
1IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3B, March 2006

1

Manuscript revised March 2006.

A Bio-inspired Adaptive Job Scheduling Mechanism on a

Computational Grid

Yaohang Li†

†Department of Computer Science, North Carolina A&T State University, Greensboro, NC 27411, USA

Summary
A computational grid is a highly dynamic and distributed
environment. Unlike tightly-coupled parallel computing
environment, high performance computing on the grid is
complicated by the heterogeneous computational performances
of each node, possible node unavailability, unpredictable node
behavior, and unreliable network connectivity. Compared to a
static scheduling, an adaptive scheduling mechanism is more
favorable and attractive in a grid-computing environment,
because it can adjust the scheduling policy according to its
dynamically changing computational environment.
In this paper, we present a job scheduling mechanism that enable
the adaptation of naturally parallel and compute-intensive jobs to
clustered computational farms with heterogeneous performance.
The kernel of this scheduling technique is a swarm intelligent
algorithm, which is inspired from the ants’ behavior in a social
insect colony. We applied the bio-inspired adaptive mechanism in
a simulated computational grid and compared it with static
scheduling algorithms. Our results showed good performance,
adaptability, and robustness in a dynamic computational grid
with respect to its competitors.

Key words:
Grid Computing, Swarm Intelligence

1. Introduction

Grid computing is characterized by large-scale sharing and
cooperation of dynamically distributed resources, such as
CPU cycles, communication bandwidth, and data, to
constitute a computational environment [1]. A large-scale
computational grid [19] can, in principle, offer a
tremendous amount of low-cost computational power. This
attracts many computationally intensive scientific
applications. On the other hand, significant challenges also
arise. The computational grid exhibits dynamic and
unpredictable behaviors – the computational performances
of each node vary greatly from time to time; the network
connections may become unreliable; nodes may join or
leave the grid system at any time; nodes may become
unavailable without any notifications. As a result, a
computational job running on different nodes on the grid
will lead to a huge range of completion times. In some
extreme cases, a job may never be able to complete.

Therefore, how to effectively schedule the grid resources
to minimize the job execution time is an issue of prime
importance.
Social insects, such as bacteria [2], ants [3], and
caterpillars [4], exhibit a collective problem solving
capability, which shows strong adaptability and robustness
to dynamically changing environment. This property is
referred as the swarm intelligence [20]. In a swarm
intelligence system, agents are specialized in particular
unsophisticated functionalities and interact with their
environment to exhibit globally collective intelligence.
Particularly, the foraging behavior and the collaboration of
specialized type of ants in an ant colony inspire us to
investigate in the ants’ behavior and adopt this mechanism
in adaptive job scheduling on the computational grid.
In this paper, we consider the problem of scheduling a set
of natural parallel jobs with different arrival times to run
on a computational grid. We present a novel job
scheduling mechanism inspired by the behavior of the ant
colony to effectively utilize the dynamic distributed
resources in the grid-computing environment to achieve an
optimal job completion time. Similar to the collective
behavior of social insects, this scheduling mechanism
exhibits strong adaptability and robustness to the dynamic
nature of the grid-computing environment.
The remainder of this paper is organized as follows. In
Section 2, we analyze the nature of the ant colony’s social
behavior. We discuss the behavior of grid resources and
introduce the bio-inspired job scheduling mechanism using
swarm intelligence in Section 3 and Section 4, respectively.
We compare our simulation results of the bio-inspired
scheduling mechanism in a simulated computational grid
with other scheduling mechanisms in Section 5. Finally,
Section 6 summarizes our conclusions and future research
directions.

2. The Ant Colony

Workers of some social insects specialize in particular
tasks and perform them during greater part of their lives
than other workers do. For example, the soldiers specialize
in killing enemies, the scouts aim at searching for food
sources, the carriers focus on collecting water and food,

