N subtasks, with each subtask based on its unique independent
random number stream. We then schedule each subtask onto the nodes in the
grid system. In this case, the assembly of the final result requires all the N partial
results generated from the N subtasks. Each subtask is a “key” subtask, since
the suspension or delay of any one of these subtasks will have a direct effect on
the completion time of the whole task.

When we are running Monte Carlo applications, what we really care about
is how many random samples (random trajectories) we must obtain to achieve
a certain, predetermined, accuracy. We do not much care which random sam-
ple set is estimated, provided that all the random samples are independent in a
statistical sense. The statistical nature of Monte Carlo applications allows us to
enlarge the actual size of the computation by increasing the number of subtasks
from N to M, where M > N. Each of these M subtasks uses its unique indepen-
dent random number set, and we submit M instead of N subtasks to the grid
system. Therefore, M bags of computation will be carried out and M partial
results may be eventually generated. However, it is not necessary to wait for all
M subtasks to finish. When IV partial results are ready, we consider the whole
task for the grid system to be completed. The application then collects the NV
partial results and produces the final result. At this point, the grid-computing
system may broadcast abort signals to the nodes that are still computing the
remaining subtasks. We call this scheduling strategy the N-out-of-M strategy.
In the N-out-of-M strategy more subtasks than are needed are actually sched-
uled, therefore, none of these subtasks will become a “key” subtask and we can
tolerate at most M — N delayed or halted subtasks.

Also notice that the Monte Carlo computation using the N-out-of-M strategy
is reproducible, because we know exactly which NV out of M subtasks are actually
involved and which random numbers were used. Thus each of these N subtasks
can be reproduced later. However, if we want to reproduce all of these N subtasks
at a later time on the grid system, the N-out-of-N strategy must be used.

One drawback of the N-out-of-M strategy is we must execute more subtasks
than actually needed and will therefore increase the computational workload
on the grid system. However, our experience with distributed computing sys-
tems such as Condor and Javelin shows that most of the time there are more
nodes providing computing services available in the grid system than subtasks.
Therefore, properly increasing the computational workload to achieve a shorter
completion time for a computational task should be an acceptable tradeoff in a
grid system.

Analysis of the N-out-of-M Strategy In Monte Carlo applications, N is
determined by the application and depends on the number of random samples
or random trajectories needed to obtain a predetermined accuracy. The problem
is thus how to choose the value M properly. A good choice of M can prevent
a few subtasks from delaying or even halting the whole computation. However,
if M is chosen too large, there may be little benefit to the computation at

the cost of significantly increasing the workload of the grid system. In order to
determine a proper value of M to achieve a specific performance requirement,
we study the grid behavior and consider some system parameters. In the N-
out-of-M strategy, the completion time of a Monte Carlo computational task
depends on the performance of each individual node that is assigned a subtask,
the node failure rate, and also the interconnection network failure rate. We make
the following assumptions to set up our model:

1. The execution of a task completely occupies a node on the grid, and no other
jobs can be executed on the same node concurrently.

2. Compared to the execution time, the tasks’ scheduling time and result col-
lection time is short enough to be ignored.

3. Each node works on its task independently.

4. Each node has an equal probability of obtaining a task from the schedule
service. The tasks are scheduled without noticing the performance of each
node.

To analyze this we establish a Petri Net (PN) model of the N-out-of-M strat-
egy. This PN model has M nodes in total. A node, ¢, alternates between an up
state (place pi,,) and a down state (place p,,,). Transition t},,, represents
node unavailability (with unavailability rate \) and transition tfm node back to
service (with availability rate p). Transition tiomplete is assigned the task progress
threshold W (usually 100%) so that the subtask completion condition (token in
Dsubtask) 18 reached when W is hit. When pgyprask gathers N tokens, transition
tN—out—of—m enables firing and a token in peompiete indicates the completion of
the Monte Carlo task.

We also establish a simpler binomial model for the subtask-scheduling scheme
using the N-out-of-M strategy based on the above PN model. Assume that the
probability of a subtask completing by time ¢ is given by p(¢). The function p(t)
describes the aggregate probability over the pool of nodes in the grid. In a real-
life grid system, p(t) could be measured by computing the empirical frequencies
of completion times over the pool. In this paper, we model p(t) based on an
analytic probability distribution function.

