
J Supercomput (2007) 41: 119–131
DOI 10.1007/s11227-006-0029-9

Trustworthy remote compiling services for grid-based
scientific applications

Yaohang Li · Daniel Chen · Xiaohong Yuan

Published online: 2 March 2007
© Springer Science+Business Media, LLC 2007

Abstract Grid computing, which is characterized by large-scale sharing and col-
laboration of dynamic resources, is becoming an emerging computing platform on
a global scale for data-intensive and computation-intensive scientific application.
However, the complications of large-scale scientific computations and simulations
harnessing massive computing resources are compounded by extensive heterogene-
ity in environments arising from “the Grid.” Scientists and engineers lack an intu-
itive grid-based compilation tool, which has contributed to the difficulty of exploiting
these diverse resources and developing their applications on the grid. While manual
configuration of various toolkits simplifying the end-to-end completion of a job is
adequate for a computational grid with a limited number of nodes, the compilation
procedure becomes inefficient for a computational grid with an increasing number
of heterogeneous computational service providers. On the other hand, a global-scale
computational grid is a potentially untrustworthy computing environment. How to
take advantage of the potentially untrustworthy grid resources to provide trustworthy
computational services for large-scale scientific applications is another critical issue.

In this article, a remote compiling service for a heterogeneous computational grid
is developed. In addition to running compilation tasks, the remote compiling service
provides security enforcement and validation facilities, including intermediate value
checking, secure source program submission, restricted compilation, and binary in-
spection, to support trustworthy compilation and execution of grid-based scientific
applications. Overall, it is expected that our remote compiling services on the grid

Y. Li (�) · D. Chen · X. Yuan
Department of Computer Science, North Carolina A&T State University, Greensboro,
NC 27411, USA
e-mail: yaohang@ncat.edu

D. Chen
e-mail: dtchen@ncat.edu

X. Yuan
e-mail: xhyuan@ncat.edu

120 Y. Li et al.

can tackle the heterogeneity problem of the grid and provide a secure, trustworthy,
reliable, and state-of-the-art mechanism to develop grid-aware scientific applications.

Keywords Grid computing · Remote execution · Security · Trustworthiness

1 Introduction

Grid computing [13, 17] is an emerging technique in parallel computing for dis-
tributed resource sharing and problem solving on a global scale for data-intensive
or computation-intensive applications. It focuses on dynamic and heterogeneous co-
operation of “virtual organizations,” innovative applications, and high performance
[15]. The participation of scientists and experts in multiple disciplines also permits
the implementation of scientific tasks, such as analyzing raw data streams, performing
large-scale computations, designing cutting-edge technological products, collaborat-
ing on interdisciplinary research, and implementing a complicated scientific comput-
ing process [24].

Computational grids, in particular, are sophisticated conglomerates of a number
of computational services that are analogous to public utilities: a scientist or en-
gineer “flips a switch” by submitting a computational job description and the job
is processed just as electricity flows on demand via the electrical grid. Many ap-
plications for scientific research, such as SETI@home [32], distributed.net [8], and
folding@home [10], have demonstrated the utilization of the grid computing facil-
ities with rudimentary success. Nowadays, the larger Grid-based research projects
include the U.S. Department of Energy’s Grid Portal Development Kit [30], Cac-
tusCode [18], the San Diego Supercomputing Center’s Biology WorkBench [34],
NEESit’s earthquake research [29], the European E-Science Grid [9], and the Grid
Projects and Deployment System [19]. Despite the attractive characteristics of grid
computing, successfully exploiting the grid techniques for computational applica-
tions depends on overcoming a number of challenges stemming from properties of a
computational grid such as dynamism, cross-domain physicality, heterogeneity, lack
of intrinsic trustworthiness, reliability, and performance [13, 15].

In particular, the problem of heterogeneity in a computational grid is paramount
because scientists and engineers have to face a daunting array of system architec-
ture and operating environment choices on the computational grid. A well-known
fact is that the executable binaries for one architecture/operating system combination
cannot in general run on another node with a different architecture or a different oper-
ating system. When presented with such choices, often the decision in preference to
particular platform stems from historical and administrative biases. Ideally, users of
the computational grid should not be required to understand ramifications of system
architectures and operating environments.