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3B, March 2006

2

the servants are responsible of keeping the hive clean and
warm, and the queen’s task is producing new ants [7]. The
specialization of social insects associated with
morphological adaptations is called “caste polyethism” [8].
In a social organization, each social insect worker carries
out relatively simple functionality; however, the collective
behaviors of these unsophisticated workers with various
specialties cause coherent functional intelligent global
patterns to emerge. The swarm intelligence exhibits strong
adaptability and robustness in dynamically changing
environment.
The behaviors of social insects have captured the attention
of many scientists because of their problem solving
capability with relative simplicity of the colony’s
individuals. An important and interesting behavior of ant
colonies is their foraging behavior, and, in particular, how
ants can find the shortest paths between food sources and
their nest. Ant algorithms were inspired by the observation
of real ant colonies. While walking from food sources to
the nest and vice versa, ants deposit a type of chemical
named pheromone on the ground, forming in this way a
pheromone trail. The pheromone trail allows the ants to
find their way back to the food source (or to the nest).
More importantly, other ants can use the pheromone trail
found by their nest mates to find the location of the food
sources. Moreover, pheromones evaporate, meaning that
an obsolete trail will gradually disappear.
In an ant colony, the ants can be modeled as probabilistic
processes. In the absence of pheromone, the ants explore
the surrounding area in a totally random manner. If
pheromone exists, the ants can smell pheromone and
follow the pheromone trail with a high probability. If two
pheromone trails cross each other, the ants tend to choose,
in a higher probability, paths marked by stronger
pheromone concentrations to follow. At the same time, the
ants reinforce the trail by depositing their own pheromones.
Where the more are the ants following a trail, the more
that trail becomes attractive for other ants to follow. The
quantity of pheromone in a shorter path grows faster than
that on the longer one, and therefore the probability with
which any single ant chooses the path to follow is quickly
biased towards the shorter one. Finally, most of the ants
will choose the shorter path. However, the decision of
whether to follow a path or not is never deterministic, thus
always allowing new routes to be explored. Eventually, the
shortest path to the food source will emerge [11].
The phenomenon of foraging in an ant colony shows that
minimal level of individual complexity can explain
sophisticated collective behaviors. Satisfactory
computational models have been developed to simulate the
food searching process of an ant swarm. Algorithms that
take inspiration from ants’ behavior in finding shortest
paths have recently been successfully applied to
combinatorial optimization [5], circuit switched

communications network problem [9], and adaptive
routing problem [6].

3. The Resources in the Grid

Grid computing, which can be characterized as large-scale
distributed resource sharing and cooperation, has quickly
become a mainstream technology in distributed computing.
In a computational grid, large-scale computational
resources, global-wide networking connectivity, access to
high-end scientific instruments, participation of scientists
and experts in different areas, and coordination of
organizations make the grid a powerful and cost-effective
platform to carry out large-scale scientific computing
operations. Nevertheless, despite the attractive
characteristics of grid computing, to successfully apply the
grid technique in scientific computation, the grid
environment presents a number of significant challenges:
Heterogeneity: The grid resources within a computational
grid exhibit heterogeneous computational performances.
The capabilities of each node vary greatly. A node might
be a high-end supercomputer, or a low-end personal
computer, even just an intelligent widget. Also, different
grid nodes may employ different job-running policies. As a
result, a task running on different nodes on the grid will
have a huge range of completion times. Moreover, the grid
job scheduler may not be able to obtain any indication of
the performance of a grid node.
Dynamism: Grid computing is a highly dynamic
computational environment – nodes may join or leave the
grid system at any time according to their owner’s
discretion; the network connecting the grid nodes may
become unavailable; the performance of grid resources
may change frequently over time; the heavy workload may
also turn a “fast” node into a “slow” node [17].
Trustworthiness: In a grid-computing environment, the
service providers of the grid are often geographically
separated with no central management. Faults may hurt the
integrity of a computation. These might include faults
arising from the network, system software or node
hardware. A node providing CPU cycles might not be
trustworthy. A user might provide a system to the grid
without the intent of faithfully executing the applications
obtained. Experience with SETI@home [12] has shown
that users sometimes fake computations and return wrong
or inaccurate results. The resources in a grid system are so
widely distributed that it appears difficult for a
grid-computing system to completely prevent all “bad”
nodes from participating in a grid computation.
As a result, to efficiently and effectively utilize the grid
resources, the grid-computing environment requires a
fundamentally new computing paradigm that will differ in
both substance and scale from those of the traditional
parallel or distributed computing.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3B, March 2006

3

4. Bio-inspired Job Scheduling Mechanism
using Swarm Intelligence

The goal of every job-scheduling algorithm on the grid is
to minimize the execution time of the computational jobs
by effectively taking advantage of the large amount of
distributed resources. In our bio-inspired job scheduling
mechanism using swarm intelligence, we design various
software ant agents with simple functionalities. No direct
communications occur among these agents. The only
indirect communication is via the pheromone values stored
in a global grid resource table. We expect the collective
behaviors of these simple agents suit the dynamic nature of
the grid.

