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Summary 
A computational grid is a highly dynamic and distributed 
environment. Unlike tightly-coupled parallel computing 
environment, high performance computing on the grid is 
complicated by the heterogeneous computational performances 
of each node, possible node unavailability, unpredictable node 
behavior, and unreliable network connectivity. Compared to a 
static scheduling, an adaptive scheduling mechanism is more 
favorable and attractive in a grid-computing environment, 
because it can adjust the scheduling policy according to its 
dynamically changing computational environment. 
In this paper, we present a job scheduling mechanism that enable 
the adaptation of naturally parallel and compute-intensive jobs to 
clustered computational farms with heterogeneous performance. 
The kernel of this scheduling technique is a swarm intelligent 
algorithm, which is inspired from the ants’ behavior in a social 
insect colony. We applied the bio-inspired adaptive mechanism in 
a simulated computational grid and compared it with static 
scheduling algorithms. Our results showed good performance, 
adaptability, and robustness in a dynamic computational grid 
with respect to its competitors. 
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1. Introduction 

Grid computing is characterized by large-scale sharing and 
cooperation of dynamically distributed resources, such as 
CPU cycles, communication bandwidth, and data, to 
constitute a computational environment [1]. A large-scale 
computational grid [19] can, in principle, offer a 
tremendous amount of low-cost computational power. This 
attracts many computationally intensive scientific 
applications. On the other hand, significant challenges also 
arise. The computational grid exhibits dynamic and 
unpredictable behaviors – the computational performances 
of each node vary greatly from time to time; the network 
connections may become unreliable; nodes may join or 
leave the grid system at any time; nodes may become 
unavailable without any notifications. As a result, a 
computational job running on different nodes on the grid 
will lead to a huge range of completion times. In some 
extreme cases, a job may never be able to complete. 

Therefore, how to effectively schedule the grid resources 
to minimize the job execution time is an issue of prime 
importance.  
Social insects, such as bacteria [2], ants [3], and 
caterpillars [4], exhibit a collective problem solving 
capability, which shows strong adaptability and robustness 
to dynamically changing environment. This property is 
referred as the swarm intelligence [20]. In a swarm 
intelligence system, agents are specialized in particular 
unsophisticated functionalities and interact with their 
environment to exhibit globally collective intelligence. 
Particularly, the foraging behavior and the collaboration of 
specialized type of ants in an ant colony inspire us to 
investigate in the ants’ behavior and adopt this mechanism 
in adaptive job scheduling on the computational grid. 
In this paper, we consider the problem of scheduling a set 
of natural parallel jobs with different arrival times to run 
on a computational grid. We present a novel job 
scheduling mechanism inspired by the behavior of the ant 
colony to effectively utilize the dynamic distributed 
resources in the grid-computing environment to achieve an 
optimal job completion time. Similar to the collective 
behavior of social insects, this scheduling mechanism 
exhibits strong adaptability and robustness to the dynamic 
nature of the grid-computing environment.  
The remainder of this paper is organized as follows. In 
Section 2, we analyze the nature of the ant colony’s social 
behavior. We discuss the behavior of grid resources and 
introduce the bio-inspired job scheduling mechanism using 
swarm intelligence in Section 3 and Section 4, respectively. 
We compare our simulation results of the bio-inspired 
scheduling mechanism in a simulated computational grid 
with other scheduling mechanisms in Section 5. Finally, 
Section 6 summarizes our conclusions and future research 
directions.  
 