A more serious problem is, a computational grid is a potentially untrustworthy
computing environment [33]. Many grid computing projects mentioned above have
recorded various misbehaviors of grid computational service providers, malicious
grid users, and malfunctioned grid applications. Indeed, untrustworthy grid com-
ponents post significant threats to the correctness of scientific computations being
carried out on the grid. How untrustworthy computational service providers can be

Trustworthy remote compiling services for grid-based scientific applications 121

composed to perform trustworthy computations becomes a grand challenge in grid
computing community.

In [35], a remote compiler has been developed to produce executable binaries for
a submitted task to run on heterogeneous machines in a Condor pool [25]. To sup-
port convenient usage of a large-scale computational grid with heterogeneous compo-
nents, in this paper, we extend the functionalities of the remote compiler for Condor
and present the development of a remote compiling service on the grid. First of all,
the remote compiling service is a grid service that conveniently allows a naive grid
user to produce reliable executable binary files on various platforms with various con-
figurations, which can later be deployed to run on the computational grid. Moreover,
our remote compiling grid service employs novel validation mechanisms to enforce
trustworthiness of grid-based applications at compilation level. Overall, the remote
compiling service is expected to provide a trustworthy, reliable, and state-of-the-art
compilation support to grid-aware scientific applications development.

The remainder of this paper is organized as follows. We illustrate the architec-
ture and the working paradigm of remote compiling service on the grid in Sects.
2 and 3, respectively. In Sect. 4, we discuss the trustworthiness issues and our im-
plementation of trustworthiness enforcement mechanisms in the remote compiling
grid services. Finally, Sect. 5 summarizes our conclusions and future research direc-
tions.

2 Architecture of remote compiling grid service

The remote compiling grid service is designed on top of the common grid services
[14] provided by the Globus toolkit, [11, 16] and supplies facilities and services for
scientific applications on the computational grid. The common grid services include
GRAM (Globus Resource Allocation Manager), GIS (Grid Information Service), GSI
(Grid Security Infrastructure), and GridFTP. GRAM is used to submit compilation
tasks to distributed remote compiling service providers and to manage the execution
of these tasks. GIS provides information services, viz., the discovery of the proper-
ties of remote compiling service providers as well as their underlying local compiler
configurations. GSI offers security services such as authentication, encryption, and
decryption for running compilation tasks on the grid. GridFTP provides a uniform in-
terface for transporting source packages, executable binary files, and compilation logs
before and after compilation. Via the elementary grid services provided by Globus,
the remote compiling service can invoke local compilers, e.g., gcc/g++, f77/f90/f95,
MPI and PVM compilers, and Condor compiler [26], for different operating sys-
tem and hardware platforms on the grid, execute the remote compilation task, and
produce executable binaries. Moreover, popular scientific computing libraries, such
as LAPACK [21], NAG [28], SPRNG [27], GSL [20], and others, are available for
linking in the remote compiling process. Furthermore, the remote compiling ser-
vice provides trustworthiness enforcement mechanisms, including intermediate value
checking, secure source program submission, restricted compilation, and binary in-
spection, to support trustworthy execution of large-scale scientific applications on
a computational grid. Figure 1 illustrates the overall system architecture of the re-
mote compiling grid service.

122 Y. Li et al.

Fig. 1 System architecture of
remote compiling grid service

3 Working paradigm

The life cycle of grid-based applications generally includes phrases of software devel-
opment, compilation on heterogeneous platforms, distributed execution, and distrib-
uted result collection. The remote compiling service on the grid provides facilities
of compiling on heterogeneous platforms. In addition to the compiling operations,
the remote compiling service focuses on providing trustworthy computing support
throughout the life cycle of grid-based applications.

Figure 2 depicts the working paradigm of the remote compiling service on the
grid. Logically, virtual organizations are constituted by grid service providers with
homogeneous platforms. A remote compiling service is running for each virtual or-
ganization to receive and carry out remote compiling tasks. The process of remote
compiling on the grid is initiated by a user who submits a compilation package. Ac-
cording to the compilation description specified by the user, the compilation task
server searches a remote compiling service provider via GIS whose underlying sys-
tem configuration can meet the user’s requirement. An example of the compilation
task description is shown in Fig. 3. If a matching remote compiling service provider
is found, the compilation package is then transported to it via GridFTP. To enforce
security, the source file can be encrypted using GSI and can be sent to only an authen-
ticated grid service provider. The remote compiling service then performs a security
check on the submitted program, compiles the source program according to the com-

