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Parallel Tempering (PT) is an effective algorithm to overcome the slow convergence in 
low-temperature protein simulation by initiating multiple systems to run at multiple 
temperature levels and randomly switch with neighbor temperature levels. We 
implemented the PT scheme in the Rosetta to explore the rough energy landscape in 
protein folding and to improve the success rate of Rosetta in topologically complex 
structures. Compared to the original Simulated Annealing (SA) scheme in Rosetta, our 
preliminary computational results show that the PT scheme in Rosetta program exhibits a 
wider range sampling in the potential energy surface in protein folding. 

1. Introduction 

One of the most important open problems in molecular biology is the prediction 
of the spatial conformation of a protein from its primary structure, i.e., from the 
linear sequence of its amino acids. Structural genomic enterprise crucially 
depends on the predictive tools to extend knowledge from the studied species to 
those where the corresponding proteins cannot be explored with the direct 
methods. The Rosetta program [1, 2] currently is the leading tool in predicting 
overall backbone fold for the protein domains that lacks any detectable 
structural analogs in PDB. 
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 The Rosetta algorithm employs a Simulated Annealing (SA) method [3] to 
produce a Markov process for exploring the huge conformational space of 
amino acid sequences with the goal finding the conformation with the global 
energy minimum. The SA method is based on the fact that it is easier for a 
system to escape from a local minimum energy at a significantly higher 
temperature. Thus, within the SA scheme, the temperature is initially raised to a 
high value. The system evolves according to the Metropolis-Hastings criterion 
[7], while the temperature is very slowly reduced during the simulation 
procedure. 

The energy landscape of protein folding usually has an intricate surface 
with high degree of freedom. Our research [8] shows that the SA method will be 
easily trapped in deep local minima in a simulated rough “funnel” energy 
function. This also indicates that, in the energy landscape of protein folding that 
usually roughly resembles a funnel with hierarchically disposed local minima 
[9], the sampling process may also be unable to escape from the deep local 
minima.  

Compared to the SA method, the Parallel Tempering (PT) method [6, 10, 
11] has multiple systems, one at each temperature level, and enables the system 
at the low temperature level to escape from local minima and to locate multiple 
minima by allowing the system to switch with the system configuration at 
higher temperature ladder according to the Metropolis-Hastings rule. Recent 
researches [11, 12, 13] indicate that, with respect to obtaining low temperature 
system configurations, PT is superior to simple Monte Carlo and to SA. 

In this paper, we will adopt the Parallel Tempering scheme in the Rosetta 
program to explore the complex protein folding landscape. The remainder of 
this paper is organized as follows. We illustrate the overview of Rosetta 
program and the Rosetta PT algorithm in Sections 2 and 3, respectively. In 
Section 4, we discuss the preliminary results of applying the PT algorithm to 
Rosetta program. Finally, Section 5 summarizes our conclusions and future 
research directions.  

2. Rosetta Algorithm 

The Rosetta program currently is the most successful tool in predicting overall 
backbone fold for the protein domains that lacks any detectable structural 
analogs in PDB. Rosetta combines many ideas for the acceleration of the 
structure search discussed above: collective variables, conformer libraries and 
empirical energy functions. The idea of collective variable approach is given an 
interesting turn in Rosetta. Each protein chain residue has two associated 
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libraries of the conformers for 3-mer and 9-mer segments centered at this 
residue, therefore allowing to change cooperatively structure of the whole 
segment by changing a single discreet parameter – number of the conformer we 
want to test at this moment. The conformers libraries for each residue are 
custom made from all available PDB structures before Rosetta starts 
constructing model for a given protein chain based on two criteria: sequence 
similarity and predicted secondary structure. For example, if the residue is 
predicted to have probabilities 50%, 30% and 20% for being in α-helix, β-
strand and loop region, correspondingly, local segment library will have 50% of 
α-helix fragments, 30% of β-strand and 20% of other extracted from PDB with 
sequences, which most closely match the given sequence surrounding this 
residue.    

Rosetta energy (scoring) function is a complex combination of the functions 
that mostly utilize PDB-derived measures of probability for a given 
configuration to be native one. One of the most important components is the 
table of probabilities to observe specific types of residues into certain distances 
from each other. In such approach the scoring function is smoothly integrating 
many types of physical interactions contributing to preferred arrangements of 
residues and implicitly taking into account factors that could be of evolutionary 
origin. This scoring function is extremely efficient computationally and very 
“soft” as it significantly smoothes out underlying rough energy landscape.    

