
MonteCarloMethods andAppl., Vol. 11, No. 1, pp. 39 – 55 (2005)
c© VSP 2005

Grid-based Quasi-Monte Carlo Applications

Yaohang Li1 and Michael Mascagni2

1Department of Computer Science, North Carolina A&T State University,
Greensboro, NC 27411 USA, yaohang@ncat.edu

2Department of Computer Science and School of Computational Science,
Florida State University, Tallahassee, FL 32306-4560 USA,

mascagni@fsu.edu

Abstracts — In this paper, we extend the techniques used in Grid-based Monte Carlo appli-

cations to Grid-based quasi-Monte Carlo applications. These techniques include an N-out-of-M

strategy for efficiently scheduling subtasks on the Grid, lightweight checkpointing for Grid sub-

task status recovery, a partial result validation scheme to verify the correctness of each individual

partial result, and an intermediate result checking scheme to enforce the faithful execution of

each subtask. Our analysis shows that the extremely high uniformity seen in quasirandom

sequences prevents us from applying many of our Grid-based Monte Carlo techniques to Grid-

based quasi-Monte Carlo applications. However, the use of scrambled quasirandom sequence

becomes a key to tackling this problem, and makes many of the techniques we used in Grid-

based Monte Carlo applications effective in Grid-based quasi-Monte Carlo applications. All the

techniques we will describe here contribute to performance improvement and trustworthiness

enhancement for large-scale quasi-Monte Carlo applications on the Grid, which eventually lead

to a high-performance Grid-computing infrastructure that is capable of providing trustworthy

quasi-Monte Carlo computation services.

1. Introduction

Grid computing is characterized by large-scale sharing and cooperation of dynamically

distributed resources, such as CPU cycles, communication bandwidth, and data, to con-

stitute a computational environment [12]. In the Grid’s dynamic environment, from the

application point-of-view, two issues are of prime import: performance – how quickly the

Grid-computing system can complete the submitted tasks, and trustworthiness – that the

results obtained are, in fact, due to the computation requested. To meet these two re-

quirements, many Grid-computing or distributed-computing systems, such as Condor [17],

HARNESS [6], Javelin [20], Globus [11], and Entropia [2], concentrate on developing high-

performance and trust-computing facilities through system-level approaches. In [14], we

analyzed the characteristics of Monte Carlo applications to develop approaches to address

40 Yaohang Li and Michael Mascagni

the performance and trustworthiness issues from the application level. The approaches

including the N-out-of-M subtask scheduling strategy, lightweight checkpointing, par-

tial result validation, and intermediate value checking, are effective in Grid-based Monte

Carlo applications. In this article, we extend these approaches to Grid-based quasi-

Monte Carlo applications, which are closely related to Monte Carlo applications, but use

quasirandom instead of pseudorandom number. These approaches lead us to develop a

high-performance Grid-computing infrastructure that is capable of providing trustworthy

quasi-Monte Carlo computational services.

The remainder of this paper is organized as follows. In §2, we compare the charac-

teristics of Monte Carlo applications with that of quasi-Monte Carlo applications for the

purpose of Grid computing. We discuss how to extend the techniques used in Grid-based

Monte Carlo applications to improve the performance and trustworthiness of Grid-based

quasi-Monte Carlo applications in §3 and §4, respectively. Finally, §5 summarizes our

results, provides conclusions, and provides discussion of future research directions.

2. Grid-based Monte Carlo Applications and Grid-

based Quasi-Monte Carlo Applications

Monte Carlo applications are perceived as computationally intensive and naturally paral-

lel, and they can usually be implemented via the so-called dynamicbag-of-work model. In

a dynamic bag-of-work model using in a Monte Carlo application, a large task is split into

smaller independent subtasks, and each are then executed separately. Then, the partial

results are collected and used to assemble an accumulated result with smaller variance

than that of a single copy. The inherent characteristics of Monte Carlo applications and

the dynamic bag-of-work model make them a natural fit for the Grid-computing environ-

ment.

Quasi-Monte Carlo applications are very similar to Monte Carlo applications. They use

deterministic low-discrepancy quasirandom sequences to obtain typically higher conver-

gence rates, O(N−1(log N)k), than that of Monte Carlo methods, which is approximately

O(N−1/2) based on the use of pseudorandom numbers. Discrepancy, which will be de-

scribed in greater detail below, is a measure the lack of uniformity of a sequence. Thus

a low-discrepancy sequence is more uniformly distributed than a pseudorandom num-

ber sequence. Similar to Monte Carlo applications, quasi-Monte Carlo applications can

also be implemented with the dynamic bag-of-work model, which motivates us to adapt

quasi-Monte Carlo applications to the Grid to take advantage of the computational power

of Grid computing. Figure 1 shows a generic diagram of Grid-based quasi-Monte Carlo

application on the Grid using the dynamic bag-of-work model.

