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ABSTRACT Predicting the long-time, nonequi-
librium dynamics of receptor-ligand interactions
for structured proteins in a host fluid is a formi-
dable task, but of great importance to predicting
and analyzing cell-signaling processes and small
molecule drug efficacies. Such processes take place
on timescales on the order of milliseconds to sec-
onds, so “brute-force” real-time, molecular or atomic
simulations to determine absolute ligand-binding
rates to receptor targets and over a statistical en-
semble of systems are not currently feasible. In the
current study, we implement on real protein sys-
tems a previously developed®>® hybrid molecular
dynamics/Brownian dynamics algorithm, which
takes advantage of the underlying, disparate time-
scales involved and overcomes the limitations of
brute-force approaches. The algorithm is based on a
multiple timescale analysis of the total system Ham-
iltonian, including all atomic and molecular struc-
ture information for the system: water, ligand, and
receptor. In general, the method can account for the
complex hydrodynamic, translational-orientational
diffusion aspects of ligand-docking dynamics as
well as predict the actual or absolute rates of ligand
binding. To test some of the underlying features of
the method, simulations were conducted here for an
artificially constructed spherical protein “made”
from the real protein insulin. Excellent compari-
sons of simulation calculations of the so-called grand
particle friction tensor to analytical values were
obtained for this system when protein charge ef-
fects were neglected. When protein charges were
included, we found anomalous results caused by the
alteration of the spatial, microscopic structure of
water proximal to the protein surface. Protein
charge effects were found to be highly significant
and consistent with the recent hypothesis of Hop-
pert and Mayer (Am Sci 1999;87:518-525) for charged
macromolecules in water, which involves the forma-
tion of a “water dense region” proximal to the
charged protein surface followed by a “dilute water
region.” We further studied the algorithm on a
D-peptide/HIV capside protein system and demon-
strated the algorithms utility to study the nonequi-
librium docking dynamics in this contemporary
problem. In general, protein charge effects, which
alter water structural properties in an anomalous
fashion proximal to the protein surface, were found
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to be much more important than the so-called hydro-
dynamic interaction effects between ligand and re-
ceptor. The diminished role of hydrodynamic inter-
actions in protein systems allows for a much simpler
overall dynamic algorithm for the nonequilibrium
protein-docking process. Further studies are now
underway to critically examine this simpler overall
algorithm in analyzing the nonequilibrium protein-
docking problem. Proteins 2003;52:339-348.
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INTRODUCTION

The transport, diffusion, and binding of peptides or
proteins (ligands) in solution with cell surface receptor
proteins is a complex, nonequilibrium process of fundamen-
tal importance to understanding and predicting cell-
signaling pathways and in the analysis of lead drug
candidates for known protein targets. In general, the
overall dynamics is dependent on the specific interatomic
interactions between ligand and receptor, including topol-
ogy, charge, van der Waals constants, and so forth, and the
protein dynamic interactions with the host fluid, including
hydrophobic and hydrogen bonding effects in water-based
systems.

Because the local diffusion and binding process in
protein-signaling or -docking systems is on the order of
milliseconds to seconds, real-time, brute-force molecular
dynamic simulations, with timesteps on the order of
femtoseconds and total atomic numbers in the tens of
thousands, are not currently feasible. For example, the
recent literature on molecular dynamic studies in protein-
water systems® shows that the maximum time currently
accessible is on the order of microseconds for single
proteins in water. This is a far cry short of that required to
study nonequilibrium protein-protein interactions where
it is necessary to study a statistical ensemble of thousands
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of interactions each on millisecond to second timescales.
We also note that a significant number of studies on ligand
and receptor equilibrium binding have also been pre-
sented, which have been termed the “protein docking
problem.” QOur interest here, however, is accounting for
nonequilibrium effects, such as ligand orientational diffu-
sion limitations and prediction of absolute ligand-binding
rates; therefore, it can be viewed as complimentary to
equilibrium approaches and analysis.

In three previous articles we developed a molecular,
statistical mechanics approach to describe the long-time
dynamics of macromolecules near external surfaces includ-
ing the complete molecular detailed structure of the par-
ticle (ligand), surface (receptor), and solvent.>® (Hereaf-
ter, they are referred to as I, I, and III, respectively.)