Let S be the total number of nodes available in the grid system,

piys be the probability of node i participating in the computations is up,
where pg,o = p/(1n+ A),

0;! be the service rate of node i, which can be measured as the number of
tasks that can be finished within a specific period of time without interruption.
Considering node availability, the actual service rate, 6;, in node i is 6; = 6} *péys.

At time ¢, the probability that a Monte Carlo subtask will be done on node
iis 1 — e%?. Since each node has equal probability to be scheduled a subtask,
p(t) can be represented as

1 5 0;t 1 5 0;t
pl) =g (=) =1— g 3, (1)

Wl

If the service rates, 61, 02, ..., 65, conform to a distribution with probability
density function ¢(6), p(t) can thus be written as

1 L
p(t)=1-— E/o e?@tqg. (2)

Here L is the maximum value of 6; in the computation.
Typically, if all of the nodes have the same service rate 6, p(t) can be simpli-
fied to

p(t) =1, (3)
Then, the probability that exactly N out of M subtasks are complete at time ¢
is given by

Prsactyx-mi-ag-0(0) = (3)70 x G =pO .

We can approximate Py _oyi—or—n(t) using a Poisson distribution with A=N*p(t).
Then, Peyactiy— N—out—of—n(t)can be approximated as

/\IM \
PE:cactly—N—out—of—M(t) ~ M67 . (5)

The probability that at least N subtasks are complete is thus given by

MM _
Pr-amt-as-()= 3 ()i < 1=t ©)
The old strategy can be thought of as “N-out-of-N” which has probability given
by

PN—out—of—N(t) :pN(t)' (7)
Now the question is to decide on a reasonable value for M to satisfy a re-
quired task completion probability a (when N subtasks are complete on the
grid). Unfortunately, it is hard to explicitly represent M in analytic form. How-
ever, we use a numerical method, which gradually increases M by 1 to evaluate
Prn_out—of—nm(t) until the value of Pn_oyi—of—a(t) is greater than a. This em-
pirically gives us the minimum value of M. An alternative approach to estimate
M/N is to use a normal distribution to approximate the underlying binomial.
When M * (1 —p(t)) > 5 and M = p(t) > 5, the binomial distribution can be ap-
proximated by a normal curve with mean m = M * p(t) and standard deviation
o =+/Mp(t)(1 —p(t)). Then, we can find the minimum value M that satisfies

M—m)_dj(N—m

®() > a, (8)

where & is the normal cumulative distribution function.
In a grid system, nodes providing computational services join and leave dy-
namically. Some nodes are considered to be “transient” nodes, which provide

computational services temporarily and may depart from the system perma-
nently. A subtask submitted to a “transient” node may have no chance of being
finished. Suppose the fraction of “transient” nodes in a grid is 3, then, we need
to enlarge M to [M/(1 — 3)] to tolerate these never-finished subtasks.

Simulation of the N-out-of-M Strategy In our simulation program of the
N-out-of-M strategy, we simulated a 1,000-node computational grid. Nodes join
and leave the system with a specified probability. Also, nodes have a variety
of computational capabilities. Each simulation is run for 1,000 time steps. (A
task running on a node with service rate 6 will take 1/0 time steps, e.g., a fast
node with service rate 0.01 will take 100 time steps to complete the task while
a slow one with service rate 0.001 will take 1,000) At each time step, a certain
number of nodes go down while a certain number of nodes become available for
computation. We built our simulations in order to

1. evaluate the validity of our model, and to
2. compare the performance of the N-out-of-M strategy in grid systems with
different configurations.

Figure 1 shows our simulation results and model prediction of the N-out-of-M
strategy for grid Monte Carlo applications. Our analytical model matches the
simulation results quite well. Also, we can find that with the proper choice of
M (20 in the graph), the Monte Carlo task completion time can be improved
significantly over the N-out-of-N strategy. However, if we enlarge M too much,
the workload of the system increases without significantly reducing the Monte
Carlo task completion time. Also, we notice that as time goes on, the N-out-of-
M strategy always has a higher probability of completion than the N-out-of-N
strategy, although they all converge to probability one at large times.