In the process of simulation Rosetta switches from softer energy functions 
to more “stiff” ones simultaneously changing the nature of the conformational 
steps it is using.  At the beginning, large segments are changing the 
conformation dramatically swinging in space remote segments of the chain, on 
later stages it is using smaller changes preserving significant part of already 
found contacts and engaging small incremental adjustments in the individual 
dihedral angles.  As all other simulation program Rosetta gives not a single 
answer but a set of answers, and one of the largest remaining problems is to 
select a correct one out of top models as among the score value alone is not 
reliable indicator when we are discussing top bin of models.  For protein 
domains of 100-150 amino acids Rosetta most often contains a correct model 
among five top score, if we define as correct model reproducing fold of the 
segment (2-3 A difference in RMSD of the backbone), and does so equally well 
for domains with novel never before observed folds. This is a remarkable 
achievement, which would be totally unthinkable even 5 years ago, but there is 
still a lot of space for improvement. 
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Currently Rosetta has a lower success rate on topologically complex 
structures [4, 5]. The frequency of occurrence of high contact order or many 
stranded beta sheets is lower in Rosetta than in the natural protein population: 
the topological complexity of a protein dramatically decreases our capability of 
sampling near native conformations.    

Protein conformational space is so large that long term molecular dynamic 
modeling quickly becomes untenable at even modest sized proteins.  A known 
route to acceleration of the system dynamic evolution is to allow local 
minimums on a potential surface to freely exchange, thus avoiding kinetic 
bottlenecks.  It is feasible that Rosetta performance could be significantly 
improved by borrowing advanced techniques from Monte-Carlo sampling 
theory developed in applied math theory several last years. 

 At present Rosetta over samples (i.e. wastes effort) because it tends to 
predict the same structures multiple times in separate runs of the program. Such 
behavior strongly indicates local minima trapping problem. It should be possible 
to borrow from multiple temperature ensemble Monte Carlo techniques to 
optimally sample potential energy surface. 

3. Parallel Tempering in Rosetta Program 

We developed the Parallel Tempering scheme in Rosetta program. The Rosetta 
program employs various types of moves, including smooth moves and chuck 
moves by evaluating different scoring functions (the environment score and the 
pair score). PT is adopted in all moves. In Rosetta’s PT implementation, the 
Markov chains can be realized with two sets of moves: 
1. Local Monte Carlo moves at each temperature level. The transition 

probability only depends on the change of in scoring function )( iCE , 
where Ci is the configuration of the system at temperature level i. The 
Metropolis-Hastings [7] ratio at temperature level i is computed by 
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 The exchange is accepted according to the Metropolis-Hastings criterion 
with probability ),1min( )()()()( iijjijji CECECECEe ββββ +−−−

 to maintain the 
detailed balance condition of every Markov process. In the Rosetta 
program, the system consists of a lot of information and thus the exchange 
of systems is very costly. Alternatively, we exchange the temperatures of 
two neighbor levels instead. 
In the PT scheme of Rosetta, the moves at high temperature levels intend to 

have a wide range exploration of the system energy landscape with a higher 
acceptance rate while those at low temperature levels explores the local details. 
Altogether, the PT scheme is expected to provide an efficient approach to 
explore the rough protein folding energy landscape. 

4. Preliminary Results 

Protein Original Rosetta Rosetta PT 
Name structure rms rms-min rms rms-min 
1a32_ alpha 6.75 2.17 6.87 1.41 
1lis_ alpha 15.62 12.30 15.48 10.46 
1lz1_ alpha-beta 15.42 12.79 15.43 11.51 
2ptl_ alpha-beta 9.63 6.62 9.01 5.86 
1d3z_ alpha 7.63 4.94 7.70 4.58 
1gvp_ beta 12.67 10.42 12.90 9.53 
1cg5B alpha 14.67 12.02 14.29 10.37 
1danT beta 11.70 9.50 11.57 8.82 
1elwA alpha 10.71 3.02 10.63 3.30 
1ig5A alpha 6.48 4.25 6.76 4.00 
1louA alpha-beta 12.34 9.72 12.30 9.30 
1opd_ alpha-beta 11.94 10.17 11.89 8.26 
1pcfA beta 8.17 4.95 8.34 4.93 
1tig_ alpha-beta 8.65 6.72 8.05 5.55 
1tuc_ beta 9.43 7.12 8.97 5.89 
2acy_ alpha-beta 12.11 10.05 11.90 9.23 
5croA alpha-beta 7.80 4.74 7.92 4.73 

Table 1: *RMS and RMS-MIN Comparisons of Rosetta with SA Scheme 
(Original Rosetta) and Rosetta with PT Scheme in Various Protein Target 

Structures 
 

                                                           
* The computations are carried out on a IBM Linux cluster with 16 nodes, 1G 

Memory each node. 
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Table 1 shows the RMS and RMS-MIN comparisons of the original Rosetta 
program with SA scheme and the Rosetta with PT scheme in various protein 
target structures. The PT scheme employs 4 temperature levels, ranging from 
1.0 to 4.0 and Table 1 compares the average RMS and RMS-MIN values of the 
first 1000 conformations found in Rosetta and Rosetta PT search. The RMS 
column reflects the RMS value of the accepted conformation after an ab initio 
Rosetta search, which indicates the closeness of this conformation to the native 
structure. The RMS-MIN indicates the lowest RMS value of a protein 
conformation that is found during the Rosetta sampling procedure, however, the 
search moved away from this structure due to some reason, e.g., the structure 
had some pathology like a clash even though from the RMS point of view, it 
may have been a good one. 