Trustworthy remote compiling services for grid-based scientific applications 123

Fig. 2 Working diagram of remote compiling service on the grid

Fig. 3 Remote compiling task
specifications

Remote compiling task specifications

TaskName = “Monte Carlo Integration”
Compiler = g++
SourceFile = http://abner.ncat.edu/mcint.cpp
SourceFile = http://abner.ncat.edu/random.cpp
FLAGS = -O3–wall
LIBS = -lm
Arch = INTEL
OpSys = LINUX
OutputFile = mcintlinux.out
Log = mcintlinux.log
Encription = yes

pilation commands specified in the compilation package, links with the necessary
scientific computing libraries, and generates the executable binaries if the compila-
tion is successful. At the same time, intermediate value checking mechanisms may
also be incorporated. After compilation, the executable binaries as well as the com-
pilation log file for the compilation process are then transported back via GridFTP
again. After receiving the executable binaries, the compilation task server validates
the compilation logs and binary files and then makes them available to the user. The

124 Y. Li et al.

<WorkFlow id = “mainworkflow”>
<SubWorkFlow id = “CompilationOnLinux”, order = 1>

<Organization id = “linuxorg”> </Organization>
<DataTransfer> mci.cpp </DataTransfer>

<DataTransfer> random.cpp </DataTransfer>
<Operation>
g++ -O3 -wall -lm mci.cpp random.cpp -o mcintlinux.out

</Operation>
<DataTransfer> mcint.linuxout </DataTransfer>
<DataTransfer> compileinfo.linux </DataTransfer>

</SubWorkFlow>
<SubWorkFlow id = “CompilationOnAIX”, order = 1>

<Organization id = “aixorg”> </Organization>
<DataTransfer> mci.cpp </DataTransfer>

<DataTransfer> random.cpp </DataTransfer>
<Operation>
mlc -O3 -wall -lm mci.cpp random.cpp -o mcintaix.out
</Operation>

<DataTransfer> mcint.aix.out </DataTransfer>
<DataTransfer> compileinfo.aix </DataTransfer>

</SubWorkFlow>
<SubWorkFlow id = “CompilationOnAltrix”, order = 1>

<Organization id = “altrixorg”> </Organization>
<DataTransfer> mci.cpp </DataTransfer>

<DataTransfer> random.cpp </DataTransfer>

<Operation>
c++ -O3 -wall -lm mci.cpp random.cpp -o mcintaltrix.
out
</Operation>
<DataTransfer> mcintaltrix.out </DataTransfer>
<DataTransfer> compileinfo.altrix </DataTransfer>

</SubWorkFlow>
<IntermediateWorkFlow id =”validationworkflow”>

<DataTransfer></DataTransfer>
<Operation>
Validate the executable binaries and compilation
information
</Operation>

<DataTransfer></DataTransfer>
</IntermediateWorkFlow>
<SubWorkFlow id = “usernotification”, order = 2>

<Organization id = “compilationtaskserver”>
</Organization>
<DataTransfer> mcintlinux.out </DataTransfer>
<DataTransfer> mcintaix.out </DataTransfer>
<DataTransfer> mcintaltrix.out </DataTransfer>
<Operation>

Notify users
</Operation>

</SubWorkFlow>
</WorkFlow>

Fig. 4 Example workflow of the remote compiling process on the grid

user can later build computational tasks based on these executable binaries and de-
ploy them to computational service providers with different platforms available in the
computational grid.

The remote compiling process on the grid can be efficiently represented by a work-
flow [1, 5]. Figure 4 shows an XML pseudo-workflow describing the process of re-
motely compiling a C++ program on Linux, AIX, and Altrix platforms. The whole
remote compiling process is described as a workflow. Within this workflow, sev-
eral compilation subworkflows are defined. Each of them specifies the operations
of a compilation task carried out on a remote compiling service provider in the vir-
tual organization with homogeneous platforms. The fact that the order numbers of
these compilation subworkflows are identical indicates that they can be carried out
in parallel. The intermediate workflow mediates the compilation subworkflows and
describes the validation operations of the compilation results. Finally, the user noti-
fication subworkflow describes the process of notifying the user of the compilation
results.