In general, our methods are based on a molecular
derivation of the Fokker—Planck (FP) equation, which
describes in a general fashion the dynamics of a structured
Brownian particle immersed in a molecular solvent near a
fixed surface. Specifically, the FP equation was derived in I
for an arbitrary-shaped, molecularly structured Brownian
particle near a molecularly structured external surface or
“wall” by using the multiple timescales perturbation
method. The derivation exploits the disparate timescales
associated with the dynamics of a Brownian particle in a
molecular fluid and leads to a fluctuation-dissipation
relation for the grand particle friction tensor. In these
types of relationships, also called Green—Kubo relations,
the dynamic property is determined from an equilibrium
time correlation function. Physically, one is studying the
natural fluctuations in the instantaneous force exerted on
the particle by the fluid under equilibrium conditions.
Although such fluctuations take place over very small
timescales, on the order of femtoseconds, as shown in II, it
is possible to determine these effects in complex, arbi-
trarily structured systems with canonical, equilibrium
molecular dynamics (MD) computational methods.

We have also shown in I and II that in the presence of an
external surface, new terms appear in the derivation of the
generalized FP equation as a result of fluid molecular
mediated interactions between the particle and the sur-
face (molecular counterpart of “hydrodynamic interac-
tions”). It was also shown in IT that MD calculations of the
force autocorrelation function in simplified geometric sys-
tems lead to results in agreement with continuum hydrody-
namics, except under conditions of particle-surface separa-
tion distances of a few molecules where the continuum
assumption breaks down.

Now, in systems where the macromolecular particle
“relaxation time” (proportional to the inverse particle
friction tensor times the particle mass) is small compared
to a characteristic timescale associated with its displace-
ment by external forces, or possibly an initial state, the FP
equation can be reduced to a much simpler Smoluchowski
(Sm) equation in which the particle momenta no longer
appears. The molecular based Sm equation, corresponding
to the FP equation in I, was obtained in III by using formal
asymptotic methods. In addition, because of the practical
importance of complex systems, we also formally derived a

Brownian dynamics algorithm for the numerical solution
to the Sm equation. We showed how a combined molecular/
Brownian dynamics method (MD/BD method) can be used
to determine the long-time dynamics of rigid, molecularly
structured macromolecules near structured surfaces in
molecularly specified fluids.

Simply speaking, the key to the hybrid MD/BD numeri-
cal algorithm is that the host fluid relaxes to an equilib-
rium state in the potential field of the Brownian particle
over very short times on the order of picoseconds or less.
However, significant changes in the Brownian particle’s
position and orientation (say a few percent or less) take
place on much longer timescales on the order of microsec-
onds or longer. This allows us to set the particle diffusion
properties using MD and time correlation analysis (the
picosecond calculation) and then “leap ahead” in time
moving the particle according to a simple six-dimensional
(three positional and three orientational coordinates) BD
timestep (the microsecond calculation). The entire process,
MD followed by BD, is then repeated for the new configura-
tional state.

The hybrid MD/BD method is currently theoretically
restricted to rigid macromolecules and external surfaces,
and internal vibrational modes are not allowed. Nonethe-
less, as treated more fully here, the above studies have
notable significance in applications in biological engineer-
ing and physics involving the prediction of rates and
molecular mechanisms of site-specific adsorption or attach-
ment of macromolecules onto cells and other surfaces
(“Receptor-Mediated Processes”). In these systems, the
specific molecular structure and interactions of the macro-
molecule (ligand) and surface (receptor) are critical in
determining the association kinetics. It is important to
note that the efficiencies of receptor-mediated processes
depend on both the dynamics and statics of the molecular
interactions between particle, receptor, and host fluid.
Equilibrium statistical thermodynamics only gives equilib-
rium-binding information and not dynamic (rate) informa-
tion on the overall physical attachment process (diffusion,
transport, and attachment), including the effects of the
host fluid (hydrophobic and hydrophilic effects); these can
only be determined through dynamic algorithms, such as
the hybrid MD/BD algorithm given in III. The novelty of
the MD/BD method is that it simulates receptor-mediated
processes on timescales on the order of milliseconds to
seconds and still retains the complete molecular details of
the system. Such large timescale simulations are not
currently possible by MD alone.

