
Hands-On Data Science with R

Text Mining

Graham.Williams@togaware.com

10th January 2016

Visit http://HandsOnDataScience.com/ for more Chapters.

Text Mining (or Text Analytics) applies analytic tools to learn from collections of text data,
like social media, books, newspapers, emails, etc. The goal can be considered to be similar to
humans learning by reading such material. However, using automated algorithms we can learn
from massive amounts of text, very much more than a human can. The material could consist of
millions of newspaper articles to perhaps summarise the main themes and to identify those that
are of most interest to particular people. Or we might be monitoring twitter feeds to identify
emerging topics that we might need to act upon, as it emerges.

The required packages for this chapter include:

library(tm) # Framework for text mining.

library(qdap) # Quantitative discourse analysis of transcripts.

library(qdapDictionaries)

library(dplyr) # Data wrangling, pipe operator %>%().

library(RColorBrewer) # Generate palette of colours for plots.

library(ggplot2) # Plot word frequencies.

library(scales) # Include commas in numbers.

library(Rgraphviz) # Correlation plots.

As we work through this chapter, new R commands will be introduced. Be sure to review the
command’s documentation and understand what the command does. You can ask for help using
the ? command as in:

?read.csv

We can obtain documentation on a particular package using the help= option of library():

library(help=rattle)

This chapter is intended to be hands on. To learn effectively, you are encouraged to have R
running (e.g., RStudio) and to run all the commands as they appear here. Check that you get
the same output, and you understand the output. Try some variations. Explore.

Copyright © 2013-2015 Graham Williams. You can freely copy, distribute,
or adapt this material, as long as the attribution is retained and derivative
work is provided under the same license.

http://HandsOnDataScience.com/
http://creativecommons.org/licenses/by-nc-sa/4.0/

Data Science with R Hands-On Text Mining

1 Getting Started: The Corpus

The primary package for text mining, tm (Feinerer and Hornik, 2015), provides a framework
within which we perform our text mining. A collection of other standard R packages add value
to the data processing and visualizations for text mining.

The basic concept is that of a corpus. This is a collection of texts, usually stored electronically,
and from which we perform our analysis. A corpus might be a collection of news articles from
Reuters or the published works of Shakespeare. Within each corpus we will have separate docu-
ments, which might be articles, stories, or book volumes. Each document is treated as a separate
entity or record.

Documents which we wish to analyse come in many different formats. Quite a few formats are
supported by tm (Feinerer and Hornik, 2015), the package we will illustrate text mining with in
this module. The supported formats include text, PDF, Microsoft Word, and XML.

A number of open source tools are also available to convert most document formats to text files.
For our corpus used initially in this module, a collection of PDF documents were converted to text
using pdftotext from the xpdf application which is available for GNU/Linux and MS/Windows
and others. On GNU/Linux we can convert a folder of PDF documents to text with:

system("for f in *.pdf; do pdftotext -enc ASCII7 -nopgbrk $f; done")

The -enc ASCII7 ensures the text is converted to ASCII since otherwise we may end up with
binary characters in our text documents.

We can also convert Word documents to text using anitword, which is another application
available for GNU/Linux.

system("for f in *.doc; do antiword $f; done")

Copyright © 2013-2015 Graham@togaware.com Module: TextMiningO Page: 1 of 46

Draft Only

Generated 2016-01-10 10:00:58+11:00

https://secure.wikimedia.org/wikipedia/en/wiki/corpus

Data Science with R Hands-On Text Mining

1.1 Corpus Sources and Readers

There are a variety of sources supported by tm. We can use getSources() to list them.

getSources()

[1] "DataframeSource" "DirSource" "URISource" "VectorSource"

[5] "XMLSource" "ZipSource"

In addition to different kinds of sources of documents, our documents for text analysis will come
in many different formats. A variety are supported by tm:

getReaders()

[1] "readDOC" "readPDF"

[3] "readPlain" "readRCV1"

[5] "readRCV1asPlain" "readReut21578XML"

[7] "readReut21578XMLasPlain" "readTabular"

[9] "readTagged" "readXML"

Copyright © 2013-2015 Graham@togaware.com Module: TextMiningO Page: 2 of 46

Draft Only

Generated 2016-01-10 10:00:58+11:00

Data Science with R Hands-On Text Mining

1.2 Text Documents

We load a sample corpus of text documents. Our corpus consists of a collection of research
papers all stored in the folder we identify below. To work along with us in this module, you
can create your own folder called corpus/txt and place into that folder a collection of text
documents. It does not need to be as many as we use here but a reasonable number makes it
more interesting.

cname <- file.path(".", "corpus", "txt")

cname

[1] "./corpus/txt"

We can list some of the file names.

length(dir(cname))

[1] 46

dir(cname)

[1] "acnn96.txt"

[2] "adm02.txt"

[3] "ai02.txt"

[4] "ai03.txt"

[5] "ai97.txt"

[6] "atobmars.txt"

....

There are 46 documents in this particular corpus.