4 Trustworthiness enforcement mechanism

4.1 Trustworthiness issues of remote compiling service on the grid

The main function of the remote compiling service on the grid is to execute the com-
pilation tasks on different computing platforms to produce platform-dependent bina-
ries. However, in reality, a computational grid is a potentially untrustworthy comput-
ing environment. Many Internet-wide grid-computing projects, such as SETI@home
[2] and folding@home [10], have reported malicious behaviors of some grid service

Trustworthy remote compiling services for grid-based scientific applications 125

providers, e.g., some service providers don’t faithfully execute their assigned tasks.
On the other hand, misbehaviors of application program due to software bugs, inap-
propriate program parameters, and misconfigurations may harm a volunteer compu-
tational service provider and eventually discourage a volunteer participant to partic-
ipate in the computational grid. Therefore, in addition to complete the compilation
tasks, the remote compiling grid service should also address the trustworthiness issue
posed by the potentially untrustworthy grid computing environment.

The grid application user, the remote compiling service provider, and the computa-
tional service providers are three main categories of players in the remote compiling
process. The remote execution of the compilation task has to provide trustworthiness
enforcement mechanisms to them. Typically, the following trustworthiness require-
ments need to be satisfied in the remote compiling process on the grid:

(1) To a grid application using the remote compiling service on the grid, the correct
and faithful execution of the compilation task is vitally important. Many grid-
based scientific computing applications are sensitive to each computational task
carried out on various computational service providers. An erroneous result of
a computational task will most likely lead to the corruption of the whole grid-
based scientific computation. Security enforcement mechanisms must be em-
ployed to ensure the trustworthiness of the compilation results.

(2) Another concern of grid application is that the user may also desire to keep their
computations, including input parameters, output results, and programs, secure
so that nobody can steal their data or program. Generally speaking, keeping the
computation secure from its remote computational service provider is a difficult,
likely impossible, problem [4]. However, the remote compiling service provider
should at least be able to keep the source code of grid applications safe.

(3) To a remote compiling service provider, the remote compiling service should
only execute compilation-related commands and nothing else. All unauthorized
commands should be prohibited.

(4) Similarly, to a computational service provider on the grid, the execution of the
assigned subtask should not harm the system. Some potentially dangerous system
calls, such as fork(), exec(), etc., should be prevented to execute on a remote
computational service provider.

4.2 Security and trustworthiness solutions in remote compiling service on the grid

4.2.1 Partial result validation via intermediate value checking

From grid-based application point of view, the correctness of the overall computation
depends on all partial results generated from subtasks running on the distributed com-
putational service providers. Therefore, the trustworthiness of each subtask computa-
tion, i.e., the partial results obtained are, in fact, due to the computation requested, is
of prime importance. In some distributed systems, rudimentary accountability mea-
sures are often employed when the list of service providers is generally static and
all are known to each other by hostname or address. Misbehavior on anyone’s part
leads to a permanent bad reputation. However, in a complicated grid computing en-
vironment when central control of resources is lack, the traditional mechanism for

126 Y. Li et al.

ensuring proper behavior can no longer provide the same level of protection. It is
usually difficult to uniquely and permanently identify service providers and their op-
erators. As a result, partial result validation mechanisms must be employed to ensure
the trustworthy execution of each subtask.

One effective approach to check the validity of a subtask computation is to validate
intermediate values within the computation on a grid computational service provider.
Intermediate values are quantities generated within the execution of the subtask. To
the node that runs the subtask, these values will be unknown until the subtask is
actually executed and reaches a specific point within the program. On the other hand,
to the clever application owner, certain intermediate values are either pre-known and
secret or are very easy to generate. Therefore, by comparing the intermediate values
and the pre-known values, one can control whether the subtask is actually faithfully
carried out or not.

In [22, 23], Li and Mascagni proposed to use the inherent predetermined pseudo-
random numbers for intermediate value checking in grid-based Monte Carlo applica-
tions. Monte Carlo applications consume pseudorandom numbers, which are gener-
ated deterministically from a pseudorandom number generator. If this pseudorandom
number generator has a cheap algorithm for computing arbitrarily within the period,
the random numbers are perfect candidates to be these cleverly chosen intermediate
values.