Figure 2: RMS and RMS-MIN Comparison of 1000 Conformations Found in 
RosettaPT and Original Rosetta in Protein Target Structure 1lis 

 
The computational results shown in Table 1 indicate that Rosetta PT 

presents smaller RMS-MIN values in most experimental protein target 
structures than those of original Rosetta, most of which is 0.5 to 2.0 Å shift to 0 
(native structure). Figure 2 shows the histogram of the RMS and RMS-MIN 
values of 1000 conformations generated by Rosetta and Rosetta PT in structure 
target 1lis. We can find Rosetta PT has a significant shift to the native structure 
in RMS-MIN from the original Rosetta using SA algorithm. This phenomenon 
implies that the Rosetta PT search procedure is “closer” to the native structure 
than the SA search used in original Rosetta. In other words, the PT scheme has a 
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wider range of search in the protein folding energy landscape than the SA 
scheme in original Rosetta. 

Nevertheless, the RMS values in Table 1 do not show a significant 
improvement in Rosetta PT. More clearly, Figure 2 and Figure 3, which shows 
the RMS and contact order of 1000 structure produced by Rosetta and Rosetta 
PT in 1lis, respectively, do not exhibit significant improvement in Rosetta PT 
scheme as well. Therefore, even though the PT scheme is “closer” to the native 
structure in the search procedure, due to the acceptance criteria in Rosetta, the 
“close” native structure is not actually accepted and the system then moves 
away. 

Figure 3: Contact Order Comparison of 1000 Conformations Found in 
RosettaPT and Original Rosetta in Protein Target Structure 1lis (The contact 

order of the native 1lis structure is 30.80) 
 
To further analyze the PT scheme in Rosetta program, we take a closer look 

at the structures accepted in Rosetta PT at different temperature levels. Since the 
search algorithm in Rosetta actually explores the scoring function space, we 
display the scoring function and RMS values of the accepted structures in 
different temperature levels in Rosetta PT and those of the original Rosetta in 
Figure 4 and 5, respectively.  
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Figure 4: Sorted score values of structures at various temperature levels in 

Rosetta PT and those in original Rosetta at protein target 1lis. T is the 
temperature at each level. 

 
Figure 4 shows the score values of the first 200 structures of protein target 

1lis accepted at various temperature levels (T ranges from 1.0 to 4.0) in Rosetta 
PT and the score values of the first 200 structures accepted in original Rosetta. 
The score values are sorted in an ascending order. We can find that the 
conformations accepted at high temperature level exhibit averagely higher score 
than those at low temperature level and scoring function curve of original 
Rosetta locates between those of the high temperature level and the low 
temperature level in Rosetta PT. Figure 4 indicates that the Markov process in 
Rosetta PT at lower temperature level explores deeper minima in the scoring 
function in protein folding than that at higher temperature level. 
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Figure 5: sorted RMS of structures at various temperature levels in Rosetta PT 

and those in original Rosetta 
 

Figure 5 shows that the sorted RMS of the first 200 structures at various 
temperature levels in Rosetta PT and those in Rosetta. We can find that there is 
no significant difference in the RMS curves at different temperature levels in 
Rosetta PT and that of the original Rosetta. Both Figure 4 and 5 indicate that 
even though the structures accepted at lower temperature level in Rosetta PT 
yields smaller score values, the RMS of these structures are indistinguishable 
with those structures accepted at higher temperature. This explains why PT 
scheme in Rosetta is able to explore the wider range of the scoring function 
space and find the deeper energy minima, but the found structures in Rosetta PT 
does not have a significant RMS improvement. The reason is, low values in the 
scoring function do not indicate low RMS in the protein structure.  

5. Conclusions and Future Research 

The Parallel Tempering exhibits a fast convergence rate in complex molecular 
simulation. In this paper, we discuss applying the PT algorithm to Rosetta 
program with hope to have a more effective exploration in complex protein 
folding energy landscape. Our preliminary results show that the PT scheme in 
Rosetta program exhibits a wider range sampling in the scoring function 
surface. However, our results also indicate that even though the PT scheme has 
a wider range of exploration in the protein folding energy landscape, it does not 
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show a significant improvement in RMS and contact orders of the generated 
protein structures in Rosetta PT scheme. 

These preliminary computational results also raise several interesting 
research questions for us to explore: 

1. Can we apply some other more effective sampling approaches, such as 
Accelerated Simulated Tempering (AST) [8], Accelerated Parallel 
Tempering (APT) [14], or dynamic weighting [15], to Rosetta program to 
achieve an even wider exploration of the protein energy landscape? 

2. Can we adjust the acceptance criteria in Rosetta so that the structures that 
are “close” to native structures will not be ignored? 

3. Can we also develop new scoring functions or refine the current scoring 
functions in Rosetta to more precisely reflect the RMS or contact order of a 
protein structure? Scoring functions based on the contact order may be a 
good choice. 
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