Figures 2 and 3 show the simulation results of the N-out-of-M strategy in
different grid systems. Both simulated grid systems assume that the service rates
0 of nodes are normally distributed with the same means (0.005) but different
variances (0.001 in Figure 2 and 0.003 in Figure 3). Figure 2 simulates a grid
comprised of nodes with similar performance characteristics. This can be a grid
constructed from computers in a computer lab that have similar performance
parameters. On the other hand, Figure 3 is the simulation of a grid whose nodes
have computational capabilities in a wide range. In practice, this grid can be a
system with geographically widely distributed nodes like SETI@home [9], where a
node might be a high-end supercomputer, or a low-end personal computer. From
the graphs, we see that the N-out-of-M scheduling strategy improves the Monte
Carlo task completion time in both grid systems; however, we gain more signifi-
cant improvement in the system comprised of nodes with service rates having a
large variance. This experimental result indicates that the N-out-of-M strategy
is more effective in a grid system where an individual node’s performance varies
greatly. More interestingly, the simulation results also show that, in both grid
systems, with a sufficiently large value of M, the time values after which the
Monte Carlo task is complete with a high probability is close to 200 time steps,

g

—— C~uot20 Sim

Parcaertages
(i
*

—8— | Qo020 Mo
1CroutotS0 Sim
1GHoer-ot-S0 Mod

Morte Carlo Tasks Completion

—=— Crowot10 Sim
—— 0ot 10 Mod

1] 00 00 700 500
Time

Fig. 1. Simulations and Model Prediction of the N-out-of-M Scheduling Strategy for
Grid Monte Carlo Applications.

which is exactly the subtask completion time for a single node with the mean
(0.005) service rate. Therefore, we can expect that, with a proper number of sub-
tasks scheduled using the N-out-of-M strategy, the Monte Carlo task completion
time on a grid can be made to be almost the same as the subtask completion
time in a node with average computational capability.

Lightweight Checkpointing A subtask running on a node of a grid system
may take a very long time to finish. The N-out-of-M strategy is an attempt to
mitigate the effect of this on the overall running time. However, if checkpointing
is incorporated, one can directly attack reducing the completion time of the
subtasks. Some grid computing systems implement a process-level checkpoint.
Condor, for example, takes a snapshot of the process’s current state, including
stack and data segments, shared library code, process address space, all CPU
states, states of all open files, all signal handlers, and pending signals [12]. On
recovery, the process reads the checkpoint file and then restores its state. Since
the process state contains a large amount of data, processing such a checkpoint is
quite costly. Also, process-level checkpointing is very platform-dependent, which
limits the possibility of migrating the process-level checkpoint to another node
in a heterogeneous grid-computing environment.

Fortunately, Monte Carlo applications have a structure highly amenable to
application-based checkpointing. Typically, a Monte Carlo application starts in
an initial configuration, evaluates a random sample or a random trajectory, es-
timates a result, accumulates means and variances with previous results, and
repeats this process until some termination condition is met. Although differ-

1885

] —— 100wt |

—8— {i-oenod-20

105
E ; 10oanot-50
D P sl ; ; n o

Tims Edaps

Moni Carlo Task Complaion Porooniga
—1—]
ta_...,_*__*_h

Fig. 2. Simulations of the N-out-of-M Strategy on a Grid System with Nodes Service
Rates Normally Distributed (Mean=0.005, Variance=0.001).

1005 —

0%

H__\'F‘_"-\—\.H

—— 00

e]
i —8— {00 ||
A Gronnod-50
PRy PRI T T T T

[} 200 400 B0 200 1000 1200

Mont Carlo Tash Complafon Percentgs
-
¥

Fig. 3. Simulations of the N-out-of-M Strategy on a Grid System with Nodes Service
Rates Normally Distributed (Mean=0.005, Variance=0.003).

ent Monte Carlo applications may have very different implementations, many
of them can be developed or adjusted in a typical programming structure that
consists of initialization, followed by a loop for generating statistical samples,
and ending with the summation of the overall statistics.