After loading the tm (Feinerer and Hornik, 2015) package into the R library we are ready to load
the files from the directory as the source of the files making up the corpus, using DirSource().
The source object is passed on to Corpus() which loads the documents. We save the resulting
collection of documents in memory, stored in a variable called docs.

library(tm)

docs <- Corpus(DirSource(cname))

docs

<<VCorpus>>

Metadata: corpus specific: 0, document level (indexed): 0

Content: documents: 46

class(docs)

[1] "VCorpus" "Corpus"

class(docs[[1]])

[1] "PlainTextDocument" "TextDocument"

summary(docs)

Length Class Mode

acnn96.txt 2 PlainTextDocument list

adm02.txt 2 PlainTextDocument list

Copyright © 2013-2015 Graham@togaware.com Module: TextMiningO Page: 3 of 46

Draft Only

Generated 2016-01-10 10:00:58+11:00

Data Science with R Hands-On Text Mining

ai02.txt 2 PlainTextDocument list

ai03.txt 2 PlainTextDocument list

ai97.txt 2 PlainTextDocument list

....

Copyright © 2013-2015 Graham@togaware.com Module: TextMiningO Page: 4 of 46

Draft Only

Generated 2016-01-10 10:00:58+11:00

Data Science with R Hands-On Text Mining

1.3 PDF Documents

If instead of text documents we have a corpus of PDF documents then we can use the readPDF()
reader function to convert PDF into text and have that loaded as out Corpus.

docs <- Corpus(DirSource(cname), readerControl=list(reader=readPDF))

This will use, by default, the pdftotext command from xpdf to convert the PDF into text
format. The xpdf application needs to be installed for readPDF() to work.

Copyright © 2013-2015 Graham@togaware.com Module: TextMiningO Page: 5 of 46

Draft Only

Generated 2016-01-10 10:00:58+11:00

Data Science with R Hands-On Text Mining

1.4 Word Documents

A simple open source tool to convert Microsoft Word documents into text is antiword. The
separate antiword application needs to be installed, but once it is available it is used by tm to
convert Word documents into text for loading into R.

To load a corpus of Word documents we use the readDOC() reader function:

docs <- Corpus(DirSource(cname), readerControl=list(reader=readDOC))

Once we have loaded our corpus the remainder of the processing of the corpus within R is then
as follows.

The antiword program takes some useful command line arguments. We can pass these through
to the program from readDOC() by specifying them as the character string argument:

docs <- Corpus(DirSource(cname), readerControl=list(reader=readDOC("-r -s")))

Here, -r requests that removed text be included in the output, and -s requests that text hidden
by Word be included.

Copyright © 2013-2015 Graham@togaware.com Module: TextMiningO Page: 6 of 46

Draft Only

Generated 2016-01-10 10:00:58+11:00

Data Science with R Hands-On Text Mining

2 Exploring the Corpus

We can (and should) inspect the documents using inspect(). This will assure us that data has
been loaded properly and as we expect.

inspect(docs[16])

<<VCorpus>>

Metadata: corpus specific: 0, document level (indexed): 0

Content: documents: 1

##

[[1]]

<<PlainTextDocument>>

Metadata: 7

Content: chars: 44776

viewDocs <- function(d, n) {d %>% extract2(n) %>% as.character() %>% writeLines()}
viewDocs(docs, 16)

Hybrid weighted random forests for

classifying very high-dimensional data

Baoxun Xu1 , Joshua Zhexue Huang2 , Graham Williams2 and

Yunming Ye1

1

##

....

Copyright © 2013-2015 Graham@togaware.com Module: TextMiningO Page: 7 of 46

Draft Only

Generated 2016-01-10 10:00:58+11:00

Data Science with R Hands-On Text Mining

3 Preparing the Corpus

We generally need to perform some pre-processing of the text data to prepare for the text anal-
ysis. Example transformations include converting the text to lower case, removing numbers and
punctuation, removing stop words, stemming and identifying synonyms. The basic transforms
are all available within tm.

getTransformations()

[1] "removeNumbers" "removePunctuation" "removeWords"

[4] "stemDocument" "stripWhitespace"

The function tm map() is used to apply one of these transformations across all documents within
a corpus. Other transformations can be implemented using R functions and wrapped within
content transformer() to create a function that can be passed through to tm map(). We will
see an example of that in the next section.

In the following sections we will apply each of the transformations, one-by-one, to remove un-
wanted characters from the text.

Copyright © 2013-2015 Graham@togaware.com Module: TextMiningO Page: 8 of 46

Draft Only

Generated 2016-01-10 10:00:58+11:00

Data Science with R Hands-On Text Mining

3.1 Simple Transforms

We start with some manual special transforms we may want to do. For example, we might want
to replace “/”, used sometimes to separate alternative words, with a space. This will avoid the
two words being run into one string of characters through the transformations. We might also
replace “@” and “|” with a space, for the same reason.

To create a custom transformation we make use of content transformer() to create a function
to achieve the transformation, and then apply it to the corpus using tm map().

toSpace <- content_transformer(function(x, pattern) gsub(pattern, " ", x))

docs <- tm_map(docs, toSpace, "/")

docs <- tm_map(docs, toSpace, "@")

docs <- tm_map(docs, toSpace, "\\|")

This can be done with a single call:

docs <- tm_map(docs, toSpace, "/|@|\\|")

Check the email address in the following.

inspect(docs[16])

<<VCorpus>>

Metadata: corpus specific: 0, document level (indexed): 0

Content: documents: 1

##

[[1]]

<<PlainTextDocument>>

Metadata: 7

Content: chars: 44776

Copyright © 2013-2015 Graham@togaware.com Module: TextMiningO Page: 9 of 46

Draft Only

Generated 2016-01-10 10:00:58+11:00

Data Science with R Hands-On Text Mining

3.2 Conversion to Lower Case

docs <- tm_map(docs, content_transformer(tolower))

inspect(docs[16])