Our goals of the present work are to study the implemen-
tation of the hybrid MD/BD algorithm on several real
protein systems. In the first system, we examine a spheri-
cally shaped protein artificially made from the protein
insulin. The spherical shape allows us to compare with
known analytical solutions for this system and thereby
establish the efficacy of the method. The next system
investigated is the interaction of a proposed D-peptide
inhibitor drug with a segment of an HIV capsid protein.
We examine some of the key features of this interaction
and demonstrate how, in general, a complete “docking
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dynamic simulation” of a peptide or small protein with a
surface receptor protein can be made.

MATERIALS AND METHODS
Brief Review of the Hybrid MD/BD Method

In I, we derived the FP equation for a structured, rigid
Brownian particle (B-particle) near a structured surface or
wall beginning with the Liouville equation and the com-
plete classical, atomistic Hamiltonian. The so-called mul-
tiple timescales perturbation method was then used to sort
out the different underlying dynamics. The expansion is
based on the usual Brownian particle assumption of a
large mass ratio between the macromolecule and host fluid
atom and results in a generalized FP equation applicable
to 0[(m/M)?], where m is the mass of a solvent particle and
M is the mass of the macromolecule.

In ITI, we derived the Smoluchowski equation from the
FP equation under the conditions where the particle
relaxation time (defined as the B-particle mass divided by
its characteristic friction coefficient) is small compared to a
characteristic timescale associated with the particle dis-
placement by an external force (or possibly and initial
state), which is the typical case including protein-water
systems (see III for more details).

Following formal asymptotic methods, in ITI we obtained
the dimensionless Smoluchowski equation to 0(e?) as
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where R represents the position of the macromolecular
center of mass, and the rotational operator, (3/da - A), is
given by
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and ¢, 0, and | are the Euler angles denoting the orienta-
tion of the macromolecule relative to a space-fixed or lab
frame that has unit vectors e, e,, and e;.

The smallness parameter € in Eq. (1) is given in terms of
the macromolecular diffusion, D, = kT/{,, as

D, 1

" R(KTM)™ = Ny, ®

€
where k is Boltzmann’s constant, T is temperature, {, is a
characteristic macromolecular friction coefficient, and Ny,
is a type of Peclet number, which is the reciprocal ratio of
the particle or macromolecular diffusion time scale (R3/D,,)
to the characteristic timescale (¢, = R/(kT/M)"?) for
particle translation or rotation due to the external force or
torque field (or possibly an initial state).
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The dimensionless particle diffusion tensors in Eq. (1)
above are given in terms of the dimensionless particle
friction tensors as (see III for details)

Dr=[{r—{rmCr ' Lrrl 4
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where the dimensionless translational, rotational, and
coupled translational-rotational friction tensors are given
by the time autocorrelation relationships (I and II)
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where F(s) and TAs), respectively, are the force and torque
acting on the Brownian particle by the fluid at time s.
Furthermore, (F)),, and (Tp,, are the equilibrium average
force and torque, respectively, which as shown in I and II
are not zero because of the presence of the wall.

The so-called generalized Einstein relationships, Eqs.
(4)—(7), (in dimensionless terms above) are identical in
form to those for an isolated Brownian particle.® The
subtle difference lies in the defining equations for the
friction tensors given by Egs. (8)—(11). These expressions
include the presence of the structured surface or wall
through both the nonzero equilibrium average force and
torque and the time-dependent force and torque acting on
the particle by the fluid molecules, which are simulta-
neously in the presence of the potential field of the
structured wall. In a continuum description, these wall
effects lead to the so-called “hydrodynamic interactions” of
the particle with the wall. Note that net force and torque
acting on the Brownian particle, F' and T, include the
direct particle-wall interaction forces and torques and the
nonzero, equilibrium average fluid force and torque ex-
erted on the particle (see III for more details and discus-
sion).

Because of the complexities of molecularly structured
systems and the numerous potential applications to com-
plex, practical systems, solutions to the generalized Smolu-
chowski equation must be obtained numerically. Below we
summarize a general Brownian dynamics algorithm based
on the short-time solution of the Smoluchowski equation



342

that retains the specific molecular description of the
system.