Thus, to recover an interrupted computation, a Monte Carlo application
needs to save only a relatively small amount of information. The necessary in-
formation to reconstruct a Monte Carlo computation image at checkpoint time
will be the current results based on the estimates obtained so far, the current
status and parameters of the random number generators, and other relevant pro-
gram information like the current iteration number. This allows one to make a
smart and quick application checkpoint in most Monte Carlo applications. Using
XML [8] to record the checkpointing information, we can make this checkpoint
platform-independent. More importantly, compared to a process checkpoint, the
application-level checkpoint is much smaller in size and much quicker to generate.
Therefore, it should be relatively easy to migrate a Monte Carlo computation
from one node to another in a grid system. With the application-level checkpoint-
ing and recovery facilities, the typical Monte Carlo application’s programming
structure can be amended as described above. However, the implementation of
application level checkpointing will somewhat increase the complexity of devel-
oping new Monte Carlo grid applications.

4 Enhancing the Trustworthiness of Grid-based Monte
Carlo Computing

4.1 Distributed Monte Carlo Partial Result Validation

The correctness and accuracy of grid-based computations are vitally important
to an application. In a grid-computing environment, the service providers of
the grid are often geographically separated with no central management. Faults
may hurt the integrity of a computation. These might include faults arising
from the network, system software or node hardware. A node providing CPU
cycles might not be trustworthy. A user might provide a system to the grid
without the intent of faithfully executing the applications obtained. Experience
with SETThome has shown that users often fake computations and return wrong
or inaccurate results. The resources in a grid system are so widely distributed
that it appears difficult for a grid-computing system to completely prevent all
“bad” nodes from participating in a grid computation. Unfortunately, Monte
Carlo applications are very sensitive to each partial result generated from each
subtask. An erroneous partial result will most likely lead to the corruption of
the whole grid computation and thus render it useless.

To enforce the correctness of the computation, many distributed computing
or grid systems adapt fault-tolerant methods, like duplicate checking [10] and
majority vote [16]. In these approaches, subtasks are duplicated and carried out
on different nodes. Erroneous partial results can be found by comparing the par-
tial results of the same subtask executed on different nodes. Duplicated checking

requires doubling computations to discover an erroneous partial result. Majority
vote requires at least three times more computation to identify an erroneous par-
tial result. Using duplicate checking or majority vote will significantly increase
the workload of a grid system.

In the dynamic bag-of-work model as applied to Monte Carlo applications,
each subtask works on the same description of the problem but estimates based
on different random samples. Since the mean in a Monte Carlo computation is
accumulated from many samples, its distribution will be approximately normal
based in the Central Limit Theorem. Suppose fi, ..., fi, ..., fn are the n
partial results generated from individual nodes on a grid system. The mean of
these partial results is

F=23 ©

s=\mg 2 i D2 (10)
i=1

Specifically, the Central Limit Theorem states that f should be distributed
approximately as a Student-¢ random variable with mean f , standard deviation
s/y/n, and n degrees-of-freedom. However, since n, the number of subtasks, is
often large, we may instead approximate the Student-¢ distribution with the nor-
mal. Standard normal confidence interval theory states that with 68% confidence
that the exact mean is within 1 standard deviation of f , with 95% confidence
within 2 standard deviations, and 99% confidence within 3 standard deviations.
This statistical property of Monte Carlo computation can be used to develop
an approach for validating the partial results of a large grid-based Monte Carlo
computation.

Here is the proposed method for distributed Monte Carlo partial result vali-
dation. Suppose we are running n Monte Carlo subtasks on the grid, and the ith
subtask returns partial result, f;. We anticipate that the f; are approximately
normally distributed with mean, f, and standard deviation, ¢ = s/y/n. We ex-
pect that about one of the f; in this group of n to lie outside a normal confidence
interval with confidence 1 — 1/n. In order to choose a confidence level that per-
mits events we expect to see, statistically, yet flags events as outliers requires us
to choose a multiplier, ¢, so that we flag events that should only occur once in a
group of size cn. The choice of ¢ is rather subjective, but ¢ = 10 implies that in
only 1 in 10 runs of size n we should expect to find an outlier with confidence
1 —1/10n. With a given choice of ¢, one computes the symmetric normal con-
fidence interval based on a confidence of a% = 1 — 1/en. Thus the confidence
interval is [f — Zo)20, f+ Zy 20], where Z, /5 is unit normal value such that
Zeayo

S ﬁe*%dx = g. If f; is in this confidence interval, we can consider this
0

partial result as trustworthy. However, if f; falls out of the interval, which may
happen merely by chance with a very small probability, this particular partial
result is suspected.