4.1 Grid Resource Table

The only global data structure used in the bio-inspired job
schedule algorithm using swarm intelligence is a grid
resource table. The grid resource table keeps track of the
available grid nodes providing computational services and
the pheromone value associated with them. The
pheromone value decreases as time goes on to simulate the
“evaporating” process. An ant agent can also deposit
pheromone by increasing the pheromone value in the grid
resource table.

4.2 Specialized Ant Agents

Similar to the caste polyethism in social insects, we
simulate several agents with distinct simple functionalities
in the bio-inspired scheduling mechanism on the grid.
These specialized agents are categorized as follows:
• Scout: Grid computing exhibits high dynamism – the

grid resources may become available or unavailable
without any notice. The responsibility of the scout is to
discover the new grid nodes providing appropriate
computational services. Once such a new grid node is
found, the scout adds it to the available resource table
with an initial pheromone value.

• Tester: A tester executes a small sample program on a
grid node and test for the computational time of the
sample program. The tester updates the pheromone
value of this particular grid node according to the job
completion time of the sample program.

• Worker: A worker chooses an available grid node and
carries out a computational job in the system on this
node. The grid nodes with higher pheromone value will
have a higher probability to be selected.

• Cleaner: A cleaner maintains the available grid resource
table in the system. It removes the unavailable resources
(with low pheromone value) from the grid resource
table.

• Queen: The queen’s task is to produce the specialized
agents, including the scouts, testers, cleaners, and
workers.

All these agents fulfill their own simple functionalities.
There is no direct communications among all these agents.
Fig. 1 shows the behaviors and simple functions of these
specialized agents.

Computational Grid

Grid Resources Pheromone
abner.ncat.edu 0.27
garfield.ncat.edu 0.22
alpha.fsu.edu 0.21
vanity.ncat.edu 0.18

orion.csit.fsu.edu 0.12
workstation.uncg.edu 0.07

... …

Information
Service
Provider

Job

Sample
Code

Sample
Code

Sample
Code

Sample
Code

Job

Grid Resource Table

Job1

...

Job2

Submitted Computational
Job Lists

slow.ncat.edu 0.001

Scout

Tester Worker

Cleaner

Queen

Fig. 1 Behaviors of Ant Agents

4.3 Bio-inspired Job Scheduling Mechanism using
Swarm Intelligence Algorithm

Let us put all the pieces of the swarm intelligent algorithm
together. The bio-inspired mechanism of job scheduling on
the computational grid is depicted as follows:
1. Initially, the queen spawns scouts, cleaners, and workers.

The queen also produces testers at a time period of T.
2. A scout visits the information services providers of the

grid and explores those nodes providing computational
services. The scout finds the available nodes and adds
them to the grid resource table with initial pheromone
value, θ.

3. Once a job is submitted to the computational grid, a
worker will try to schedule this job to an available node.
A node having a higher pheromone value will be
selected with a higher probability. A node i will be
selected with probability, qi, of

∑
=

=
n

j
jii ppq

1

/
,

where pi is the pheromone value of node i and n is the
total number of available nodes in the system.

4. Testers are produced periodically. Each tester carries out
a small sample program on every node in the grid
resource table. When the sample program is complete,

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3B, March 2006

4

the pheromone value pi of node i is updated by ii Tp /1+ ,
where Ti is the execution time of the sample program on
node i. If a sample program cannot be complete by a
node, the pheromone value associated with this node
will not change. The period θ of scheduling the testers is
a tunable parameter.

5. The pheromone values of nodes evaporate. In our
implementation, we implement the evaporation process
by normalizing the pheromone values in the grid
resource table periodically. The pheromone value
becomes

∑
=

n

j
ji pp

1

/
.

After normalization, all the pheromone values of the
nodes in grid resource table obey

∑
=

=
n

j
jp

1
1

.
6. When the pheromone value of a node is lower than some

threshold value, τ, which usually means that this node
has been unavailable for a long time or this node is an
extremely slow node with an undesired job completion
time, the cleaner will remove it from the grid resource
table.

In the bio-inspired scheduling algorithm, variables T, θ,
and τ, are tunable parameters subject to the grid system.