Brownian Dynamics Method

As shown previously by Ermak and McCammon,” a
Brownian dynamics, numerical solution to the Smolu-
chowski equation can be obtained by deriving an analyti-
cal solution for its short-time behavior. In doing this, we
consider that at time ¢ = 0, the position and orientation of
the Brownian particle are exactly known, that is,

n=3R—-Ry)dQ — Q),att =0 (12)

where 3 is the Dirac delta function and € is short-hand
notation for the set of Euler angles. Now, following Ermak
and McCammon” for very small times ¢ (¢ > 0), we can
assume that over the time interval (0, ¢) all spatial and
orientational functions are approximately constant at
their initial values, that is,

F =F"° (13)
T =T° (14)
D,=DY%J=T,TR,RT,R (15)

and so forth where the superscript (0) indicates the known
initial values. In addition, with this approximation the
rotational operator, (9/da - A), is given by
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Now we can readily show that the quantities in brackets in
the above equation are the derivative operators for rota-
tions about the space-fixed Cartesian frame (III, Appendix
B; also see Goldstein®)
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Using Eq. (17), Egs. (13)—(16), and neglecting spatial and
orientational gradients in the diffusion tensors, the Smolu-
chowski equation, Eq. (1), can be rearranged to give, for
small times,
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where the 6 X 6 grand diffusion tensor, D°, is defined by
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TABLE I. Hybrid MD/BD Algorithm

1. Read standard PDB file for ligand and receptor.

2. Create “topology” file from PDB file (mass, charge, force
constants).

3. Determine principal axes of ligand and initial Euler angles.

4. Hydrate ligand-receptor by using Monte Carlo and assign mass
and charge to water (SPC model).

5. Perform equilibrium, canonical ensemble MD to get the grand
friction tensor for ligand.

6. Numerically invert the grand friction tensor to obtain the
grand diffusion tensor.

7. Perform BD to get new ligand position and orientation.

8.Goto 4.

Now, as shown in III, the above equation can be solved
subject to the initial conditions, Eq. (12), and the result can
put in the form of translational and rotational displace-
ment equations as

Ri = R? + €t|:E (Dg ’0 + D?]TRT’.?) +C; (DU’ t)’
J i
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where C,; (Dg, t) is a multivariate, Gaussian random num-

ber with zero mean and variance-covariance given by
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Note that the indices on the components of the diffusion
tensors in Egs. (20) and (21) run according to Eq. (19).

Aside from the neglect of spatial and orientational
gradients in the diffusion tensor, Egs. (20) and (21) above
are in agreement in form with that given previously by
Dickinson et al.® for the combined rotational-translational
dynamics of interacting Brownian particles. As we have
noted in Brownian dynamics applications previously,!° the
torques and forces are usually expressed in terms of the
Euler angles, so that conversions from rotations about the
space-fixed Cartesian frame are needed (see III, Appendix
B)

0 — 6° = cos ¢"Ad, + sin $°Ad, (23)

& — ¢° = —cot 6%in $b°Ad, + cot 6°cos $°Ad, + Ad, (24)

¥ — ° = csc 0%in $°Ad, — csc 6%os ¢°Ad, (25)

Implementation and Computational Strategies for
Protein-Water Systems

The general computational MD/BD algorithm is shown
in Table I. The computational scheme begins by reading a
standard PDB file from the protein data bank for both
ligand and receptor.!! This file is then converted to a
“topology” file that includes computationally critical infor-
mation on atomic mass, residue charge, and Lennard—
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Jones (LJ) interaction force constants with water oxygen.
For the LJ force constants, we use those values given in
GROMACS.'? Next, the ligand and receptor must be
hydrated by using a Monte Carlo method. Here we have
chosen the previously developed hydration code SOL-
VATE.'® Solvate accepts pdb-files of the protein as input,
and the output is a pdb-file of the solute plus water
molecules. For the molecular model of water, we use the
so-called modified SPC model** with long-range electro-
static interatomic interactions accounted for by a modified
Poisson—Boltzmann reaction field method.® The center of
mass and body-fixed axes along the principal axes of
inertia for the ligand are initially computed by standard
formulas. This sets the body-fixed coordinates and initial
Euler angles, the latter of which give the orientation of the
body relative to the space-fixed frame. MD is then used to
determine the particle grand friction tensor as discussed
in I, II, and III. The grand friction tensor is numerically
inverted to obtain the grand diffusion tensor. The grand
diffusion tensor is then used to perform the BD move on a
timestep of around 107° seconds. The macromolecule
position and orientation change by only a couple of percent
or less over this time period. The new atomic positions are
updated based on the BD move and the entire process (i.e.,
MD followed by BD) is repeated.