The strategy of using pseudorandom numbers as intermediate value checking in
grid-based Monte Carlo applications is based on the leapfrog property of their un-
derlying pseudorandom number generators. Some pseudorandom number genera-
tors, such as Linear Congruential Generators (LCG) or Lagged Fibonacci Genera-
tors (LFG), exhibit the fast leap-ahead (leapfrog) property, which enables us to easily
and economically jump ahead in the sequence. Using the fast leap-ahead algorithm,
one can transform a seed at a particular point in a pseudorandom number generator’s
cycle to a new point n steps away in O(log2n) “operations,” where one “operation”
is the cost of generating a single random number [7]. Figure 5 shows a pseudoran-

Fig. 5 Pseudorandom number generator and its leapfrog generator

Trustworthy remote compiling services for grid-based scientific applications 127

dom number sequence and a leapfrog generator that can quickly leap ahead in this
sequence. The fast leap-ahead (leapfrog) property of pseudorandom number genera-
tors is widely used to spread a serial pseudorandom number sequence across parallel
processors. However, to enforce the trustworthiness of the execution of a subtask, the
fast leap-ahead technique with intermediate value checking is employed to economi-
cally regenerate any selected pseudorandom numbers used in a Monte Carlo subtask.
These selected pseudorandom numbers are used as the intermediate values for further
validation. During the execution of a Monte Carlo subtask on a computational service
provider, the values of the current pseudorandom number after every N pseudoran-
dom numbers are generated and saved as intermediate values. Thus, a record of the
N th, 2N th, . . . , kN th random numbers used in the subtask computation are pro-
duced. When a subtask is complete, the verification service obtains this record and
then re-computes the N th, 2N th, . . . , kN th random numbers using a leapfrog gener-
ator. A mismatch indicates problems during the execution of the subtask.

The approach of using pseudorandom numbers with leapfrog property as inter-
mediate value checking can be easily extended to a general scientific computing
application where random numbers are not necessary needed. Unlike business pro-
grams, a long-run scientific computing program is usually composed of loops with
a large number of iterations. Thus, to produce a random number digest, a programmer
can smartly “inject” codes of producing certain number of pseudorandom numbers
into each iteration and periodically record one random number. These pseudoran-
dom numbers can be generated in several CPU cycles and should not cause a serious
overhead to the performance of the scientific application. In the intermediate value
checking process, the random number digest is quickly reproduced and compared
with the one generated on a computational service provider. A mismatch indicates
some problems. Figure 6 shows the matching procedure of pseudorandom numbers
in a subtask and the one regenerated by leapfrog in the intermediate value checking
process.

The remote compiling service provides leapfrog pseudorandom number generator
library to support intermediate value checking. In our implementation, we employed
the Scalable Parallel Random Number Generator (SPRNG) library [7], which can
generate up to 278,000 − 1 independent pseudorandom sequences based on parame-
terizing the random number generator. The remote compiling service links a SPRNG
generator to submitted program with randomized parameters. Also, it provides a cor-
responding leapfrog generator, which can be used to produce the random number
digest, to the grid application user for intermediate value checking after the task is
executed on a computational service provider.

4.2.2 Secure source program submission

To keep the source code of the grid application secure, most important of all, we
must guarantee that the program to be compiled can only be safely submitted to
a trustworthy remote compiling service provider. The following security mechanisms
are employed:

(1) End-to-end encryption based on GSI is used to supply a basic level of trustwor-
thiness in data communication in the program submission process.

128 Y. Li et al.

Fig. 6 Match of pseudorandom
numbers in a subtask and the
ones regenerated by leapfrog

(2) The compilation task server keeps track of all trusted remote compiling service
providers within each virtual organization in its security certificate repositories
[31], which are recommended to the grid application users.

(3) Authentication of submitting a compiling task to a remote compiling service
provider is enforced by the GSI proxy certificates [12].

(4) The remote compiling service removes the submitted source program right after
compilation to minimize the exposure of the source program.

Trustworthy remote compiling services for grid-based scientific applications 129

4.2.3 Restricted compilation

Preventing a malicious user from carrying out unauthorized operations on the remote
compiling service provider is relatively simple. In our implementation of the remote
compiling service, we keep a list of valid compiler names. When the requested com-
piler name is received by the remote compiling service, it is checked against this
list—a compilation command not on the list will be refused execution. Moreover, the
compilation task is carried out as a user with limited system resource access privi-
leges, such as “nobody” in UNIX.