Effectively using the dynamic bag-of-work model for Monte Carlo applications on the

Grid-based Quasi-Monte Carlo Applications 41

Figure 1: A Generic Diagram of Grid-Based Quasi-Monte Carlo Application on the Grid

Using the Dynamic bag-of-work model.

42 Yaohang Li and Michael Mascagni

Grid requires that the underlying random number streams in each subtask be indepen-

dent in a statistical sense. Different from Monte Carlo, to take advantage of parallelism

in quasi-Monte Carlo, we expect the underlying quasirandom number streams used on

each Grid node to have a small discrepancy. Leapfrogging and blocking are two common

schemes for parallel quasirandom number generation [7]. However, recent research into

scrambled digital quasirandom sequences can be applied to generate large-scale paral-

lel quasirandom sequences with each sequence retaining low-discrepancy properties with

some randomness, which enables one to use statistical methods for practical error estima-

tion [10]. Furthermore, the characteristics of scrambled quasirandom sequences provide

us a way to extend the techniques used in Grid-based Monte Carlo applications, such

as the N-out-of-M strategy, partial result validation, and intermediate value checking, to

Grid-based quasi-Monte Carlo applications. These techniques can be applied to reduce

the wallclock time of a computation and to enforce the trustworthiness of the Grid-based

quasi-Monte Carlo computation.

3. Improving the Performance of Grid-based quasi-

Monte Carlo Computing

3.1 N-out-of-M Scheduling Strategy

In a Grid-computing environment, the participating computational nodes are usually geo-

graphically widely distributed, with various computational capabilities, and not centrally

manageable. A slow node might become the bottleneck of the whole computation if the

assembly of the final result must wait for the partial result generated on this slow node. A

delayed subtask might delay the accomplishment of the whole task, while a halted subtask

might prevent the whole task from ever finishing. To address this problem, system-level

methods of tracking each subtask can be used. However, the statistical nature of Monte

Carlo applications provides a shortcut to use an N-out-of-M subtask scheduling strategy

to solve this problem at the application level.

In Grid-based Monte Carlo applications, by using the N-out-of-M scheduling strategy,

we enlarge the actual size of the computation by increasing the number of subtasks from

original N subtasks to Msubtasks, where M > N . Each of these M new subtasks uses its

unique independent random number set, and we submit M instead of N subtasks to the

Grid system. Therefore, M bags of computation will be carried out and M partial results

may be eventually generated. However, when N partial results are ready, we consider

the whole task for the Grid system to be completed. The application then collects the N

partial results and produces the final accumulated result. More analysis of the N-out-of-M

strategy can be found in [13].

It should be noted that there are many stochastic computations where the N-out-of-M

Grid-based Quasi-Monte Carlo Applications 43

strategy could be seriously flawed and highly biased. For example, suppose we were sim-

ulating the distribution of the occurrence times of an event in a stochastic process where

the calculation time is proportional to the simulated time. The N-out-of-M strategy would

only simulate the shortest occurrence times, and would give a wildly biased estimate of

the distribution. Clearly, this sort of computation is ill-suited to the N-out-of-M strategy.

In this paper we exclude such computations from consideration, and the examples that

we use are expected to suffer no introduction of short computational bias for the use of

the N-out-of-M strategy, like high-dimensional numerical integration.

The N-out-of-M subtask schedule strategy in Grid-based Monte Carlo applications re-

quires the statistical independence of parallel random sequences used in all M subtasks. In

contrast, quasi-Monte Carlo applications use highly correlated and uniform quasirandom

numbers. Therefore, to apply the N-out-of-M subtask schedule strategy to quasi-Monte

Carlo applications, the combination of any N out of M parallel quasirandom sequences

must remain highly uniform, i. e., the union of the N out of M quasirandom sequences

must still have low discrepancy. Intuitively, we may hope that the combination of two

low-discrepancy sequences will always lead to a lower discrepancy. The ideal situation

is, if two sequences, S1 and S2, both contain N quasirandom numbers with discrepancies

of O(N−1), then the sequence S that is combined from S1 and S2 will have discrepancy

of O((2N)−1). Unfortunately, this is not always true. The simplest counterexample is

the combination of two identical low-discrepancy sequences, which will have the same

discrepancy as a single copy of the sequence.