For all results shown below, the MD timesteps were
taken as 0.5 fs, and the autocorrelations were calculated
over 3000 timesteps. Twenty ensembles were used to
obtain the final average values and statistical uncertain-
ties (see II for more details) resulting in 60,000 total MD
timesteps for a particular protein system configuration. In
all cases, the temperature of the system was taken as
298K. As before (II), the side dimension of the cubical MD
box was always taken to be twice the particle (protein or
protein-protein complex) diameter. All results shown here
were obtained on a DEC Alpha DS10 6/466 with 256 of
DRAM and 8 processors.

It is interesting to note here that the autocorrelation
calculations, which form the basis of the more computation-
ally expensive MD part of the algorithm, are particularly
amenable to multiprocessor systems and the use of mes-
sage-passing interface (MPI) programs. We have repeated
many of the calculations shown here on such systems, and
a general review of these large multiprocessing systems
can be found in Ref. 16. In MPI application, each processor
represents one member of the ensemble allowing hundreds
of ensembles to be included. The 3000 MD timesteps to
construct a single autocorrelation are done on each proces-
sor with a very minimal execution time of a few hours or
less depending on each processor speed. The results from
each processor are summed by using standard MPI instruc-
tions to obtain final average values and statistical uncer-
tainties.

RESULTS AND DISCUSSION
Results for Single, Isolated Proteins in Water

To quantitatively test the methods and results, a spheri-
cally shaped protein was constructed, simulated, and
compared to well-known analytical results for a sphere in
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water. To obtain a spherical protein, the protein insulin
was selected from the protein data bank. It was then cut to
be spherical by removing the atoms whose sum of their
Cartesian coordinates squared was greater than the square
of an assigned radius, which was arbitrarily chosen to be
12 A. Because of the compact structure of insulin, this
resulted in an overall spherically shaped protein with a
“rough” surface as shown in Figure 1. For these initial
studies, protein atomic hydrogens were neglected for the
sake of simplicity.

Figure 2 shows the xx-component of the translational
force autocorrelation function obtained from MD for the
spherical insulin particle neglecting the atomic charges of
the protein itself. Protein charge effects are considered
separately below. Standard deviations in the average
values are also shown in Figure 2, which can be used to
determine confidence intervals and associated errors in
computational results (also see II).

A confidence interval in the autocorrelation values, CI,
is obtained from the Tchebycheff inequality as'®

2

cr=1--2
~1-7,

T

(26)

where € is the error in the autocorrelation, o is the
variance of the autocorrelation, and n, is the number of
repeats. Because the friction tensor is the integral of the
force autocorrelation, a good estimate of the error in a
friction tensor element can be obtained by taking specific
values at the midpoint of the decay. For example, in Figure
2, the average variance is approximately 100 and at the
midpoint of the decay the force autocorrelation value is
around 15. Thus, with n, = 20, a 90% confidence interval
leads to an error of around 50%. Note that the error is
proportional to the reciprocal square root of the ensemble
number, that is,

1

€~ —75
ni/2

(27)

For example, in the above system, increasing the ensemble
size to 40 would result in an error of around 30% for a 90%
confidence. Our results show that at least 20 ensembles
are minimally necessary in these systems, and more
(perhaps double) would be desirable for more accurate
results. Below, we also indirectly demonstrate a sufficient
number of repeats by comparing our results to analytical
solutions. As noted above, the autocorrelation calculations
are particularly amenable to MPI routines where each
processor represents one member of the ensemble allowing
for hundreds of members leading to very accurate results.

In comparisons of MD results to analytical, continuum
expressions, it has been previously shown that in “small”
particle systems an “effective” sphere radius should be
used in comparison tests based on the fluid volume ex-
cluded by the sphere.'® For spherical insulin, the effective
particle radius a g is, therefore,

Too
Ap=a + 4

B (28)
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Fig. 1.
lllustration is generated by RASMOL."”

A “spherical” protein obtained from the real protein insulin.
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Fig. 2. The xx-component of the force autocorrelation function for
spherical insulin neglecting protein charge effects. All quantities are
dimensionless; a value of s = 100 corresponds to a real time of 0.05 ps.

where a is the spherical radius (12 A) and the water
molecular diameter, o, is 3.16 A.