4.2.4 Binary inspection

Sandbox [6] is one of the common techniques to prevent a remote program from
harming the computational service providers. A sandboxed environment intercepts
important system calls to gain complete control of usage of system resources, such
as the file system, I/O devices, registry, etc. The sandbox prevents applications from
maliciously or accidentally causing harm to the resources in a computational service
provider, since they cannot modify the file system or the system registry.

In our implementation of the remote compiling service, we intend to make the
sandbox safer by providing binary inspection. Tools for inspecting the variable and
function table in the executable binary file are integrated in the remote compiling
service. Within the program checking, some potentially dangerous system calls, such
as fork(), exec(), ssh(), signal(), etc., are spotted in the remote compiling process.
Programs with these system calls are prevented from executing on a remote compu-
tational service provider.

5 Conclusions and future research directions

A computational grid generically comprises of large number of heterogeneous com-
putational resources. For legacy computational programs in science and engineering
to take advantage of these heterogeneous computational resources, executable bina-
ries on various platforms on the grid must be obtained. In this paper, we present our
implementation of a generic remote compiling service on the grid. The remote com-
piling service is a grid service that allows a grid user to produce executable binaries
on various platforms, which can later be deployed to execute on the computational
grid. Security enforcement and validation mechanisms, including intermediate value
checking, secure source program submission, restricted compilation, and binary in-
spection, are employed to enforce the trustworthiness and quality assurance of the
remote compilation and execution process.

Currently, our remote compiling service on the grid only supports simple com-
pilation commands. In the future, we plan to develop a generic tool for the remote
compiling service on the grid, which will be similar to the GNU automake and au-
toconfig [3] mechanism and will provide trustworthy grid-based compilation support
for development of grid-aware scientific applications.

Acknowledgement This work is partially supported by the “Building an NCA&T Campus Grid Project”
of the University of North Carolina General Administration and the NC-HPC Project of the University of
North Carolina Office of the President.

130 Y. Li et al.

References

1. Allen R (2001) Workflow: an introduction. Workflow Handbook 2001, Workflow Management Coali-
tion

2. Anderson DP, Cobb J, Korpela E, Lebofsky M, Werthimer D (2002) SETI@home: an experiment in
public-resource computing. Commun ACM 45(11):56–61

3. Automake and Autoconfig (2005) http://www.gnu.org/software/automake/
4. Beck M, Dongarra J, Eijkhout V, Langston M, Moore T, Plank J (2003) Scalable, trustworthy network

computing using untrusted intermediaries: a position paper. In: DOE/NSF workshop on new directions
in cyber-security in large-scale networks: development obstacles, 2003

5. Cao J, Jarvis SA, Saini S, Nudd GR (2003) GridFlow: workflow management for grid computing. In:
Proceedings of 3rd international symposium on cluster computing and the grid, CCGRID’03, 2003

6. Chien A, Calder B, Elbert S, Bhatia K (2003) Entropia: architecture and performance of an enterprise
desktop grid system. J Parallel Distrib Comput 63:597–610

7. De’ ak (1990) Uniform random number generators for parallel computers. Parallel Comput 15:155–
164

8. Distributed.net website (2005) http://www.distributed.net
9. EGEE (2004) http://public.eu-egee.org/

10. Folding@home Distributed Computing (2003) http://folding.stanford.edu
11. Foster I, Kesselman C (1997) Globus: a metacomputing infrastructure toolkit. Int J Supercomput Appl

11(2):115–128
12. Foster I, Kesselman C, Tsudik G, Tuecke S (1998) A security architecture for computational grids.

In: ACM conference on computers and security, 1998, pp 83–91
13. Foster I, Kesselman C, Tuecke S (2001) The anatomy of the grid. Int J High Perform Comput Appl

15(3):200–222
14. Foster I, Kesselman C, Nick JM, Tuecke S (2002) Grid services for distributed integration. Comput

35(6):37–46
15. Foster I, Kesselman C, Nick JM, Tuecke S (2003) The physiology of the grid. Wiley series in com-

munications networking and distributed systems
16. Globus website (2005) http://www.globus.org
17. Goble C, Roure DD (2003) The Grid: an application of the semantic Web. In: Grid computing: making

the global infrastructure a reality, pp 437–470
18. Goodale T, Allen G, Lanfermann G, Masso J, Radke T, Seidel E, Shalf J (2004) The cactus frame-

work and toolkit: design and applications. In: Vector and parallel processing—VECPAR ’2002, 5th
international conference, 2004