<<VCorpus>>

Metadata: corpus specific: 0, document level (indexed): 0

Content: documents: 1

##

[[1]]

<<PlainTextDocument>>

Metadata: 7

Content: chars: 44776

General character processing functions in R can be used to transform our corpus. A common
requirement is to map the documents to lower case, using tolower(). As above, we need to
wrap such functions with a content transformer():

Copyright © 2013-2015 Graham@togaware.com Module: TextMiningO Page: 10 of 46

Draft Only

Generated 2016-01-10 10:00:58+11:00

Data Science with R Hands-On Text Mining

3.3 Remove Numbers

docs <- tm_map(docs, removeNumbers)

viewDocs(docs, 16)

hybrid weighted random forests for

classifying very high-dimensional data

baoxun xu , joshua zhexue huang , graham williams and

yunming ye

##

##

department of computer science, harbin institute of technology shenzhen gr...

school, shenzhen , china

##

shenzhen institutes of advanced technology, chinese academy of sciences, s...

, china

email: amusing gmail.com

random forests are a popular classification method based on an ensemble of a

single type of decision trees from subspaces of data. in the literature, t...

are many different types of decision tree algorithms, including c., cart, and

chaid. each type of decision tree algorithm may capture different information

and structure. this paper proposes a hybrid weighted random forest algorithm,

simultaneously using a feature weighting method and a hybrid forest method to

classify very high dimensional data. the hybrid weighted random forest alg...

can effectively reduce subspace size and improve classification performance

without increasing the error bound. we conduct a series of experiments on ...

high dimensional datasets to compare our method with traditional random fo...

methods and other classification methods. the results show that our method

consistently outperforms these traditional methods.

keywords: random forests; hybrid weighted random forest; classification; d...

##

....

Numbers may or may not be relevant to our analyses. This transform can remove numbers
simply.

Copyright © 2013-2015 Graham@togaware.com Module: TextMiningO Page: 11 of 46

Draft Only

Generated 2016-01-10 10:00:58+11:00

Data Science with R Hands-On Text Mining

3.4 Remove Punctuation

docs <- tm_map(docs, removePunctuation)

viewDocs(docs, 16)

hybrid weighted random forests for

classifying very highdimensional data

baoxun xu joshua zhexue huang graham williams and

yunming ye

##

##

department of computer science harbin institute of technology shenzhen gra...

school shenzhen china

##

shenzhen institutes of advanced technology chinese academy of sciences she...

china

email amusing gmailcom

random forests are a popular classification method based on an ensemble of a

single type of decision trees from subspaces of data in the literature there

are many different types of decision tree algorithms including c cart and

chaid each type of decision tree algorithm may capture different information

and structure this paper proposes a hybrid weighted random forest algorithm

simultaneously using a feature weighting method and a hybrid forest method to

classify very high dimensional data the hybrid weighted random forest algo...

can effectively reduce subspace size and improve classification performance

without increasing the error bound we conduct a series of experiments on e...

high dimensional datasets to compare our method with traditional random fo...

methods and other classification methods the results show that our method

consistently outperforms these traditional methods

keywords random forests hybrid weighted random forest classification decis...

##

....

Punctuation can provide gramatical context which supports understanding. Often for initial
analyses we ignore the punctuation. Later we will use punctuation to support the extraction of
meaning.

Copyright © 2013-2015 Graham@togaware.com Module: TextMiningO Page: 12 of 46

Draft Only

Generated 2016-01-10 10:00:58+11:00

Data Science with R Hands-On Text Mining

3.5 Remove English Stop Words

docs <- tm_map(docs, removeWords, stopwords("english"))

inspect(docs[16])

<<VCorpus>>

Metadata: corpus specific: 0, document level (indexed): 0

Content: documents: 1

##

[[1]]

<<PlainTextDocument>>

Metadata: 7

Content: chars: 32234

Stop words are common words found in a language. Words like for, very, and, of, are, etc, are
common stop words. Notice they have been removed from the above text.

We can list the stop words:

length(stopwords("english"))

[1] 174

stopwords("english")

[1] "i" "me" "my" "myself" "we"

[6] "our" "ours" "ourselves" "you" "your"

[11] "yours" "yourself" "yourselves" "he" "him"

[16] "his" "himself" "she" "her" "hers"

[21] "herself" "it" "its" "itself" "they"

[26] "them" "their" "theirs" "themselves" "what"

....

Copyright © 2013-2015 Graham@togaware.com Module: TextMiningO Page: 13 of 46

Draft Only

Generated 2016-01-10 10:00:58+11:00

Data Science with R Hands-On Text Mining

3.6 Remove Own Stop Words

docs <- tm_map(docs, removeWords, c("department", "email"))

viewDocs(docs, 16)

hybrid weighted random forests

classifying highdimensional data

baoxun xu joshua zhexue huang graham williams

yunming ye

##

##

computer science harbin institute technology shenzhen graduate

school shenzhen china

##

shenzhen institutes advanced technology chinese academy sciences shenzhen

china

amusing gmailcom

random forests popular classification method based ensemble

single type decision trees subspaces data literature

many different types decision tree algorithms including c cart

chaid type decision tree algorithm may capture different information

structure paper proposes hybrid weighted random forest algorithm

simultaneously using feature weighting method hybrid forest method

classify high dimensional data hybrid weighted random forest algorithm

can effectively reduce subspace size improve classification performance

without increasing error bound conduct series experiments eight

high dimensional datasets compare method traditional random forest

methods classification methods results show method

consistently outperforms traditional methods

keywords random forests hybrid weighted random forest classification decis...