The analytical translational and rotational friction ten-
sors are well known as®®

{r = 6mpac(l — §)

{r = 8mpaly(l — 3¢)

where {; is the translational friction coefficient, {5 is the
rotational friction coefficient, w is viscosity (1.0 centipoise
at 20°C); £is a slip coefficient'® with £ = 0 being the no-slip
or “stick” condition and & = %is the full slip condition.

(29)
(30)

Y.ZHANGET AL.

rirmakzad -“'I grand friction tensor fram force auocorrelation

l=123456

AT R

2 3 4 5 B
123456

Fig. 3. The normalized grand friction tensor for spherical insulin: pure
translational i, jel, 2, 3; pure rotational i, je4, 5, 6; translational and
rotational ie1, 2, 3, je4, 5, 6, orie4, 5, 6, orie4, 5, 6, jel, 2, 3.

For a small, aggregate sphere, previous MD results'®
showed that the slip coefficient is between the limits of full
slip and stick boundary conditions. For the spherical
insulin system, a slip coefficient of 0.27 was found to give
the best comparison to MD-generated values of the friction
tensor as shown below.

The MD generated numerical values of each of the
elements of the 6 X 6 symmetric®! grand friction tensor for
spherical insulin, normalized as ({™/¢%..), /8 .0, %/
(R ., are tabulated below and shown graphically in
Figure 3. Note that the slip coefficient of 0.27 used for
analytical comparisons was closer to that for slip condi-
tions because of the highly irregular nature of the protein
surface (Fig. 1).

0.64 0.0014 -0.0002 0.0068 0.052 —0.061
145 —-0.0033 0.012 —-0.021 -0.076

0.64 —-0.096 —0.042 0.063

1.38 —-0.0001 -0.022

0.80 —0.049

0.89

The diagonal elements of the grand friction tensor are seen
to be within experimental error of the analytical results for
an isotropic, spherical particle. Note that the off-diagonal
elements of the grand friction tensor show even better
agreement with the analytical result in that they are
predicted to be within a few percent of zero.?° This
prediction of the entire behavior of the grand particle
friction tensor is an important feature when such methods
are applied to disparately shaped proteins and peptides
where the coupled translational-rotational dynamics can,
in general, significantly affect particle dynamics.?!

Figure 4 shows the water radial distribution function for
the uncharged spherical insulin system. The biggest peak
at 5 (dimensionless r) is the first coordination layer of the
water molecules outside the protein; the next peak is the
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sphesical insulin - waler radial distribation function
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Fig. 4. Water radial distribution function for the spherical insulin
system. All quantities are dimensionless.
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Fig. 5. xx-Force autocorrelation function for the charged spherical

insulin system. All quantities are dimensionless.

second coordination layer, and so forth. The curve ends up
with a platform close to the water bulk density. The small
peaks between 2 and 3 are those water molecules that
become trapped or partially trapped inside of the protein.
The results for the uncharged particle are very similar to
our previous results for atomic BCC or FCC packing,
spherical particles (II). The coordination peaks in Figure 4
are not quite as sharp and steep as in II because of the
highly irregular nature of the spherical protein surface,
but otherwise they are very similar.

Protein Charge Effects

We repeated all of the above calculations for spherical
insulin, including the protein atomic charges. Figure 5
shows the x-x force autocorrelation function, and Figure 6
displays the radial distribution function. The numerical
values of the 6 X 6 grand friction tensor were obtained as
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Chargad Spherical Insuln - Water Radial Dvatrbuticn Function

(dimansioréass panicle radius=4,0}

gir
‘L\.

P+ o
[ sE s SR s s sy . B - S - - r
[i] 1 2 3 d B & 7 a 9
F
Fig. 6. Water radial distribution function for the charged spherical
insulin system. All quantities are dimensionless.