The above discussion leads to an interesting question – what is the error bound of

a quasi-Monte Carlo computation using parallel quasirandom number sequences? The

Koksma-Hlawka inequality [9] is the foundation for analyzing quasi-Monte Carlo integra-

tion error. Based on the Koksma-Hlawka inequality, we deduce Lemma 1 that provides

an upper bound on the error for a parallel quasi-Monte Carlo integration using multiple

low-discrepancy sequences.

Theorem 1 (Koksma-Hlawka Theorem). For any sequence X = {x0, . . . , xN−1} and

any function, f , with bounded variation, the integration error, ε, is bounded as,

ε[f] ≤ V [f]D∗
N . (1)

Here V [f] is the total variation of f , in the sense of Hardy-Krause, D∗
N

1 is the star

discrepancy of sequence X = {x0, . . ., xN−1}, and ε [f] is defined as

1For a sequence of N points X = {x0, . . ., xN−1} in the d-dimensional unit cube Id, and for any box, J ,
with one corner at the origin in Id, the star discrepancy, D∗

N , is defined as D∗
N = supJ∈Id |µx(J) − µ(J)|,

where µX(J) = #of points in J
N

is the discrete measure of J , i. e., the fraction of points of X in J , and
µ(J) is the Lebesgue measure of J , i. e., the volume of J .

44 Yaohang Li and Michael Mascagni

ε [f] =

∫
Id

f(x)dx − 1

N

N∑
i=1

f(xi), (2)

where d is the dimension of f .

Lemma 1. For M sequences X1 = {x0,1, . . ., xN−1,1}, X2 = {x0,2, . . ., xN−1,2}, . . ., XM =

{x0,M , . . ., xN−1,M} with discrepancy D∗
N,1, D

∗
N,2, . . . , D∗

N,M , respectively, and a function,

f , with bounded variation, the integration error ε is bounded as,

ε[f] ≤ V [f]

M

M∑
i=1

D∗
N,i. (3)

Proof: According to the Koksma-Hlawka theorem, the integration error based on the kth

quasirandom sequence is

εk[f] =

∣∣∣∣∣
1

N

N−1∑
i=0

f(xi,k) −
∫

Id

f(x)dx

∣∣∣∣∣ ≤ V [f]D∗
N,k.

Then, the sum of these errors is∣∣∣∣∣
1

N

M∑
k=1

N−1∑
i=0

f(xi,k) − M

∫
Id

f(x)dx

∣∣∣∣∣ ≤
M∑

k=1

εk[f] =

M∑
k=1

∣∣∣∣∣
1

N

N−1∑
i=0

f(xi,k) −
∫

Id

f(x)dx

∣∣∣∣∣ ≤ V [f]
M∑

k=1

D∗
N,k.

Finally, we can obtain the integration error ε of all these M quasirandom sequences,

ε =

∣∣∣∣∣
1

NM

M∑
k=1

N−1∑
i=0

f(xi,k) −
∫

Id

f(x)dx

∣∣∣∣∣ ≤ V [f]
1

M

M∑
k=1

D∗
N,k =

V [f]

M

M∑
i=1

D∗
N,i.

Lemma 1 tells us that the error in the evaluation of an integral based on multiple sequences

will be less than or equal to the average of their star discrepancy multiplied by the

integral function’s total variation. Unfortunately, this upper bound is too coarse. It

cannot guarantee that in the N-out-of-M scheduling strategy, the evaluation based on the

combination of any N out of M quasirandom number sequences, will lead to a smaller

error. Figure 2 shows empirical experiments of the N-out-of-M strategy in quasi-Monte

Carlo integration. In these experiments, we divided a Soból sequence into 4 consecutive

blocks, each block having an equal number of quasirandom numbers. Then, we evaluated

the integral, ∫ 1

0

...

∫ 1

0

x1x2x3x4dx1...dx4,

using all combinations of any two of these blocks. In Figure 2, we see that the integral

evaluations based on different combinations of the blocks lead to errors that vary consid-

erably. The reason is the combination of two low-discrepancy sequences may not actually

yield a smaller discrepancy.

Grid-based Quasi-Monte Carlo Applications 45

Figure 2: Convergence Analysis of Quasi-Monte Carlo using Different Block Combinations

in a Quasirandom Number Sequence.

Even though the computational experiments in Figure 2 show that the combination

using blocking or leapfrogging may be effective in the N-out-of-M strategies in scheduling

quasi-Monte Carlo subtasks, the lack of a theoretical analysis of the discrepancy of the

combined sequences limits the use of the N-out-of-M strategy in Grid-based quasi-Monte

Carlo applications. In comparison to blocking and leapfrog, one can consider taking a sin-

gle sequence and providing a differently scrambled version of that sequence to the different

tasks. Here, each scrambled quasirandom sequence can be thought of as an independent

sequence and assigned to a subtask on a Grid node. Under certain circumstances, it can

be proven that the scrambled sequence is as uniform as the others [10]. Therefore, the

combination of various scrambled quasirandom sequences yields uniformity at the same

level as a single sequence with the sum of lengths of all scrambled sequences.