##

....

Previously we used the English stopwords provided by tm. We could instead or in addition
remove our own stop words as we have done above. We have chosen here two words, simply
for illustration. The choice might depend on the domain of discourse, and might not become
apparent until we’ve done some analysis.

Copyright © 2013-2015 Graham@togaware.com Module: TextMiningO Page: 14 of 46

Draft Only

Generated 2016-01-10 10:00:58+11:00

Data Science with R Hands-On Text Mining

3.7 Strip Whitespace

docs <- tm_map(docs, stripWhitespace)

viewDocs(docs, 16)

hybrid weighted random forests

classifying highdimensional data

baoxun xu joshua zhexue huang graham williams

yunming ye

##

##

computer science harbin institute technology shenzhen graduate

school shenzhen china

##

shenzhen institutes advanced technology chinese academy sciences shenzhen

china

amusing gmailcom

random forests popular classification method based ensemble

single type decision trees subspaces data literature

many different types decision tree algorithms including c cart

chaid type decision tree algorithm may capture different information

structure paper proposes hybrid weighted random forest algorithm

simultaneously using feature weighting method hybrid forest method

classify high dimensional data hybrid weighted random forest algorithm

can effectively reduce subspace size improve classification performance

without increasing error bound conduct series experiments eight

high dimensional datasets compare method traditional random forest

methods classification methods results show method

consistently outperforms traditional methods

keywords random forests hybrid weighted random forest classification decis...

##

....

Copyright © 2013-2015 Graham@togaware.com Module: TextMiningO Page: 15 of 46

Draft Only

Generated 2016-01-10 10:00:58+11:00

Data Science with R Hands-On Text Mining

3.8 Specific Transformations

We might also have some specific transformations we would like to perform. The examples here
may or may not be useful, depending on how we want to analyse the documents. This is really
for illustration using the part of the document we are looking at here, rather than suggesting
this specific transform adds value.

toString <- content_transformer(function(x, from, to) gsub(from, to, x))

docs <- tm_map(docs, toString, "harbin institute technology", "HIT")

docs <- tm_map(docs, toString, "shenzhen institutes advanced technology", "SIAT")

docs <- tm_map(docs, toString, "chinese academy sciences", "CAS")

inspect(docs[16])

<<VCorpus>>

Metadata: corpus specific: 0, document level (indexed): 0

Content: documents: 1

##

[[1]]

<<PlainTextDocument>>

Metadata: 7

Content: chars: 30117

Copyright © 2013-2015 Graham@togaware.com Module: TextMiningO Page: 16 of 46

Draft Only

Generated 2016-01-10 10:00:58+11:00

Data Science with R Hands-On Text Mining

3.9 Stemming

docs <- tm_map(docs, stemDocument)

viewDocs(docs, 16)

hybrid weight random forest

classifi highdimension data

baoxun xu joshua zhexu huang graham william

yunm ye

##

##

comput scienc HIT shenzhen graduat

school shenzhen china

##

SIAT CAS shenzhen

china

amus gmailcom

random forest popular classif method base ensembl

singl type decis tree subspac data literatur

mani differ type decis tree algorithm includ c cart

chaid type decis tree algorithm may captur differ inform

structur paper propos hybrid weight random forest algorithm

simultan use featur weight method hybrid forest method

classifi high dimension data hybrid weight random forest algorithm

can effect reduc subspac size improv classif perform

without increas error bound conduct seri experi eight

high dimension dataset compar method tradit random forest

method classif method result show method

consist outperform tradit method

keyword random forest hybrid weight random forest classif decis tree

##

....

Stemming uses an algorithm that removes common word endings for English words, such as “es”,
“ed” and “’s”.

Copyright © 2013-2015 Graham@togaware.com Module: TextMiningO Page: 17 of 46

Draft Only

Generated 2016-01-10 10:00:58+11:00

Data Science with R Hands-On Text Mining

4 Creating a Document Term Matrix

A document term matrix is simply a matrix with documents as the rows and terms as the columns
and a count of the frequency of words as the cells of the matrix. We use DocumentTermMatrix()

to create the matrix:

dtm <- DocumentTermMatrix(docs)

dtm

<<DocumentTermMatrix (documents: 46, terms: 6508)>>

Non-/sparse entries: 30061/269307

Sparsity : 90%

Maximal term length: 56

Weighting : term frequency (tf)

We can inspect the document term matrix using inspect(). Here, to avoid too much output,
we select a subset of inspect.

inspect(dtm[1:5, 1000:1005])

<<DocumentTermMatrix (documents: 5, terms: 6)>>

Non-/sparse entries: 7/23

Sparsity : 77%

Maximal term length: 9

Weighting : term frequency (tf)

##

....

The document term matrix is in fact quite sparse (that is, mostly empty) and so it is actually
stored in a much more compact representation internally. We can still get the row and column
counts.

class(dtm)

[1] "DocumentTermMatrix" "simple_triplet_matrix"

dim(dtm)

[1] 46 6508

The transpose is created using TermDocumentMatrix():

tdm <- TermDocumentMatrix(docs)

tdm

<<TermDocumentMatrix (terms: 6508, documents: 46)>>

Non-/sparse entries: 30061/269307

Sparsity : 90%

Maximal term length: 56

Weighting : term frequency (tf)

We will use the document term matrix for the remainder of the chapter.