4.4 Analysis of the Bio-inspired Job Scheduling
Mechanism

1. Adaptability and Robustness
A computational grid is a highly dynamic and distributed
computing environment. To be adaptive to a dynamically
changing computational grid, the key of the bio-inspired
job scheduling mechanism is to keep track of the
pheromone value table with the pheromone values
reflecting the most update performance of each node in the
grid-computing environment. The trade-off is the overhead
of scheduling and running the tester program on the grid
nodes.
Also, due to the wide distribution and uncontrollability of
grid resources, a grid node may be temporally unreachable
[17]. To handle this situation, the bio-inspired scheduling
mechanism will not remove a previously well-performing
node from the grid resource table immediately even
though it becomes temporally unavailable. Only when the
grid node has left the grid system for a long time and its
associated pheromone value has evaporated to be lower
than the threshold value, τ, the grid node will be removed
from the grid resource table by the cleaner and its assigned
jobs will be rescheduled to other nodes.
2. Trustworthiness
A surprising byproduct of the bio-inspired job scheduling
mechanism is that a way to improve the trustworthiness of

the computational grid is provided. In the bio-inspired job
scheduling, the sample program carried out by the tester
can not only test the performance of a grid node, but also
verify whether a grid node can faithfully carry out and
accurately execute its assigned tasks or not.
To enable the bio-inspired job scheduling mechanism the
capability of verifying the trustworthiness of grid
resources, we design the tester sample program to produce
a series of intermediate values. These intermediate values
vary according to the random initial condition. To the grid
node that runs the tester sample program, these values will
be unknown until the task is actually executed and reaches
a specific point within the program. On the other hand, to
the clever scheduler, certain intermediate values are either
pre-known and secret or are very easy to generate.
Therefore, by comparing the intermediate values and the
pre-known values, we can control whether the sample
tester program is actually faithfully carried out or not. The
crude Monte Carlo integration programs can be the ideal
candidates as such tester sample programs [13].

5. Simulation Results

In a computational grid, two common scheduling
mechanisms are widely used, including the random
scheduling method and the heuristic scheduling method.
The random scheduling is employed in many volunteer
computing systems such as SETI@home [12] and Condor
[14], which has no extra information of the performance of
a participated grid node and, thus, schedules computational
jobs to its grid nodes in a random manner. The heuristic
scheduling method [15, 16] takes advantage of the
previous overall performance of a grid node in managing
workload on different grid nodes. To investigate the
performance of the bio-inspired job-scheduling algorithm,
we simulate a computational grid with participant nodes of
heterogeneous computational performances. The arrival
rate of the naturally parallel and computation-intensive
jobs in the grid system conforms to a Poisson distribution.
Each job requires a constant number of operations. We
compare the bio-inspired mechanism with the random
scheduling mechanism and the heuristic scheduling
mechanism in this simulated grid environment with grid
nodes using a time-sharing policy or a queuing policy.

5.1 Grid Nodes using a Time-Sharing Policy

In this experiment, we simulate the behavior of a
computational grid whose participant nodes employ a
time-sharing policy, i.e., once a job is scheduled to a grid
node, it will be executed concurrently with existing jobs in
the grid node. Fig. 2 shows the comparison of the average
job completion times of the bio-inspired mechanism, the
heuristic mechanism, and the random mechanism with
various job arrival rates. The data in Fig. 2 come from

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3B, March 2006

5

simulation on a grid whose participant nodes have fixed
performance values. This can be a cluster constructed from
dedicated computers. The bio-inspired mechanism and
heuristic mechanism significantly outperform the random
mechanism. The jobs using bio-inspired scheduling
mechanism take slightly more completion time compared
to the heuristic mechanism because of the overhead of the
execution of the tester sample program.

0

5000

10000

15000

20000

25000

30000

2.0E-05 4.0E-05 6.0E-05 8.0E-05 1.0E-04 1.2E-04 1.4E-04 1.6E-04
Job Arrival Rate

Jo
b

C
om

pl
et

io
n

Ti
m

e

Bio-inspired

Heuristic

Random

Fig. 2 Comparison of bio-inspired mechanism, heuristic mechanism, and
random mechanism in job scheduling on a simulated computational grid.

Jobs in a grid node share CPU time. Nodes have fixed performance
values.