Figure 3 shows the convergence analysis of quasi-Monte Carlo using scrambled Soból

sequences on the same integral as in the experiment of Figure 2. These computations are

based on a Soból sequence produced by a single generator, a sequence combined with 2

scrambled Soból sequences, and a sequence produced by combining 10 scrambled Soból

sequences, respectively. In Figure 3, we see that the computation with a small number

of quasirandom numbers has a larger error; however, as the number of random samples

grows, the computation based on a single quasirandom sequence and those on sequences

of combined scrambled quasirandom sequence tend to a similar convergence rate.

46 Yaohang Li and Michael Mascagni

Figure 3: Convergence Analysis of Quasi-Monte Carlo using Scrambled Quasirandom

Sequences.

3.2 Lightweight Checkpointing

A subtask running on a node in a Grid system may take a very long time to complete. The

N-out-of-M strategy is an attempt to mitigate the effect of this on the overall running

time. However, if one incorporates checkpointing, he can directly attack reducing the

completion time of the subtasks. Some Grid computing systems implement a process-level

checkpoint. CONDOR, for example, takes a snapshot of the process’s current state, including

stack and data segments, shared library code, process address space, all CPU states, states

of all open files, all signal handlers, and pending signals [18]. On recovery, the process

reads the checkpoint file and then restores its state. Since the process state contains a

large amount of data, processing such a checkpoint is quite costly. Also, process-level

checkpointing is very platform-dependent, which limits the possibility of migrating the

process-level checkpoint to another node in a heterogeneous Grid-computing environment.

To avoid process-level checkpointing, a Monte Carlo computation has a structure

highly amenable to application-level checkpointing. Typically, a Monte Carlo applica-

tion starts in an initial configuration, evaluates a random sample or a random trajectory,

estimates a result, accumulates mean and variances with previous results, and repeats

this process until some termination condition is met. Thus, to recover an interrupted

computation, a Monte Carlo application needs to save only a relatively small amount of

information. The necessary information to reconstruct a Monte Carlo computation image

at checkpoint time will be the current results based on the estimates obtained so far,

the current status and parameters of the random number generators, and other relevant

program information like the current iteration number. This allows one to make a smart

Grid-based Quasi-Monte Carlo Applications 47

and quick application checkpoint in most Monte Carlo applications. Using XML [4] to

record the checkpointing information, we can make this checkpoint platform-independent.

More importantly, compared to a process checkpoint, the application-level checkpoint is

much smaller in size and much quicker to generate. Therefore, it should be relatively

easy to migrate a Monte Carlo computation from one node to another in a Grid system.

However, the implementation of application level checkpointing will somewhat increase

the complexity of developing new Monte Carlo Grid applications.

Similar to that of pseudorandom numbers, the generation of quasirandom numbers is

also deterministic. We can save the status of a quasirandom number generator as well

and then reconstruct the quasi-Monte Carlo computation on a Grid node. Therefore, the

application-level light-weight checkpointing technique can be simply extended to Grid-

based quasi-Monte Carlo applications by storing the status of the quasirandom number

generator.

4. Enhancing the Trustworthiness of Grid-Based

Quasi-Monte Carlo Computing

4.1 Distributed Monte Carlo Partial Result Validation

The correctness and accuracy of Grid-based computations are vitally important to an

application. In a Grid-computing environment, the service providers of the Grid are often

geographically separated with no central management. Faults may hurt the integrity of

a computation. These might include faults arising from the network, system software or

node hardware. A node providing CPU cycles might not be trustworthy. A user might

provide a system to the Grid without the intent of faithfully executing the applications

obtained. Experience with SETI@home has shown that users often fake computations and

return wrong or inaccurate results. The resources in a Grid system are so widely dis-

tributed that it appears difficult for a Grid-computing system to completely prevent all

“bad” nodes from participating in a Grid computation. Unfortunately, Monte Carlo appli-

cations are very sensitive to each partial result generated from each subtask. An erroneous

partial result will most likely lead to the corruption of the whole Grid computation and

thus render it useless.