19. GPDS. http://www.gpds.org/
20. GSL (2005) http://www.gnu.org/software/gsl/
21. LAPACK (2005) http://www.netlib.org/lapack/
22. Li Y, Mascagni M (2002) Grid-based Monte Carlo applications. In: GRID2002, grid computing third

international workshop/conference. Lecture notes in computer science, vol 2536, Baltimore, 2002,
pp 13–24

23. Li Y, Mascagni M (2003) Analysis of large-scale grid-based Monte Carlo applications. Int J High
Perform Comput Appl 17(4):369–382

24. Li Y, Mascagni M (2004) E-science on the grid: toward a dynamic E-science automation with XML
and workflow techniques. In: Proceedings of the 8th world multi-conference on systemics, cybernet-
ics, and informatics, SCI’04, Orlando, Florida, 2004

25. Litzkow M, Livny M, Mutka M (1988) Condor—a hunter of idle workstations. In: Proceedings of the
8th international conference of distributed computing systems, June 1988, pp 104–111

26. Thain D, Livny M (2001) Multiple bypass: interposition agents for distributed computing. J Clust
Comput 4:39–47

27. Mascagni M, Srinivasan A (2000) Algorithm 806: SPRNG: a scalable library for pseudorandom num-
ber generation. ACM Trans Math Softw 26:436–461

28. NAG (2005) http://www.nag.co.uk/
29. NEESit (2004) http://it.nees.org/
30. Novotny J (2000) The grid protal development kit. Concurr: Pract Experience 00:1–7
31. Novotny J, Tuecke S, Welch V (2001) An online credential repository for the grid: MyProxy, High

Performance Distributed Computing (HPDC)
32. SETI@home (2002) SETI@home: the search for extraterrestrial intelligence. http://setiathome.ssl.

berkeley.edu

Trustworthy remote compiling services for grid-based scientific applications 131

33. Taesombut N, Chien A (2004) Distributed Virtual Computer (DVC): simplifying the development
of high performance grid applications. In: Proceedings of the workshop on grids and advanced net-
works (GAN ’04), Chicago, Illinois, held in conjunction with the IEEE cluster computing and the grid
(CCGrid2004) conference, April 2004

34. WorkBench (2004) http://workbench.sdsc.edu/
35. Zhou M (2000) A scientific computing tool for parallel Monte Carlo in a distributed environment.

PhD Dissertation, Univ of Southern Mississippi, 2000

Yaohang Li received his B.S. in Computer Science from South China University of Technology in 1997
and M.S. and Ph.D. degree from Department of Computer Science, Florida State University in 2000 and
2003, respectively. After graduation, he worked as a research associate in the Computer Science and Math-
ematics Division at Oak Ridge National Laboratory, TN. His research interest is in Grid Computing, Com-
putational Biology, and Monte Carlo Methods. Now he is an assistant professor in Computer Science at
North Carolina A&T State University.

Daniel Chen received his B.S. in Mathematical Sciences with a concentration in Computer Science from
the University of North Carolina at Chapel Hill and his Master’s degree in Computer Science from North
Carolina A&T State University. He is currently an Adjunct Assistant Professor in Computer Science at
North Carolina A&T State University.

Xiaohong Yuan received her B.S. in Electrical Engineering from Huazhong University of Science and
Technology in 1992, Ph.D. degree from Institute of Automation, Chinese Academy of Sciences in 1997 and
Ph.D. degree from Department of Computer Science, Florida Atlantic University in 2000. After graduation,
she has worked as an assistant and associate professor in the Department of Computer Science at North
Carolina A&T State University. Her research interest includes Information Security, Software Engineering,
and Visualization Tools for Computer Science Education.

	Trustworthy remote compiling services for grid-based scientific applications
	Abstract
	Introduction
	Architecture of remote compiling grid service
	Working paradigm
	Trustworthiness enforcement mechanism
	Trustworthiness issues of remote compiling service on the grid
	Security and trustworthiness solutions in remote compiling service on the grid
	Partial result validation via intermediate value checking
	Secure source program submission
	Restricted compilation
	Binary inspection

	Conclusions and future research directions
	Acknowledgement

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