2. The Ant Colony 
 
Workers of some social insects specialize in particular 
tasks and perform them during greater part of their lives 
than other workers do. For example, the soldiers specialize 
in killing enemies, the scouts aim at searching for food 
sources, the carriers focus on collecting water and food, 
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the servants are responsible of keeping the hive clean and 
warm, and the queen’s task is producing new ants [7]. The 
specialization of social insects associated with 
morphological adaptations is called “caste polyethism” [8]. 
In a social organization, each social insect worker carries 
out relatively simple functionality; however, the collective 
behaviors of these unsophisticated workers with various 
specialties cause coherent functional intelligent global 
patterns to emerge. The swarm intelligence exhibits strong 
adaptability and robustness in dynamically changing 
environment. 
The behaviors of social insects have captured the attention 
of many scientists because of their problem solving 
capability with relative simplicity of the colony’s 
individuals. An important and interesting behavior of ant 
colonies is their foraging behavior, and, in particular, how 
ants can find the shortest paths between food sources and 
their nest. Ant algorithms were inspired by the observation 
of real ant colonies. While walking from food sources to 
the nest and vice versa, ants deposit a type of chemical 
named pheromone on the ground, forming in this way a 
pheromone trail. The pheromone trail allows the ants to 
find their way back to the food source (or to the nest). 
More importantly, other ants can use the pheromone trail 
found by their nest mates to find the location of the food 
sources. Moreover, pheromones evaporate, meaning that 
an obsolete trail will gradually disappear. 
In an ant colony, the ants can be modeled as probabilistic 
processes. In the absence of pheromone, the ants explore 
the surrounding area in a totally random manner. If 
pheromone exists, the ants can smell pheromone and 
follow the pheromone trail with a high probability. If two 
pheromone trails cross each other, the ants tend to choose, 
in a higher probability, paths marked by stronger 
pheromone concentrations to follow. At the same time, the 
ants reinforce the trail by depositing their own pheromones. 
Where the more are the ants following a trail, the more 
that trail becomes attractive for other ants to follow. The 
quantity of pheromone in a shorter path grows faster than 
that on the longer one, and therefore the probability with 
which any single ant chooses the path to follow is quickly 
biased towards the shorter one. Finally, most of the ants 
will choose the shorter path. However, the decision of 
whether to follow a path or not is never deterministic, thus 
always allowing new routes to be explored. Eventually, the 
shortest path to the food source will emerge [11]. 
The phenomenon of foraging in an ant colony shows that 
minimal level of individual complexity can explain 
sophisticated collective behaviors. Satisfactory 
computational models have been developed to simulate the 
food searching process of an ant swarm. Algorithms that 
take inspiration from ants’ behavior in finding shortest 
paths have recently been successfully applied to 
combinatorial optimization [5], circuit switched 

communications network problem [9], and adaptive 
routing problem [6]. 
 
3. The Resources in the Grid 
 
Grid computing, which can be characterized as large-scale 
distributed resource sharing and cooperation, has quickly 
become a mainstream technology in distributed computing. 
In a computational grid, large-scale computational 
resources, global-wide networking connectivity, access to 
high-end scientific instruments, participation of scientists 
and experts in different areas, and coordination of 
organizations make the grid a powerful and cost-effective 
platform to carry out large-scale scientific computing 
operations. Nevertheless, despite the attractive 
characteristics of grid computing, to successfully apply the 
grid technique in scientific computation, the grid 
environment presents a number of significant challenges: 
Heterogeneity: The grid resources within a computational 
grid exhibit heterogeneous computational performances. 
The capabilities of each node vary greatly. A node might 
be a high-end supercomputer, or a low-end personal 
computer, even just an intelligent widget. Also, different 
grid nodes may employ different job-running policies. As a 
result, a task running on different nodes on the grid will 
have a huge range of completion times. Moreover, the grid 
job scheduler may not be able to obtain any indication of 
the performance of a grid node. 
Dynamism: Grid computing is a highly dynamic 
computational environment – nodes may join or leave the 
grid system at any time according to their owner’s 
discretion; the network connecting the grid nodes may 
become unavailable; the performance of grid resources 
may change frequently over time; the heavy workload may 
also turn a “fast” node into a “slow” node [17]. 
Trustworthiness: In a grid-computing environment, the 
service providers of the grid are often geographically 
separated with no central management. Faults may hurt the 
integrity of a computation. These might include faults 
arising from the network, system software or node 
hardware. A node providing CPU cycles might not be 
trustworthy. A user might provide a system to the grid 
without the intent of faithfully executing the applications 
obtained. Experience with SETI@home [12] has shown 
that users sometimes fake computations and return wrong 
or inaccurate results. The resources in a grid system are so 
widely distributed that it appears difficult for a 
grid-computing system to completely prevent all “bad” 
nodes from participating in a grid computation. 
As a result, to efficiently and effectively utilize the grid 
resources, the grid-computing environment requires a 
fundamentally new computing paradigm that will differ in 
both substance and scale from those of the traditional 
parallel or distributed computing. 
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4. Bio-inspired Job Scheduling Mechanism 
using Swarm Intelligence 
 
The goal of every job-scheduling algorithm on the grid is 
to minimize the execution time of the computational jobs 
by effectively taking advantage of the large amount of 
distributed resources. In our bio-inspired job scheduling 
mechanism using swarm intelligence, we design various 
software ant agents with simple functionalities. No direct 
communications occur among these agents. The only 
indirect communication is via the pheromone values stored 
in a global grid resource table. We expect the collective 
behaviors of these simple agents suit the dynamic nature of 
the grid. 
 