In the dynamic bag-of-work model as applied to Monte Carlo applications, each sub-

task works on the same description of the problem but estimates based on different ran-

dom samples. Since the mean in a Monte Carlo computation is accumulated from many

samples, its distribution will be approximately normal, according to the Central Limit

Theorem. Suppose f1, . . ., fi, . . ., fn are the n partial results generated from individual

48 Yaohang Li and Michael Mascagni

nodes on a Grid system. The mean of these partial results is

f̂ =
1

n

n∑
i=1

fi,

and we can estimate its standard error, s, via the following formula

s =

[
1

n − 1

n∑
i=1

(fi − f̂)2

]1/2

.

Specifically, the Central Limit Theorem states that f̂ should be distributed approximately

as a student-t random variable with mean f̂ , standard deviation s/
√

n, and n degrees-

of-freedom. However, since we usually have n, the number of subtasks, chosen to be

large, we may instead approximate the student-t distribution with the normal. Standard

normal confidence interval theory states that with 68% confidence that the exact mean

is within 1 standard deviation of f̂ , with 95% confidence within 2 standard deviations,

and 99% confidence within 3 standard deviations. Figure 5 shows the partial result

distribution in Grid-based Monte Carlo applications. This statistical property of Monte

Carlo computation can be used to develop an approach for validating the partial results

of a large Grid-based Monte Carlo computation.

Figure 4: Partial Result Distribution of Grid-based Monte Carlo Applications.

Here is the proposed method for distributed Monte Carlo partial result validation.

Suppose we are running n Monte Carlo subtasks on the Grid, the ith subtask will even-

tually return a partial result, fi. We anticipate that the fi’s are approximately normally

distributed with mean, f̂ , and standard deviation, σ = s/
√

n. We expect that about

one of the fi in this group of n to lie outside a normal confidence interval with confi-

dence 1 − 1/n. In order to choose a confidence level that permits events we expect to

see, statistically, yet flag events as outliers requires us to choose a multiplier, c, so that

Grid-based Quasi-Monte Carlo Applications 49

we flag events that should only occur in a group of size cn. The choice of c is rather

subjective, but c = 10 implies that in only 1 in 10 runs of size n we should expect to

find an outlier with confidence 1 - 1/10n. With a given choice of c, one computes the

symmetric normal confidence interval based on a confidence of α% = 1 − 1/cn. Thus

the confidence interval is [f̂ − Zα/2σ, f̂ + Zα/2σ], where Zα/2 is unit normal value such

that
Zα/2∫
0

1√
2π

e−
x2

2 dx = α
2
. If fi is in this confidence interval, we can consider this partial

result as trustworthy. However, if fi falls out of the interval, which may happen merely

by chance with a very small probability, this particular partial result is suspect. We may

either rerun the subtask that generated the suspicious partial result on another node for

further validation or just discard it (if using the N-out-of-M strategy).

The theoretical foundation of our proposed partial result validation method for Grid-

based Monte Carlo applications is the Central Limit Theorem. An important assumption

in the Central Limit Theorem is that the underlying random samples are independent.

As we know, quasirandom numbers are highly correlated and thus quasi-Monte Carlo

computations are deterministic. Hence, quasi-Monte Carlo applications do not share

the same statistical nature as Monte Carlo applications. Therefore, the Central Limit

Theorem cannot be used here, and so, we cannot expect the partial results from quasi-

Monte Carlo subtasks to be normally distributed. The partial validation method based on

all partial results in Monte Carlo applications cannot be used in the case of quasi-Monte

Carlo.

Nevertheless, here we elucidated an alternative way of partial result validation using

a trusted Grid node, which can be easily extended for Grid-based quasi-Monte Carlo

applications. To use the validation method, we first need to set up a special subtask

that will estimate the same number of samples as the other quasi-Monte Carlo subtasks,

but these samples are pseudorandom samples. Secondly, we execute this subtask on a

trusted Grid node. Since this subtask is actually a Monte Carlo subtask, we can obtain

a confidence interval, [ft- kσt, ft+ kσt], based on its mean ft and standard deviation σt.

Finally, this confidence interval can be used to validate each partial result, fi, of the

quasi-Monte Carlo subtasks running on the potentially untrusted Grid nodes. Figure

5 shows the procedure of the extended partial result validation method for Grid-based

quasi-Monte Carlo applications. Due to the fast convergence rate of quasi-Monte Carlo

methods, with same number of samples, the quasi-Monte Carlo applications usually have

a smaller error than that of the Monte Carlo applications, when the number of samples

is big enough. Therefore, we can expect that the partial results of the quasi-Monte Carlo

subtasks should also lie in the confidence interval with very high probability. Similar to

the partial result validation in Monte Carlo applications, the partial results of the quasi-

Monte Carlo subtasks that are not in the confidence interval will be regarded as suspect.

The recomputation of such subtasks are recommended.