There are two possibilities for a partial result, f;, to fall out of the confidence
interval. These are

1. errors occur during the computation of this subtask, or
2. a rare event with very low probability is captured.

In former case, this partial result is erroneous and should be discarded, whereas
in the latter case, we need to take it into consideration. To identify these two
cases, we can rerun the particular subtask that generated the suspicious partial
result on a trusted node for further validation.

This Monte Carlo partial result validation method supplies us with a way to
identify suspicious results without running more subtasks. This method assumes
that the majority of the nodes in grid system are “good” service providers, which
can correctly and faithfully execute their assigned task and transfer the result.
If most of the nodes are malicious, this validation method may not be effective.
However, experience has shown that the fraction of “bad” nodes in volunteered
computation is very small.

4.2 Intermediate Value Checking

Usually, a grid-computing system compensates the service providers to encour-
age computer owners to supply resources. Many Internet-wide grid-computing
projects, such as SETIGhome [9], have the experience that some service providers
don’t faithfully execute their assigned subtasks. Instead they attempt to pro-
vide bogus partial results at a much lower personal computational cost in order
to obtain more benefits. Checking whether the assigned subtask from a service
provider is faithfully carried out and accurately executed is a critical issue that
must be addressed by a grid-computing system.

One approach to check the validity of a subtask computation is to validate
intermediate values within the computation. Intermediate values are quantities
generated within the execution of the subtask. To the node that runs the sub-
task, these values will be unknown until the subtask is actually executed and
reaches a specific point within the program. On the other hand, to the clever ap-
plication owner, certain intermediate values are either pre-known and secret or
are very easy to generate. Therefore, by comparing the intermediate values and
the pre-known values, we can control whether the subtask is actually faithfully
carried out or not. Monte Carlo applications consume pseudorandom numbers,
which are generated deterministically from a pseudorandom number generator.
If this pseudorandom number generator has a cheap algorithm for computing
arbitrarily within the period, the random numbers are perfect candidates to be
these cleverly chosen intermediate values. Thus, we have a very simple strat-
egy to validate a result from subtasks by tracing certain predetermined random
numbers in Monte Carlo applications.

For example, in a grid Monte Carlo application, we might force each subtask
to save the value of the current pseudorandom number after every N (e.g., N =
100,000) pseudorandom numbers are generated. Therefore, we can keep a record
of the Nth, 2Nth, ..., kNth random numbers used in the subtask. To validate
the actual execution of a subtask on the server side, we can just recompute the
Nth, 2Nth, ..., kNth random numbers applying the specific generator with
the same seed and parameters as used in this subtask. We then simply match
them. A mismatch indicates problems during the execution of the task. Also,
we can use intermediate values of the computation along with random numbers
to create a cryptographic digest of the computation in order to make it even
harder to fake a computational result. Given our list of random numbers, or
a deterministic way to produce such a list, when those random numbers are
computed, we can save some piece of program data current at that time into an
array. At the same time we can use that random number to encrypt the saved
data and incorporate these encrypted values in a cryptographic digest of the
entire computation. At the end of the computation the digest and the saved
values are then both returned to the server. The server, through cryptographic
exchange, can recover the list of encrypted program data and quickly compute
the random numbers used to encrypt them. Thus, the server can decrypt the
list and compare it to the “plaintext” versions of the same transmitted from the
application. Any discrepancies would flag either an erroneous or faked result.
While this technique is certainly not a perfect way to ensure correctness and
trustworthiness, a user determined on faking results would have to scrupulously
analyze the code to determine the technique being used, and would have to know
enough about the mathematics of the random number generator to leap ahead as
required. In our estimation, surmounting these difficulties would far surpass the
amount of work saved by gaining the ability to pass off faked results as genuine.

5 Conclusions

Monte Carlo applications generically exhibit naturally parallel and computation-
ally intensive characteristics. Moreover, we can easily fit the dynamic bag-of-work
model, which works so well for Monte Carlo applications, onto a grid system to
implement large-scale grid-based Monte Carlo computing. Furthermore, based
on the analysis of grid-based Monte Carlo applications, we may take advantage
of the statistical nature of Monte Carlo calculations and the cryptographic na-
ture of random numbers to enhance the performance and trustworthiness of this
Monte Carlo grid-computing infrastructure at the application level.