4.1 Grid Resource Table 
 
The only global data structure used in the bio-inspired job 
schedule algorithm using swarm intelligence is a grid 
resource table. The grid resource table keeps track of the 
available grid nodes providing computational services and 
the pheromone value associated with them. The 
pheromone value decreases as time goes on to simulate the 
“evaporating” process. An ant agent can also deposit 
pheromone by increasing the pheromone value in the grid 
resource table. 
 
4.2 Specialized Ant Agents 
 
Similar to the caste polyethism in social insects, we 
simulate several agents with distinct simple functionalities 
in the bio-inspired scheduling mechanism on the grid. 
These specialized agents are categorized as follows: 
• Scout: Grid computing exhibits high dynamism – the 

grid resources may become available or unavailable 
without any notice. The responsibility of the scout is to 
discover the new grid nodes providing appropriate 
computational services. Once such a new grid node is 
found, the scout adds it to the available resource table 
with an initial pheromone value. 

• Tester: A tester executes a small sample program on a 
grid node and test for the computational time of the 
sample program. The tester updates the pheromone 
value of this particular grid node according to the job 
completion time of the sample program. 

• Worker: A worker chooses an available grid node and 
carries out a computational job in the system on this 
node. The grid nodes with higher pheromone value will 
have a higher probability to be selected. 

• Cleaner: A cleaner maintains the available grid resource 
table in the system. It removes the unavailable resources 
(with low pheromone value) from the grid resource 
table. 

• Queen: The queen’s task is to produce the specialized 
agents, including the scouts, testers, cleaners, and 
workers. 

All these agents fulfill their own simple functionalities. 
There is no direct communications among all these agents. 
Fig. 1 shows the behaviors and simple functions of these 
specialized agents. 
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Fig. 1 Behaviors of Ant Agents 
 
4.3 Bio-inspired Job Scheduling Mechanism using 
Swarm Intelligence Algorithm 
 
Let us put all the pieces of the swarm intelligent algorithm 
together. The bio-inspired mechanism of job scheduling on 
the computational grid is depicted as follows: 
1. Initially, the queen spawns scouts, cleaners, and workers. 

The queen also produces testers at a time period of T. 
2. A scout visits the information services providers of the 

grid and explores those nodes providing computational 
services. The scout finds the available nodes and adds 
them to the grid resource table with initial pheromone 
value, θ. 

3. Once a job is submitted to the computational grid, a 
worker will try to schedule this job to an available node. 
A node having a higher pheromone value will be 
selected with a higher probability. A node i will be 
selected with probability, qi, of  

 
∑
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where pi is the pheromone value of node i and n is the 
total number of available nodes in the system. 

4. Testers are produced periodically. Each tester carries out 
a small sample program on every node in the grid 
resource table. When the sample program is complete, 
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the pheromone value pi of node i is updated by ii Tp /1+ , 
where Ti is the execution time of the sample program on 
node i. If a sample program cannot be complete by a 
node, the pheromone value associated with this node 
will not change. The period θ of scheduling the testers is 
a tunable parameter. 

5. The pheromone values of nodes evaporate. In our 
implementation, we implement the evaporation process 
by normalizing the pheromone values in the grid 
resource table periodically. The pheromone value 
becomes 
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After normalization, all the pheromone values of the 
nodes in grid resource table obey 
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6. When the pheromone value of a node is lower than some 

threshold value, τ, which usually means that this node 
has been unavailable for a long time or this node is an 
extremely slow node with an undesired job completion 
time, the cleaner will remove it from the grid resource 
table. 

In the bio-inspired scheduling algorithm, variables T, θ, 
and τ, are tunable parameters subject to the grid system. 
 