To introduce dynamism to the simulated grid, we allow the
performance of a grid node change with a probability of ρ
at each time step. Fig. 3 illustrates the job completion
times on a simulated computational grid in which the
performances of the participant nodes change from time to
time. In practice, this grid can be a volunteer computing
system such as Condor [14] or SETI@home [12]. At each
time step, the performance of every node within the
simulated grid changes with a probability of ρ = 0.0001.
The performance value of a grid node may change to 0,
which indicates that the node leaves the grid-computing
environment. When ρ is high enough, i.e., a highly
dynamic grid system, the heuristic values in the heuristic
scheduling mechanism can no longer accurately reflect the
computational performances of the grid nodes in the
dynamically changing computing environment, which
leads to a poor performance of the heuristic scheduling
mechanism. In contrast, the bio-inspired mechanism shows
a better average job completion time than the random
mechanism and heuristic mechanism.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

2.0E-05 4.0E-05 6.0E-05 8.0E-05 1.0E-04 1.2E-04 1.4E-04 1.6E-04
Job Arrival Rate

Jo
b

C
om

pl
et

io
n

Ti
m

e

Bio-inspired

Heuristic

Random

Fig. 3 Comparison of bio-inspired mechanism, heuristic mechanism, and
random mechanism in job scheduling on a simulated computational grid.

Jobs in a grid node share CPU time. Nodes change performance with
probability of 0.0001.

Fig. 4 depicts the adaptability of the bio-inspired
scheduling mechanism. As the probability, ρ, of node
performance changing increases, the simulated grid
evolves from a slightly dynamic system to a heavily
dynamic system. The data in Fig. 4 shows that the
performances of the heuristic mechanism and the random
mechanism change dramatically; in contrast, the
bio-inspired mechanism exhibits a rather steady
performance.

0

5000

10000

15000

20000

25000

1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02

Probability of Node Performance Changing

Jo
b

Co
m

pl
et

io
n

Ti
m

e

Bio-inspired
Heuristic
Random

Fig. 4 Performance comparison of bio-inspired mechanism, heuristic
mechanism, and random mechanism in job scheduling on a simulated
computational grid with different probabilities of node performance

changing.

5.2 Grid Nodes using a Queuing Policy

0

2000

4000

6000

8000

10000

12000

14000

2.0E-05 4.0E-05 6.0E-05 8.0E-05 1.0E-04 1.2E-04 1.4E-04 1.6E-04

Job Arrival Rate

Jo
b

C
om

pl
et

io
n

Ti
m

e

Bio-inspired

Heuristic

Random

Fig. 5 Comparison of bio-inspired mechanism, heuristic mechanism, and
random mechanism in job scheduling on a simulated computational grid.
The grid nodes employ a queuing policy. Nodes have fixed performance

values.

0

2000

4000

6000

8000

10000

12000

2.0E-05 4.0E-05 6.0E-05 8.0E-05 1.0E-04 1.2E-04 1.4E-04 1.6E-04

Job Arrival Rate

Jo
b

C
om

pl
et

io
n

Ti
m

e

Bio-inspired

Heuristic

Random

Fig. 6 Comparison of bio-inspired mechanism, heuristic mechanism, and
random mechanism in job scheduling on a simulated computational grid.

The grid nodes use a queuing policy. Nodes change performance with
probability of 0.0001.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3B, March 2006

6

We simulate the behavior of a computational grid whose
participant nodes employ a queuing policy. Suppose the
grid node is an M/M/1 system, i.e., a node in this grid can
execute at most one job at a time and process jobs in a
FIFO discipline. Fig. 5 and 6 show the average job
completion time comparison of the bio-inspired
mechanism, the heuristic mechanism, and the random
mechanism on a simulated grid with fixed performance
nodes and dynamic performance nodes, respectively. The
experimental results exhibit similarity to those of the grid
with nodes using a time-sharing policy presented in
section 5.1. On a grid with fixed performance nodes,
compared to the heuristic mechanism, the jobs using
bio-inspired scheduling mechanism take slightly more
completion time due to the overhead of running the tester
sample program. On a dynamic grid, the bio-inspired
mechanism outperforms the random mechanism and the
heuristic mechanism.

6. Conclusions

The swarm intelligence algorithms generically exhibit
natural adaptability and robustness characteristics by
collaboration of unsophisticated agents interacting with the
environment, which can be employed in a highly dynamic
computing environment, such as a computational grid.
Inspired from the behavior of an ant colony, in this paper,
we presented a bio-inspired job scheduling mechanism that
enable the adaptation of naturally parallel and
compute-intensive jobs to a computational grid with
heterogeneous and dynamic performance. We applied the
bio-inspired mechanism in a simulated computational grid
and compared it with the random mechanism and heuristic
mechanism. Our results indicated both good adaptability
and robustness in a dynamic computational grid. Moreover,
the bio-inspired mechanism provides an interesting
approach to verify the trustworthiness of the distributed
computation on the computational grid by designing a
tester program that can produce easy-to-verify
intermediate values and partial results.
The next phase of our research will be to apply the
bio-inspired scheduling mechanism into a real-life
computational grid. We are in the development phase of a
grid scheduling software package using the Globus Toolkit
[18] based on the bio-inspired scheduling mechanism
presented in this paper. Our immediate goal is to
demonstrate the adaptability and robustness of the
bio-inspired scheduling mechanism on various grid
testbeds.