9.80 —-1.47 -386 0.13 -0.05 -0.10
6.93 411 022 023 0.02
2513 178 029 0.90

10.86 —-0.60 0.23

6.36 —1.45

11.57

where we used the identical normalization as in the
uncharged case. It can be seen from these values that the
diagonal friction tensor elements have increased by sever-
alfold over the uncharged values given previously. In
addition, both the autocorrelation function (Fig. 5) and
radial distribution function (Fig. 6) have changed their
behavior considerably. In particular, the second coordina-
tion peak in the uncharged protein case (at a dimension-
less radius of about 6 in Fig. 4) has disappeared. There is
now only a gradual decline in water density from its peak
value at the first coordination layer. The water density
gradually crosses below the g(r) = 1.0 line at aboutr = 7 in
Figure 6. This observed behavior in the radial distribution
function, i.e., a “water dense” region near the surface (as
opposed to two or more coordination peaks), followed by a
“less dense” region is consistent with the recent hypothesis
of Hoppert and Mayer®? for charged macromolecules in
water. Those authors suggested that charged macromol-
ecules may have “more dense” and “less dense” water
regions about their surface owing to the water dipole
interactions with the surface charges. Note, by comparison
of Figures 4 and 6, that the effective particle radius is
similar in both the uncharged and charged cases, and the
differences must be attributed to the behavior of the
water-protein force autocorrelation, which in the case of
charged proteins leads to a larger zero-time magnitude
(“static autocorrelation value”) and a much sharper decay
or shorter lived force correlations. Macroscopically, such
changes can be attributed to local fluid viscosity increases
near the charged protein surface through the fluid stress
autocorrelation function,?® albeit we have not performed
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Fig. 7. Molecular structure of the D-peptide/gp41 complex. Note that
the D-peptide has been moved several angstroms from the gp41 surface
in this picture.

those specific fluid stress autocorrelation calculations here.
However, significant changes in the water self-diffusion
coefficient in charged protein solutions from the “free”
water value have also been experimentally reported by
Lamanna et al.?® using NMR, and these changes were also
attributed by those authors to the alterations in water
microstructure near the charged protein surface. Computa-
tionally, we have found that protein charge effects can be
highly significant in determining the absolute magnitudes
of translation and orientational friction or mobilities of
proteins in water. More detailed studies are underway to
further examine these induced microstructural changes of
water, including time-averaged dipole orientations, pro-
tein atomic hydrogen effects, water stress autocorrelation
function analysis, and full characterization of the less
dense region, the latter of which requires a larger MD box
size than the one shown here. Although not shown here for
the sake of brevity, increasing the size of the MD box to
capture more of the less dense water region showed no
effect on the friction or mobility calculations given above.
It is still quite interesting that the protein charges alter
the water molecular distribution at relatively large dis-
tances from the protein surface, which could have other
applicational significance such as in water microstructure
in cell cytoplasma.

Results for D-Peptide

Recently,?* a particular form of a D-peptide, based on
D-amino acid isometric forms, was proposed as an inhibi-
tor for the entry of HIV into host cells. The D-peptide binds
to a segment of the HIV capsid protein called gp41. The
complete molecular structure of this D-peptide/gp41 com-
plex has been determined®* (see Fig. 7), and it represents a

Y.ZHANGET AL.

riernalized f’l. grand friction tensor from lorce auiocorelaion

-

o4

E=1,234586

3 4 5 B
123458
Fig. 8. The grand friction tensor of uncharged D-peptide: pure transla-
tional j, je1, 2, 3; pure rotational j, je4, 5, 6; translational and rotational je1,
2,3,je4,5,6,0rie4, 5,6, jel, 2, 3.

contemporary, real protein system to study the underlying
features of the MD-BD code.

Before analyzing the dynamics of the gp41/D-peptide
complex, however, the D-peptide alone was simulated. For
analytical comparison purposes, we can obtain the effec-
tive peptide diameter (d.¢) from the peptide volume (pep-
vol), where peptide volume = box volume — water volume.
The box length in this system is 36 A, the number of water
molecules is 1403, and the water bulk density is 3.337 *
1028 (number/m?). From pepvol = é # pi * d3;we obtain the
effective spherical radius a g as 10 A.

Figure 8 shows the normalized grand friction tensor for
the uncharged D-peptide using the effective spherical
radius for the analytic value. It can be seen that the
D-peptide is very much spherelike in its friction dynamics
owing to its compact, and near sphere-like shape, although
some off-diagonal elements exist.

Figure 9 shows the water radial distribution function for
the uncharged D-peptide. In comparison with the water
distribution function of the spherical insulin, we can see
that the coordination layers have disappeared because of
the slightly nonspherical shape and highly diffuse topology
of the peptide surface.