4.4 Analysis of the Bio-inspired Job Scheduling 
Mechanism 
 
1. Adaptability and Robustness 
A computational grid is a highly dynamic and distributed 
computing environment. To be adaptive to a dynamically 
changing computational grid, the key of the bio-inspired 
job scheduling mechanism is to keep track of the 
pheromone value table with the pheromone values 
reflecting the most update performance of each node in the 
grid-computing environment. The trade-off is the overhead 
of scheduling and running the tester program on the grid 
nodes. 
Also, due to the wide distribution and uncontrollability of 
grid resources, a grid node may be temporally unreachable 
[17]. To handle this situation, the bio-inspired scheduling 
mechanism will not remove a previously well-performing 
node from the grid resource table immediately even 
though it becomes temporally unavailable. Only when the 
grid node has left the grid system for a long time and its 
associated pheromone value has evaporated to be lower 
than the threshold value, τ, the grid node will be removed 
from the grid resource table by the cleaner and its assigned 
jobs will be rescheduled to other nodes. 
2. Trustworthiness 
A surprising byproduct of the bio-inspired job scheduling 
mechanism is that a way to improve the trustworthiness of 

the computational grid is provided. In the bio-inspired job 
scheduling, the sample program carried out by the tester 
can not only test the performance of a grid node, but also 
verify whether a grid node can faithfully carry out and 
accurately execute its assigned tasks or not.  
To enable the bio-inspired job scheduling mechanism the 
capability of verifying the trustworthiness of grid 
resources, we design the tester sample program to produce 
a series of intermediate values. These intermediate values 
vary according to the random initial condition. To the grid 
node that runs the tester sample program, these values will 
be unknown until the task is actually executed and reaches 
a specific point within the program. On the other hand, to 
the clever scheduler, certain intermediate values are either 
pre-known and secret or are very easy to generate. 
Therefore, by comparing the intermediate values and the 
pre-known values, we can control whether the sample 
tester program is actually faithfully carried out or not. The 
crude Monte Carlo integration programs can be the ideal 
candidates as such tester sample programs [13]. 
 
5. Simulation Results 
 
In a computational grid, two common scheduling 
mechanisms are widely used, including the random 
scheduling method and the heuristic scheduling method. 
The random scheduling is employed in many volunteer 
computing systems such as SETI@home [12] and Condor 
[14], which has no extra information of the performance of 
a participated grid node and, thus, schedules computational 
jobs to its grid nodes in a random manner. The heuristic 
scheduling method [15, 16] takes advantage of the 
previous overall performance of a grid node in managing 
workload on different grid nodes. To investigate the 
performance of the bio-inspired job-scheduling algorithm, 
we simulate a computational grid with participant nodes of 
heterogeneous computational performances. The arrival 
rate of the naturally parallel and computation-intensive 
jobs in the grid system conforms to a Poisson distribution. 
Each job requires a constant number of operations. We 
compare the bio-inspired mechanism with the random 
scheduling mechanism and the heuristic scheduling 
mechanism in this simulated grid environment with grid 
nodes using a time-sharing policy or a queuing policy. 
 
5.1 Grid Nodes using a Time-Sharing Policy 
 
In this experiment, we simulate the behavior of a 
computational grid whose participant nodes employ a 
time-sharing policy, i.e., once a job is scheduled to a grid 
node, it will be executed concurrently with existing jobs in 
the grid node. Fig. 2 shows the comparison of the average 
job completion times of the bio-inspired mechanism, the 
heuristic mechanism, and the random mechanism with 
various job arrival rates. The data in Fig. 2 come from 
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simulation on a grid whose participant nodes have fixed 
performance values. This can be a cluster constructed from 
dedicated computers. The bio-inspired mechanism and 
heuristic mechanism significantly outperform the random 
mechanism. The jobs using bio-inspired scheduling 
mechanism take slightly more completion time compared 
to the heuristic mechanism because of the overhead of the 
execution of the tester sample program. 
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Fig. 2 Comparison of bio-inspired mechanism, heuristic mechanism, and 
random mechanism in job scheduling on a simulated computational grid. 

Jobs in a grid node share CPU time. Nodes have fixed performance 
values. 