Copyright © 2013-2015 Graham@togaware.com Module: TextMiningO Page: 18 of 46

Draft Only

Generated 2016-01-10 10:00:58+11:00

Data Science with R Hands-On Text Mining

5 Exploring the Document Term Matrix

We can obtain the term frequencies as a vector by converting the document term matrix into a
matrix and summing the column counts:

freq <- colSums(as.matrix(dtm))

length(freq)

[1] 6508

By ordering the frequencies we can list the most frequent terms and the least frequent terms:

ord <- order(freq)

Least frequent terms.

freq[head(ord)]

aaaaaaeaceeaeeieaeaeeiiaiaciaiicaiaeaeaoeneiacaeaaeooooo

1

aab

1

aadrbltn

1

aadrhtmliv

1

aai

1

....

Notice these terms appear just once and are probably not really terms that are of interest to us.
Indeed they are likely to be spurious terms introduced through the translation of the original
document from PDF to text.

Most frequent terms.

freq[tail(ord)]

can dataset pattern use mine data

709 776 887 1366 1446 3101

These terms are much more likely to be of interest to us. Not surprising, given the choice
of documents in the corpus, the most frequent terms are: data, mine, use, pattern, dataset,
can.

Copyright © 2013-2015 Graham@togaware.com Module: TextMiningO Page: 19 of 46

Draft Only

Generated 2016-01-10 10:00:58+11:00

Data Science with R Hands-On Text Mining

6 Distribution of Term Frequencies

Frequency of frequencies.

head(table(freq), 15)

freq

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2381 1030 503 311 210 188 134 130 82 83 65 61 54 52 51

tail(table(freq), 15)

freq

483 544 547 555 578 609 611 616 703 709 776 887 1366 1446 3101

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

So we can see here that there are 2381 terms that occur just once.

Copyright © 2013-2015 Graham@togaware.com Module: TextMiningO Page: 20 of 46

Draft Only

Generated 2016-01-10 10:00:58+11:00

Data Science with R Hands-On Text Mining

7 Conversion to Matrix and Save to CSV

We can convert the document term matrix to a simple matrix for writing to a CSV file, for
example, for loading the data into other software if we need to do so. To write to CSV we first
convert the data structure into a simple matrix:

m <- as.matrix(dtm)

dim(m)

[1] 46 6508

For very large corpus the size of the matrix can exceed R’s calculation limits. This will manifest
itself as a integer overflow error with a message like:

Error in vector(typeof(x$v), nr * nc) : vector size cannot be NA

In addition: Warning message:

In nr * nc : NAs produced by integer overflow

If this occurs, then consider removing sparse terms from the document term matrix, as we discuss
shortly.

Once converted into a standard matrix the usual write.csv() can be used to write the data to
file.

write.csv(m, file="dtm.csv")

Copyright © 2013-2015 Graham@togaware.com Module: TextMiningO Page: 21 of 46

Draft Only

Generated 2016-01-10 10:00:58+11:00

Data Science with R Hands-On Text Mining

8 Removing Sparse Terms

We are often not interested in infrequent terms in our documents. Such “sparse” terms can be
removed from the document term matrix quite easily using removeSparseTerms():

dim(dtm)

[1] 46 6508

dtms <- removeSparseTerms(dtm, 0.1)

dim(dtms)

[1] 46 6

This has removed most terms!

inspect(dtms)

<<DocumentTermMatrix (documents: 46, terms: 6)>>

Non-/sparse entries: 257/19

Sparsity : 7%

Maximal term length: 7

Weighting : term frequency (tf)

##

....

We can see the effect by looking at the terms we have left:

freq <- colSums(as.matrix(dtms))

freq

data graham inform time use william

3101 108 467 483 1366 236

table(freq)

freq

108 236 467 483 1366 3101

1 1 1 1 1 1

Copyright © 2013-2015 Graham@togaware.com Module: TextMiningO Page: 22 of 46

Draft Only

Generated 2016-01-10 10:00:58+11:00

Data Science with R Hands-On Text Mining

9 Identifying Frequent Items and Associations

One thing we often to first do is to get an idea of the most frequent terms in the corpus. We use
findFreqTerms() to do this. Here we limit the output to those terms that occur at least 1,000
times:

findFreqTerms(dtm, lowfreq=1000)

[1] "data" "mine" "use"

So that only lists a few. We can get more of them by reducing the threshold:

findFreqTerms(dtm, lowfreq=100)

[1] "accuraci" "acsi" "adr" "advers" "age"

[6] "algorithm" "allow" "also" "analysi" "angioedema"

[11] "appli" "applic" "approach" "area" "associ"

[16] "attribut" "australia" "australian" "avail" "averag"

[21] "base" "build" "call" "can" "care"

[26] "case" "chang" "claim" "class" "classif"

....

We can also find associations with a word, specifying a correlation limit.

findAssocs(dtm, "data", corlimit=0.6)

$data

mine induct challeng know answer

0.90 0.72 0.70 0.65 0.64

need statistician foundat general boost

0.63 0.63 0.62 0.62 0.61

major mani come

....

If two words always appear together then the correlation would be 1.0 and if they never appear
together the correlation would be 0.0. Thus the correlation is a measure of how closely associated
the words are in the corpus.