References
[1] I. Foster, C. Kesselman, S. Tueske, “The Anatomy of the

Grid,” Intl. Journal of Supercomputer App., 15(3), 2001.

[2] J. L. Denebourg, J. M. Pasteels, J. C. Verhaeghe,
“Probabilistic Behavior in Ants: a Strategy of Errors?”
Journal of Theoretical Biology, 105: 259-271, 1983.

[3] J. A. Shapiro, “Bacteria as Multicellular Organisms,”
Scientific American, pp. 82-89, 1988.

[4] T. D. Fitzgerald, S. C. Peterson, “Cooperative Foraging and
Communication in Caterpillars,” Bioscience, 38: 20-25,
1998.

[5] M. Dorigo, G. Di Garo, “Ant Algorithms for Discrete
Optimization,” Artificial Life, 5:137-172, 1999.

[6] G. Di Garo and M. Dorigo, “An Adaptive Multi-Agent
Routing Algorithm Inspired by Ants Behavior,” Proc. of 5th
Annual Australasian Conf. Para. & Real-Time Sys., 1998.

[7] C. Detrain, J. M. Pasteels, “Caste Polyethism and Collective
Defense in the Ant, Pheidole Pallidula: the Outcome of
Quantitative differences in recruitment,” Behav. Ecol.
Sociobiol. 29:405-412, 1992.

[8] E. O. Wilson, “The Insect Societies,” Harvard University
Press, Cambridge, 1971.

[9] G. Di Caro and M. Dorigo, “Ant Colonies for Adaptive
Routing in Packet-Switched Communications Networks,”
Proceedings of Fifth International Conference on Parallel
Problem Solving from Nature, 1998.

[10] H. M. Botee, E. Bonabeau, “Evolving Ant Colony
Optimization,” Advances in Complex Sys., 1(2):149-159,
1999.

[11] A. Colorni, M. Dorigo, V. Maniezzo, “Distributed
Optimization by Ant Colonies,” Proceedings of First
European Conference on Artificial Life, 1992.

[12] E. Korpela, D. Werthimer, D. Anderson, J. Cobb, M.
Lebofsky, “SETI@home-Massively distributed computing
for SETI,” Comp. in Sci. and Eng., v3n1, 81, 2001.

[13] Y. Li and M. Mascagni, “Analysis of Large-scale Grid-based
Monte Carlo Applications,” Intl. Journal of High
Performance Comp. App. (IJHPCA), 17(4): 369-382, 2003.

[14] M. Litzkow, M. Livny, M. Mutka, “Condor - A Hunter of
Idle Workstations,” Proc. of 8th Intl. Conf. of Distributed
Computing Systems, 1988.

[15] M. Wu, X. Sun, “A General Self-adaptive Task Scheduling
System for Non-dedicated Heterogeneous Computing,”
Proc. of IEEE Intl. Conf. on Cluster Computing, 2003.

[16] C. R. Reeves, “Modern Heuristic Techniques for
Combinatorial Problems,” John Wiley & Sons,
McGraw-Hill International Ltd.

[17] A. Andrieux, D. Berry, J. Garibaldi, S. Jarvis, J. MacLaren,
D. Ouelhadj, D. Snelling, “Open Issues in Grid
Scheduling,” UK e-Science Technical Report, 2004.

[18] Globus toolkit website, http://www.globus.org, 2004.
[19] G. Fox, W. Furmanski, “Java for Parallel Computing and as

a General Language for Scientific and Engineering
Simulation and Modeling,” Concurrency: Practice and
Experience, 9(6):415-425, 1997.

[20] E. Bonabeau, G. Théraulaz, “Swarm Smarts,” Scientific
American, pp. 72-79, 2000.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3B, March 2006

7

Yaohang Li received his B. S. in
Computer Science from South China
University of Technology in 1997 and
M.S. and Ph.D. degree from
Department of Computer Science,
Florida State University in 2000 and
2003, respectively. After graduation, he
worked as a research associate in the
Computer Science and Mathematics
Division at Oak Ridge National

Laboratory, TN. His research interest is in Grid Computing,
Computational Biology, and Monte Carlo Methods. Now he is an
assistant professor in Computer Science at North Carolina A&T
State University.