50 Yaohang Li and Michael Mascagni

Figure 5: Extended Partial Result Validation Method for Grid-based Quasi-Monte Carlo

applications.

Grid-based Quasi-Monte Carlo Applications 51

This Monte Carlo partial result validation method supplies us with a way to identify

suspicious results without running more subtasks. This method assumes that the majority

of the nodes in Grid system are “good” service providers, which can correctly and faithfully

execute their assigned task and transfer the result. If most of the nodes are malicious,

this validation method may not be effective. However, experience has shown that the

fraction of “bad” nodes in volunteered computation is very small.

The alternative method using a trusted Grid node provides a way to examine the

partial results of Grid-based quasi-Monte Carlo applications. However, this method leads

to a problem that with quasi-Monte Carlo, the confidence level is not necessarily known.

Moreover, the confidence interval generated by the trusted node may be too wide. All

these make us turn again to scrambled quasirandom sequences. The basic idea of scram-

bled quasirandom sequence is to introduce some randomness to the deterministic low-

discrepancy sequence so that one can perform error analysis. As a result, confidence

intervals can be obtained using the Central Limit Theorem. The confidence interval can

then be used to perform partial result validation using a similar approach in Grid-based

Monte Carlo applications. Table 1 shows the partial result distribution of 100 Grid-based

quasi-Monte Carlo integral evaluation subtasks using different amount of quasirandom

numbers from a scrambled Soboĺ sequence. We find that the partial result distribution

of quasi-Monte Carlo using scrambled quasirandom number sequence is similar to that of

Monte Carlo methods using pseudorandom number sequences. The means of the partial

result validation scheme in Grid-based Monte Carlo can then be seamlessly applied to

Grid-based quasi-Monte Carlo applications using scrambled quasirandom sequences.

Integrals N % ±σ % ±2σ % ±3σ

∫ 1

0
...

∫ 1

0
x1x2x3x4dx1...dx4

106 70 95 98

107 77 93 99

∫ 1

0
...

∫ 1

0

4x1x2
3e2x1x3

(1+x2+x4)2
ex5+...+x20x21...x25dx1...dx25

106 68 96 100

107 70 95 99

Table 1: Partial Result Distribution of 100 Grid-based Quasi-Monte Carlo Integral Eval-

uation Subtasks

4.2 Intermediate Value Checking

Usually, a Grid-computing system compensates the service providers to encourage com-

puter owners to supply resources. Many Internet-wide Grid-computing projects, such

as SETI@home [24], have the experience that some service providers don’t faithfully exe-

cute their assigned subtasks. Instead, they attempt to provide bogus partial result at a

much lower personal computational cost in order to obtain more benefits per unit cost.

52 Yaohang Li and Michael Mascagni

Checking whether the assigned subtask from a service provider is faithfully carried out

and accurately executed is a critical issue that must be addressed by a Grid-computing

system.

One approach to check the validity of a subtask computation is to validate intermediate

values within the computation. Intermediate values are some quantities generated within

the execution of the subtask. To the node that runs the subtask, these values will be

unknown until the subtask is actually executed and reaches a specific point within the

program. On the other hand, to the clever application owner, certain intermediate values

are either known in advance or are very easy to generate. Therefore, by comparing

the intermediate values and these known values, we can control whether the subtask is

actually faithfully carried out or not. Monte Carlo applications consume pseudorandom

numbers, which are generated deterministically from a pseudorandom number generator.

If this pseudorandom number generator has a cheap algorithm for computing arbitrarily

within the period, the random numbers are perfect candidates to be these cleverly chosen

intermediate values. Thus, we have a very simple strategy to validate a result from

subtasks by tracing certain predetermined random numbers in Monte Carlo applications.

For example, in a Grid Monte Carlo application, we might force each subtask to save

the value of the current pseudorandom number after every N(e. g., N = 100,000) pseu-

dorandom numbers are generated. Therefore, we can keep a record of the Nth, 2Nth,

. . . , kNth random numbers used in the subtask. To validate the actual execution of a

subtask on the server side, we can just re-compute the Nth, 2Nth, . . . , kNth random

numbers applying the specific generator with the same seed and parameters as used in

this subtask. We then simply match them. A mismatch indicates problems during the

execution of the task. Also, we can use intermediate values of the computation along

with random numbers to create a cryptographic digest of the computation in order to

make it even harder to fake a computational result. Given our list of random numbers,

or a deterministic way to produce such a list, when those random numbers are computed,

we can save some piece of program data current at that time in an array. At the same

time we can use that random number to encrypt the saved data and incorporate these

encrypted values in a cryptographic digest of the entire computation. At the end of the

computation the digest and the saved values are then both returned to the server. The

server, through cryptographic exchange, can recover the list of encrypted program data

and quickly compute the random numbers used to encrypt them. Thus, the server can

decrypted the list and compare it to the ”plaintext” versions of the same transmitted from

the application. Any discrepancies would flag either an erroneous or faked result. While

this technique is certainly not a perfect way to ensure correctness and trustworthiness, a

user determined on faking results would have to scrupulously analyze the code to deter-

mine the technique being used, and would have to know enough about the mathematics of

the random number generator to leap ahead as required. In our estimation, surmounting