We are developing a Grid-Computing Infrastructure for Monte Carlo Appli-
cations (GCIMCA) based on the Globus toolkit [5] and the SPRNG library [11],
using the techniques described in this paper. The infrastructure software aims
to provide grid services to facilitate the development of grid-based Monte Carlo
applications and the execution of large-scale Monte Carlo computations in a
grid-computing environment. At the same time, we are also trying to execute
some real-life large-scale Monte Carlo applications, such as the Monte Carlo sim-

ulation of Ligand-Receptor interaction in structured protein systems [17] and the
Monte Carlo molecular modeling applications, on our developing grid-computing
infrastructure.

References

1

2.

© o N

10.

11.

12.

13.

14.
15.

16.

17.

I. FOSTER, C. KESSELMAN, AND S. TUESKE, “The Anatomy of the Grid,” Inter-
national Journal of Supercomputer Applications, 15(3): 1-25, 2001.

M. Litzkow, M. LivNYy, AND M. MuTkA, “Condor—A Hunter of Idle Worksta-
tions,” Proceedings of the 8th International Conference of Distributed Computing
Systems: 104-111, 1998.

M. Beck, J. DoNGARRA, G. Faca, A. Geist, P. Gray, J. Kownri,
M. MicLiArDI, K. MOORE, T. MOORE, P. PAPADOPOULOUS, S. SCOTT, AND
V. SUNDERAM, “HARNESS: A Next Generation Distributed Virtual Machine,”
Journal of Future Generation Computer Systems, 15(5/6): 571-582, 1999.

B. O.CHRISTIANSEN, P. CappELrLO, M. F. Ionescu, M. O. NEARY,
K. E. SCHAUSER, AND D. Wu, “Javelin: Internet-Based Parallel Computing Us-
ing Java,” Concurrency: Practice and Ezxperience, 9(11): 1139-1160, 1997.

I. FosTER AND C. KESSELMAN, “Globus: A Mmetacomputing Infrastructure
Toolkit,” International Journal of Supercomputer Applications, 11(2): 115-128,
1997.

A. SRINIVASAN, D. M. CEPERLEY, AND M. MASCAGNI, “Random Number Gener-
ators for Parallel Applications,” Monte Carlo Methods in Chemical Physics, 105:
13-36, 1997.

ENTROPIA WEBSITE: http://www.entropia.com.

XML WEBSITE: http://www.xml.org.

E. KorpPELA, D. WERTHIMER, D. ANDERSON, J. COBB, AND M. LEBOFSKY,
“SETI@home-Massively Distributed Computing for SETI,” Computing in Science
and Engineering, 3(1): 78-83, 2001.

C. AKTOUF, O. BENKAHLA, C. ROBACH, AND A. GURAN, Basic Concepts &
Advances in Fault-Tolerant Computing Design, World Scientific Publishing Com-
pany, 1998.

M. MASCAGNI AND A. SRINIVASAN, “Algorithm 806: SPRNG: A Scalable Li-
brary for Pseudorandom Number Generation,” ACM Transactions on Mathemat-
ical Software, 26: 436-461, 2000.

M. LivNy, J. BASNEY, R. RAMAN, AND T. TANNENBAUM, “Mechanisms for High
Throughput Computing,” SPEEDUP Journal, 11(1), 1997.

SPRNG WEBSITE: http://sprng.cs.fsu.edu.

Condor WEBSITE: http://www.cs.wisc.edu/condor.

R. Buyya, S. CHAPIN, AND D. DiNucci, “Architectural Models for Resource
Management in the Grid,” Proceedings of The First IEEE/ACM International
Workshop on Grid Computing (GRID2000), Springer Verlag LNCS Series, 2000.
L. F. G. SARMENTA, “Sabotage-Tolerance Mechanisms for Volunteer Comput-
ing Systems,” Proceedings of ACM/IEEE International Symposium on Cluster
Computing and the Grid (CCGrid’01), 2001.

Y. L1, M. MASCAGNI, AND M. H. PETERS, “Grid-based Nonequilibrium Multiple-
Time Scale Molecular Dynamics/Brownian Dynamics Simulations of Ligand-
Receptor Interactions in Structured Protein Systems,” Proceedings of the First
BioGrid Workshop at the 3rd IEEE/ACM Symposium Cluster Computing and
the Grid, 2003.