 
To introduce dynamism to the simulated grid, we allow the 
performance of a grid node change with a probability of ρ 
at each time step. Fig. 3 illustrates the job completion 
times on a simulated computational grid in which the 
performances of the participant nodes change from time to 
time. In practice, this grid can be a volunteer computing 
system such as Condor [14] or SETI@home [12]. At each 
time step, the performance of every node within the 
simulated grid changes with a probability of ρ = 0.0001. 
The performance value of a grid node may change to 0, 
which indicates that the node leaves the grid-computing 
environment. When ρ is high enough, i.e., a highly 
dynamic grid system, the heuristic values in the heuristic 
scheduling mechanism can no longer accurately reflect the 
computational performances of the grid nodes in the 
dynamically changing computing environment, which 
leads to a poor performance of the heuristic scheduling 
mechanism. In contrast, the bio-inspired mechanism shows 
a better average job completion time than the random 
mechanism and heuristic mechanism. 
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Fig. 3 Comparison of bio-inspired mechanism, heuristic mechanism, and 
random mechanism in job scheduling on a simulated computational grid. 

Jobs in a grid node share CPU time. Nodes change performance with 
probability of 0.0001. 

Fig. 4 depicts the adaptability of the bio-inspired 
scheduling mechanism. As the probability, ρ, of node 
performance changing increases, the simulated grid 
evolves from a slightly dynamic system to a heavily 
dynamic system. The data in Fig. 4 shows that the 
performances of the heuristic mechanism and the random 
mechanism change dramatically; in contrast, the 
bio-inspired mechanism exhibits a rather steady 
performance. 
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Fig. 4 Performance comparison of bio-inspired mechanism, heuristic 
mechanism, and random mechanism in job scheduling on a simulated 
computational grid with different probabilities of node performance 

changing. 
 
5.2 Grid Nodes using a Queuing Policy 
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Fig. 5 Comparison of bio-inspired mechanism, heuristic mechanism, and 
random mechanism in job scheduling on a simulated computational grid. 
The grid nodes employ a queuing policy. Nodes have fixed performance 

values. 
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Fig. 6 Comparison of bio-inspired mechanism, heuristic mechanism, and 
random mechanism in job scheduling on a simulated computational grid. 

The grid nodes use a queuing policy. Nodes change performance with 
probability of 0.0001. 
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We simulate the behavior of a computational grid whose 
participant nodes employ a queuing policy. Suppose the 
grid node is an M/M/1 system, i.e., a node in this grid can 
execute at most one job at a time and process jobs in a 
FIFO discipline. Fig. 5 and 6 show the average job 
completion time comparison of the bio-inspired 
mechanism, the heuristic mechanism, and the random 
mechanism on a simulated grid with fixed performance 
nodes and dynamic performance nodes, respectively. The 
experimental results exhibit similarity to those of the grid 
with nodes using a time-sharing policy presented in 
section 5.1. On a grid with fixed performance nodes, 
compared to the heuristic mechanism, the jobs using 
bio-inspired scheduling mechanism take slightly more 
completion time due to the overhead of running the tester 
sample program. On a dynamic grid, the bio-inspired 
mechanism outperforms the random mechanism and the 
heuristic mechanism. 
 
6. Conclusions 
 
The swarm intelligence algorithms generically exhibit 
natural adaptability and robustness characteristics by 
collaboration of unsophisticated agents interacting with the 
environment, which can be employed in a highly dynamic 
computing environment, such as a computational grid. 
Inspired from the behavior of an ant colony, in this paper, 
we presented a bio-inspired job scheduling mechanism that 
enable the adaptation of naturally parallel and 
compute-intensive jobs to a computational grid with 
heterogeneous and dynamic performance. We applied the 
bio-inspired mechanism in a simulated computational grid 
and compared it with the random mechanism and heuristic 
mechanism. Our results indicated both good adaptability 
and robustness in a dynamic computational grid. Moreover, 
the bio-inspired mechanism provides an interesting 
approach to verify the trustworthiness of the distributed 
computation on the computational grid by designing a 
tester program that can produce easy-to-verify 
intermediate values and partial results.  
The next phase of our research will be to apply the 
bio-inspired scheduling mechanism into a real-life 
computational grid. We are in the development phase of a 
grid scheduling software package using the Globus Toolkit 
[18] based on the bio-inspired scheduling mechanism 
presented in this paper. Our immediate goal is to 
demonstrate the adaptability and robustness of the 
bio-inspired scheduling mechanism on various grid 
testbeds. 
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