Copyright © 2013-2015 Graham@togaware.com Module: TextMiningO Page: 23 of 46

Draft Only

Generated 2016-01-10 10:00:58+11:00

Data Science with R Hands-On Text Mining

10 Correlations Plots

accuraci acsi adr

advers

age

algorithm

allowalso

analysi

angioedema

appli applic

approach

area

associ

attribut

australia

australian avail

averag

base

build

call can

care

case

chang

claim

class

classif

classifi

cluster

collect

combin common compar

comput

condit

confer

consid consist

contain cost

csiro

current

data

databas dataset

day

decis

plot(dtm,

terms=findFreqTerms(dtm, lowfreq=100)[1:50],

corThreshold=0.5)

Rgraphviz (Hansen et al., 2016) from the BioConductor repository for R (bioconductor.org) is
used to plot the network graph that displays the correlation between chosen words in the corpus.
Here we choose 50 of the more frequent words as the nodes and include links between words
when they have at least a correlation of 0.5.

By default (without providing terms and a correlation threshold) the plot function chooses a
random 20 terms with a threshold of 0.7.

Copyright © 2013-2015 Graham@togaware.com Module: TextMiningO Page: 24 of 46

Draft Only

Generated 2016-01-10 10:00:58+11:00

Data Science with R Hands-On Text Mining

11 Correlations Plot—Options

accuraci acsi adr

advers

age

algorithm

allowalso

analysi

angioedema

appli applic

approach

area

associ

attribut

australia

australian avail

averag

base

build

call can

care

case

chang

claim

class

classif

classifi

cluster

collect

combin common compar

comput

condit

confer

consid consist

contain cost

csiro

current

data

databas dataset

day

decis

plot(dtm,

terms=findFreqTerms(dtm, lowfreq=100)[1:50],

corThreshold=0.5)

Copyright © 2013-2015 Graham@togaware.com Module: TextMiningO Page: 25 of 46

Draft Only

Generated 2016-01-10 10:00:58+11:00

Data Science with R Hands-On Text Mining

12 Plotting Word Frequencies

We can generate the frequency count of all words in a corpus:

freq <- sort(colSums(as.matrix(dtm)), decreasing=TRUE)

head(freq, 14)

data mine use pattern dataset can model

3101 1446 1366 887 776 709 703

cluster algorithm rule featur set tree method

616 611 609 578 555 547 544

wf <- data.frame(word=names(freq), freq=freq)

head(wf)

word freq

data data 3101

mine mine 1446

use use 1366

pattern pattern 887

dataset dataset 776

....

We can then plot the frequency of those words that occur at least 500 times in the corpus:

library(ggplot2)

subset(wf, freq>500) %>%

ggplot(aes(word, freq)) +

geom_bar(stat="identity") +

theme(axis.text.x=element_text(angle=45, hjust=1))