Although not shown here for the sake of brevity, we
found similar anomalous changes for the charged D-
peptide as observed above for the charged spherical insulin
system. The diagonal elements of the grand friction tensor
increased by several hundred percent over the uncharged
D-peptide case, and there was again a major alteration in
the radial distribution function behavior with a dense and
dilute water regimen just outside of the peptide surface.

gp41/D-Peptide Complex Simulations and
Implications for Brownian Dynamics

We conducted several MD simulations to obtain the
grand friction tensor for the gp41/D-peptide complex sys-
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Fig. 10. Translational components of the normalized grand friction
tensor for the D-peptide particle near the gp41 surface protein.

tem (Fig. 7) described above. Of most interest is the
so-called hydrodynamic interaction effect whereby the
grand particle (D-peptide) friction tensor increases be-
cause of the presence of another surface (gp41). Figure 10
shows some of the results of the diagonal components of
the grand friction tensor for the D-peptide particle near
the gp41 surface predicted by MD and autocorrelation
analysis as a function of intersurface separation distances.
The intersurface separation value of zero shown in Figure
10 corresponds to the original bound structure of the
D-peptide to gp4l, and the intersurface separation of
infinity corresponds to the free D-peptide values given
previously. The intermediate intersurface separation was
obtained by artificially moving the entire D-peptide out-
ward from its bound state with gp41.

The results shown in Figure 10 are consistent with our
earlier findings for very small particles with diameters on
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the order of nanometers (II). Quantitatively from con-
tinuum hydrodynamic analysis of a spherical particle near
a plane wall,?! the translational or rotational friction
coefficients would increase significantly as the particle
nears the surface within a distance roughly corresponding
to its diameter, as shown in Figure 10. In these very small
particle systems, however, the hydrodynamic interaction
effects expected from continuum fluid mechanics are dimin-
ished because of a breakdown of the continuum hypothesis
at close intersurface separations (II). Although not shown
here for the sake of brevity, similar small hydrodynamic
interaction effects were observed for the charged protein
system.

CONCLUSIONS

In general, our findings suggest that the large alter-
ations in the frictional resistance or mobility of nanosized
protein particles due to its anomalous charge interactions
with water significantly outweigh any alterations associ-
ated with the so-called hydrodynamic interaction effects.
This observation has important implications to the MD-BD
code for charged protein interactions as explained more
fully below.

For rigid macromolecular ligands in the absence of any
other surface receptor site (i.e., in an infinite medium), the
MD calculation has to be performed only once because the
grand diffusion tensor is now invariant in the body frame
of the ligand. This, of course, is not generally true when an
external surface is present due to hydrodynamic interac-
tion effects. However, our results here show that it is much
more important to account for protein charge effects in the
MD calculations of the grand friction tensor rather than
hydrodynamic interaction effects due to the presence of the
protein receptor. Thus, as a good approximation, the grand
friction tensor calculated for the isolated charged protein
or peptide ligand can be used in the BD simulation of the
docking dynamics and, thus, MD has to be performed only
once at the start of the BD simulation. The grand friction
tensor can be numerically inverted with ease to obtain the
grand diffusion tensor, and the transformations of the
grand diffusion tensor from the invariant body-fixed frame
to the laboratory frame are accomplished by standard
transformation matrices in terms of the Euler angles (ITI).
For the nonequilibrium protein-docking problem, the sim-
plifications noted above are highly significant because
determining the association kinetic constants for any
particular system requires the study of a statistical en-
semble of protein-protein interactions. We have shown
how each member of this ensemble can be simulated with a
simple 12-dimensional, long-time step Brownian dynamics
algorithm [6 dimensions for each protein: 3 translational
and 3 rotational; see, e.g., Ref. (10) for more details on the
BD simulation procedure]. This simpler algorithm is cur-
rently being tested on some small protein, receptor-ligand
systems, and it has practical significance in the develop-
ment of novel data-mining methods for lead ligand identifi-
cation against known protein targets or receptors.

We also note that it is possible to extend the underlying
theories used here for rigid proteins to flexible proteins
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using small vibration theory approaches,?® because intra-
macromolecular motions in proteins take place on time-
scales greater than the picosecond or less timescale neces-
sary to establish a Fokker—Planck description (see I and II
for more details); this promising theoretical work is cur-
rently underway.
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