Grid-based Quasi-Monte Carlo Applications 53

these difficulties would far surpass the amount of work saved by gaining the ability to

pass off faked results as genuine.

The intermediate value checking technique takes advantage of the following properties

of a pseudorandom number generator: to the Grid node providing computational services,

the value of a pseudorandom number remains unknown until it is actually generated; on

the other hand, to the application’s owner, the value of a pseudorandom number can

be easily and economically regenerated or predicted. Leapfrog in quasirandom number

sequence can also be implemented. In [7], Bromley illustrates a leapfrog scheme for the

Soból sequences, which can actually be used in our intermediate value checking technique

for Grid-based quasi-Monte Carlo applications. More importantly, most quasirandom

numbers are actually generated not by a recurrence, as with pseudorandom numbers, but

with a simple function of i, the quasirandom number in the sequence desired. Thus, it is

usually much easier to compute given quasirandom numbers than it is for pseudorandom

numbers.

5. Conclusions

Similar to the Monte Carlo applications, quasi-Monte Carlo applications generically also

exhibit naturally parallel and computationally intensive characteristics, which can easily

fit the dynamicbag-of-work model onto a Grid system to implement Grid-based quasi-

Monte Carlo computing. Furthermore, using scrambled quasirandom sequences, we ex-

tend the techniques used in Grid-based Monte Carlo applications, including an N-out-of-M

strategy for the efficient scheduling of subtasks on the Grid, lightweight checkpointing for

Grid subtask status recovery, a partial result validation scheme to verify the correctness of

each individual partial result, and an intermediate result checking scheme to enforce the

faithful execution of each subtask, to Grid-based quasi-Monte Carlo applications. These

techniques can enhance the performance and trustworthiness of Grid-based quasi-Monte

Carlo computing at the application level.

The next phase of our research will be to extend these techniques for Grid-based quasi-

Monte Carlo applications to our Grid middleware – the Grid Computing Infrastructure

for Monte Carlo Applications (GCIMCA) [15, 16]. At the same time, we will also try to

execute more real-life quasi-Monte Carlo applications on our developing Grid system.

References

[1] Condor website. http://www.cs.wisc.edu/condor.

[2] Entropia website. http://www.entropia.com.

[3] Sprng website. http://sprng.cs.fsu.edu.

http://www.cs.wisc.edu/condor
http://www.cs.wisc.edu/condor
http://www.entropia.com
http://www.entropia.com
http://sprng.cs.fsu.edu
http://sprng.cs.fsu.edu

54 Yaohang Li and Michael Mascagni

[4] Xml website. http://www.xml.org.

[5] C. Aktouf, O.Benkahla, C.Robach, and A.Guran. Basic Concepts and Advances in

Fault-Tolerant Computing Design. World Scientific Publishing Company, 1998.

[6] Micah Beck, Jack J. Dongarra, Graham E. Fagg, G. Al Geist, Paul Gray, James Kohl,

Mauro Migliardi, Keith Moore, Terry Moore, Philip Papadopoulous, Stephen L.

Scott, and Vaidy Sunderam. HARNESS: A next generation distributed virtual ma-

chine. Future Generation Computer Systems, 15(5–6):571–582, 1999.

[7] B. C. Bromley. Quasirandom number generators for parallel Monte Carlo algorithms.

Journal of Parallel and Distributed Computing, 38(1):101–104, 1996.

[8] Rajkumar Buyya, Steve J. Chapin, and David C. DiNucci. Architectural models for

resource management in the grid. In Proceedings of the First IEEE/ACM Interna-

tional Workshop on Grid Computing, pages 18–35. Springer-Verlag, 2000.

[9] R. E. Caflisch. Monte carlo and quasi-monte carlo methods. Acta Numerica, 8:1–49,

1998.

[10] H. Chi and M. Mascagni. Scrambled quasirandom sequences and their application.

submitted for publication in SIAM Review, 2003.

[11] Ian Foster and Carl Kesselman. Globus: A metacomputing infrastructure toolkit. The

International Journal of Supercomputer Applications and High Performance Comput-

ing, 11(2):115–128, Summer 1997.