0

1000

2000

3000

alg
ori

thm ca
n

clu
ste

r
da

ta

da
tas

et
fea

tur

meth
od

mine
mod

el

pa
tte

rn rul
e se

t
tre

e
us

e

word

fre
q

Copyright © 2013-2015 Graham@togaware.com Module: TextMiningO Page: 26 of 46

Draft Only

Generated 2016-01-10 10:00:58+11:00

Data Science with R Hands-On Text Mining

13 Word Clouds

effectconsider
govern

adr
componlocatcare

environ

scienc
segment

time
whole miner

move
defin

begin

ta
xa

t

end
varieti element

complex
premium

databas

rig
ht

market

can

result

three
includ

mean

thus
architectur

term

simpl

frequent
claim

call

stream
angioedema

donohostahel

individu
threshold

mml

monitor

report

howev
base

due

observ

advers

normal

without
diseas

esophag

pressreview

classifi

output

advanc

instal

transform
set

tar

outlier
entiti

th
eo

ri

interv

kdd

tw
o

known

high

caa

knowledg

hidden
induct

basic direct

conclus

access

rattl

rather

distinct

datasetless

receiv
month

busi start
larger

methodolog

sh
ow

behaviour

day

new

parallel

introduct

visual

technolog

sp
ot

demonstr

will

version

increas

csiro

re
sp

on
s

machin

geograph

split

type

subsequ

count

var

discov
anoth

variabl
respect

pmml

sequenc

sampl

un
ex

pe
ct

interpret

oper

exist
consid

pa
rti

t

purpos

visualis

run

typic

forward

year
node

limit

linux

distribut

hot

act

episod

help

author

acsi
mani

consequ

predict
ensembl

seri

ace

item

now

illustr

calcul

usag

insur
ca

se

list

region

gis

multipl

specif

difficult

breiman

log

intellig

line

understand

appli
de

si
gn

issu

condit

paramet

sinc

general

detect

confer
femal

input

next

variousm
ap

success

rank

made intrus

algorithm

refer

provid

ann

ne
ur

al

tree

subspac

mathemat

within

form

re
co

rd
graphic

http

deriv

project

confid

group

event
utar

overal

smyth

engin

determin

period
upon

reduc

ve
ct

or

va
lu

key

much
weight

matrix

tradit

tabl

recent

pr
op

or
t

exposur

employ

introduc

divers

attribut

categor

drug

volapproach

context
data

user

becom

summari

hadi

queensland

distanc

probabl

hazard
problem

tmip

altern

rnn

health

occur

even

po
rtf

ol
io

quit

pl
ot

network
journal

inform

system

interest pr
oc

ee
d

error

higher

worker

frequenc

layer

real

exclus

ca
nd

id

cost

plane

factor
custom

addit

alendron

cluster

hepat

complet

fo
cu

s

common

build

deploy

postdischarg

control

gnu
allow

appear

definit

evalu

descript

smaller

averag
stage

studi

di
sc

ov
er

i

subset

patientoccurr

publish

represent

describ

advantag

age

interfac

differ
random

fu
tu

r

one

therefor

open

make

medic

compar

use

william

som

choos

prepar

supp

st
ill

optim

ad
m

is
s

discuss

chen

m
illi

on

natur

artifici

preprocess

pa
tte

rn

offic

score

softwar

minimum

fit

must

strength

ieee

generat

practic
view

de
gr

e

doctor

ta
rg

et

prior

previous gender

outcom

co
ve

r

scheme

rule

train

hybridco
depa

ge

area

fig

situat

assess

categori

statist

prune

pa
rt

tempor
window point

program

found

produc

suitabl

mbs

characterist

popul

mine

match

research

standard

pbs

dimension

hospit
separ

medicar

togeth

singl

forest

address

way

nation

collect

servic

posit

built

densiti

techniqu

order

applic

tool

miss

depend

m
et

ho
d

lo
ca

l

analysi

consist

relat

four

expect

link

comparison

grow

accord

experi

regress

rang australia

ex
am

pl

suppa

final

mutarc risk

expert

ce
rta

in

m
od

el
leverag

copyright

number

step

creat

residualleverag

structur

interesting

actual

extract

connect

possibl

graham

hi
gh

lig
ht

length

lead

class

continu

australian

contain

acm

import

deliv

specifi

decis

domain

clinic

remain

field

univers

test

estim

first
see

learn

action

export

implement

major

shown

cart

ye
s

select

nugget

industri

evolutionari

second

captur

insight

languag

literatur

interact

avail

piatetskyshapirosuggest

size

also

debian

administr

manag
note

la
bo

ra
to

ri

unit

object
state

chang

experiment

find

messag

explor

space

fo
llo

w

independ

te
m

pl
at

intern

patholog

work

total

lik
e

transact

rare

investig

drg

ratio

spatial

functiongive

usual

simpli

reaction

tune

activ valid

goal

sever

propos

correspond

reason

go
od

huang

appropri

clear
correl

prototyp

ai
m

initi

file

cca

inhibitor

global

accuraci

current

fraud

support

least

develop
may

packag

obtain

detail

need

remov

commonwealth

involv

task

best

equat

particular

paper

might

section

process

emerg

benefit

rate

public

comput

preadmiss

well
abl

regular

indic

among

polici

better

present

figuroften
gi

ve
n

larg

identifi

as
so

ci

chosen

igi

concept

or
ig

in

similar

ab
st

ra
ct

effici

id
ea

or
ga

ni
s

classif

text

sourc

m
ea

su
r

world

canberra

low

perform

main

top

ga
in

automat

repres

construct

analys

search

framework

signific

level

featur sequenti

requir

improv
combin

small

take

gap

We can generate a word cloud as an effective alternative to providing a quick visual overview of
the frequency of words in a corpus.

The wordcloud (?) package provides the required function.

library(wordcloud)

set.seed(123)

wordcloud(names(freq), freq, min.freq=40)

Notice the use of set.seed() only so that we can obtain the same layout each time—otherwise
a random layout is chosen, which is not usually an issue.

Copyright © 2013-2015 Graham@togaware.com Module: TextMiningO Page: 27 of 46

Draft Only

Generated 2016-01-10 10:00:58+11:00

Data Science with R Hands-On Text Mining

13.1 Reducing Clutter With Max Words

provid
servic
figur

case
patient

databas
popul

va
lu

da
ta

se
t

distribut

data
perform

pr
ob

le
m

knowledg

function

describ

m
in

edevelop

record
process

also

dr
ug

risk

number

first

paper

can

discoveri

on
e

includ

user

kdd

cluster

map

research

inform

statist

generat

tree
forest

learn

random
sourc

may

associ

computidentifi

present

system
decis

studi

m
ea

su
r

support

tabl

group

sequenc

algorithm

time class
de

te
ct

health

interest

ap
pr

oa
ch

analysi

relat

select

set

variabl tw
o

techniqu

larg

base

structur

william
classif

event

pe
rio

d

similar
new

section

tempor

differ
test

rule

insur

method

pattern

model

high

will

outlier

mani

work

train

applic

general

use

exampl
result

featur

To increase or reduce the number of words displayed we can tune the value of max.words=. Here
we have limited the display to the 100 most frequent words.

set.seed(142)

wordcloud(names(freq), freq, max.words=100)