[12] Ian Foster, Carl Kesselman, and Steven Tuecke. The anatomy of the Grid: Enabling

scalable virtual organizations. Lecture Notes in Computer Science, 2150:1–17, 2001.

[13] Hee Sun Hong and Fred J. Hickernell. Algorithm 823: Implementing scrambled

digital sequences. ACM Transactions on Mathematical Software, 29(2):95–109, June

2003.

[14] Yaohang Li and Michael Mascagni. Grid-based Monte Carlo application. Lecture

Notes in Computer Science, 2536:13–24, 2002.

[15] Yaohang Li, Michael Mascagni, and Robert van Engelen. Gcimca: A globus and sprng

implementation of a grid computing infrastructure for monte carlo applications. In

Proceeding of the International Multiconference in Computer Science and Computer

Engineering, PDPTA’03. IEEE, 2003.

[16] Yaohang Li, Michael Mascagni, Robert van Engelen, and Q. Cai. A grid workflow-

based monte carlo simulation environment. submitted for Journal of Neural Parallel

and Scientific Computations, 2003.

http://www.ingentaconnect.com/content/external-references?article=0167-739X(1999)15:6L.571[aid=6641902]
http://www.ingentaconnect.com/content/external-references?article=1078-3482(1997)11:2L.115[aid=1756226]
http://www.ingentaconnect.com/content/external-references?article=1078-3482(1997)11:2L.115[aid=1756226]
http://www.ingentaconnect.com/content/external-references?article=1078-3482(1997)11:2L.115[aid=1756226]
http://www.ingentaconnect.com/content/external-references?article=0098-3500(2003)29:2L.95[aid=5530978]
http://www.ingentaconnect.com/content/external-references?article=0098-3500(2003)29:2L.95[aid=5530978]
http://www.ingentaconnect.com/content/external-references?article=0743-7315(1996)38:1L.101[aid=6641901]
http://www.ingentaconnect.com/content/external-references?article=0302-9743(2001)2150L.1[aid=6641899]
http://www.ingentaconnect.com/content/external-references?article=0302-9743(2002)2536L.13[aid=6641898]
http://www.ingentaconnect.com/content/external-references?article=0302-9743(2002)2536L.13[aid=6641898]
http://www.xml.org
http://www.xml.org

Grid-based Quasi-Monte Carlo Applications 55

[17] Michael Litzkow, Miron Livny, and Matthew Mutka. Condor - a hunter of idle work-

stations. In Proceedings of the 8th International Conference of Distributed Computing

Systems, June 1988.

[18] Miron Livny, Jim Basney, Rajesh Raman, and Todd Tannenbaum. Mechanisms for

high throughput computing. SPEEDUP Journal, 11(1), June 1997.

[19] Michael Mascagni and Ashok Srinivasan. Algorithm 806: SPRNG: a scalable library

for pseudorandom number generation. ACM Transactions on Mathematical Software,

26(3):436–461, September 2000.

[20] Michael O. Neary, Bernd O. Christiansen, Peter Cappello, and Klaus E. Schauser.

Javelin: Parallel computing on the Internet. Future Generation Computer Systems,

15(5–6):659–674, 1999.

[21] Luis F. G. Sarmenta. Sabotage-tolerance mechanisms for volunteer computing sys-

tems. Future Gener. Comput. Syst., 18(4):561–572, 2002.

[22] A. Srinivasan. Parallel and distributed computing issues in pricing financial deriva-

tives through quasi-monte carlo. In Proceedings of the Sixteenth International Parallel

and Distributed Processing Symposium. IEEE, 2002.

[23] A. Srinivasan, D. M. Ceperley, and M. Mascagni. Random number generators for

parallel applications. Monte Carlo Methods in Chemical Physics, 105:13–36, 1998.

[24] Dan Werthimer, Jeff Cobb, Matt Lebofsky, David Anderson, and Eric Korpela.

Seti@home: massively distributed computing for seti. Comput. Sci. Eng., 3(1):78–83,

2001.

http://www.ingentaconnect.com/content/external-references?article=0167-739X(1999)15:6L.659[aid=6641897]
http://www.ingentaconnect.com/content/external-references?article=0167-739X(1999)15:6L.659[aid=6641897]
http://www.ingentaconnect.com/content/external-references?article=0098-3500(2000)26:3L.436[aid=1717113]
http://www.ingentaconnect.com/content/external-references?article=0098-3500(2000)26:3L.436[aid=1717113]
http://www.ingentaconnect.com/content/external-references?article=0167-739x(2002)18:4L.561[aid=4904753]