Copyright © 2013-2015 Graham@togaware.com Module: TextMiningO Page: 28 of 46

Draft Only

Generated 2016-01-10 10:00:58+11:00

Data Science with R Hands-On Text Mining

13.2 Reducing Clutter With Min Freq

la
rg

evalu

import
random

like

section

un
de

rs
ta

nd

includ
subset

method
individu

perform

combin

stepevent work
attribut selectform

averag
year

effect

univers

cl
as

s

link

repres

call

reaction

su
pp

or
tfunction

baseuser
explorvariabl

measur
rank

inform
tabl

st
at

is
t

st
ud

i

analysi area

distanc
tool

level

outlier

servic

experi

tim
e

data

search

co
st

william

subspac

patientshow

implement

make

similar

databas

consist

record

lead unexpect

ex
is

t

propos

utar

angioedematempor

pattern
stage

intellig

figur
distribut

condit

result

discuss
accuraci

drug

australia

identifi

do
m

ai
n

appli

hospit

general
mani

number

pe
rio

d

paper

case

featur
build

process

describ

hot

technolog

sequenc
ratio

insur

day

well

given

kdd
use

rnn

order

within

node

target

applic

two

chang

discov

error

total

transact

sm
al

l

graham

acsi

fig

need

expect

of
te

n

learn

multipl

structur

interest

current

claim

new

de
te

ct

journal
observ

report

allow

size
one

adr

provid

approach
high

can

find

classif

window

weight

model
compar

neural

differ

mine

requir

threeaustralian

particular

vectorsourc

health
singl

indic
entiti

system

valu
common

advers

pmml

occur

cluster

exampl

state

increas

howev

ra
ttl

task

hybrid
usual

network

defin

mean

regress

unit

dataset

rule

visual
relat

algorithm

follow

page

intern

http

type

point

ex
pe

rt
proceed

effici

machin

open

avail

collect

object

csiro

discoveritrain

generat

scienc

m
ap

consid

confer

may

tree

packag

refer

sampl

will

group

forest

popul

also

polici

comput

interesting

firstop
er

episod

associ

problem

medic

decis

se
t

interv

signific

predict

classifi

research

contain

knowledg

risk

present

develop
care

nugget

techniqu

estim

test

age

spot

A more common approach to increase or reduce the number of words displayed is by tuning the
value of min.freq=. Here we have limited the display to those words that occur at least 100
times.

set.seed(142)

wordcloud(names(freq), freq, min.freq=100)

Copyright © 2013-2015 Graham@togaware.com Module: TextMiningO Page: 29 of 46

Draft Only

Generated 2016-01-10 10:00:58+11:00

Data Science with R Hands-On Text Mining

13.3 Adding Some Colour

la
rg

evalu

import
random

like

section

un
de

rs
ta

nd

includ
subset

method
individu

perform

combin

stepevent work
attribut selectform

averag
year

effect

univers

cl
as

s

link

repres

call

reaction

su
pp

or
tfunction

baseuser
explorvariabl

measur
rank

inform
tabl

st
at

is
t

st
ud

i

analysi area

distanc
tool

level

outlier

servic

experi

tim
e

data

search

co
st

william

subspac

patientshow

implement

make

similar

databas

consist

record

lead unexpect

ex
is

t

propos

utar

angioedematempor

pattern
stage

intellig

figur
distribut

condit

result

discuss
accuraci

drug

australia

identifi

do
m

ai
n

appli

hospit

general
mani

number

pe
rio

d

paper

case

featur
build

process

describ

hot

technolog

sequenc
ratio

insur

day

well

given

kdd
use

rnn

order

within

node

target

applic

two

chang

discov

error

total

transact

sm
al

l

graham

acsi

fig

need

expect

of
te

n

learn

multipl

structur

interest

current

claim

new

de
te

ct

journal
observ

report

allow

size
one

adr

provid

approach
high

can

find

classif

window

weight

model
compar

neural

differ

mine

requir

threeaustralian

particular

vectorsourc

health
singl

indic
entiti

system

valu
common

advers

pmml

occur

cluster

exampl

state

increas

howev

ra
ttl

task

hybrid
usual

network

defin

mean

regress

unit

dataset

rule

visual
relat

algorithm

follow

page

intern

http

type

point

ex
pe

rt
proceed

effici

machin

open

avail

collect

object

csiro

discoveritrain

generat

scienc

m
ap

consid

confer

may

tree

packag

refer

sampl

will

group

forest

popul

also

polici

comput

interesting

firstop
er

episod

associ

problem

medic

decis

se
t

interv

signific

predict

classifi

research

contain

knowledg

risk

present

develop
care

nugget

techniqu

estim

test

age

spot

We can also add some colour to the display. Here we make use of brewer.pal() from RColor-
Brewer (Neuwirth, 2014) to generate a palette of colours to use.

set.seed(142)

wordcloud(names(freq), freq, min.freq=100, colors=brewer.pal(6, "Dark2"))

Copyright © 2013-2015 Graham@togaware.com Module: TextMiningO Page: 30 of 46

Draft Only

Generated 2016-01-10 10:00:58+11:00

Data Science with R Hands-On Text Mining

13.4 Varying the Scaling

la
rgevalu

import
random

like

section

un
de

rs
ta

nd

includsubset

method
individu

perform

combin

step event
work

attribut

selectform

averag

year

effect

universcl
as

s

linkrepres

call

reaction
su

pp
or

t function

base

user
explor

variabl

measur

rank

inform

tabl
st

at
ist

st
ud

i

analysi

area

distanc

tool

level

outlier
servic

experi

tim
e

data
search

co
st

william

subspac

patient

show

implement

make

similar

databas

consist

record

lead

unexpect

ex
is

t

propos

utar

angioedema

tempor pattern
stage

intellig

figur
distribut

condit

result

discuss

accuraci

drug

australia

identifi

do
m

ai
n

appli

hospit

general

mani

number

pe
rio

d paper

case

featur

build

process
describ

hot

technolog
sequenc

ratio

insur

day

well

given kdd
usernn

order

within

node

target

applic

two

chang

discov

error
total

transact

sm
al

l

graham

acsi

fig

needexpect

of
te

n

learn

multipl

structur

interest

current

claim

newde
te

ct

journal
observ

report

allow

size

one

adr
provid

approach

high

can

find

classif

window

weight

model
compar

neural
differ

mine

requir

three

australian

particular

vector
sourc

health

singl

indic

entiti

system

valu

common
advers

pmmloccur

cluster
exampl

state

increas

howev

ra
ttl

task

hybrid

usual

network

defin

mean

regress

unit

dataset
rule visual

relat

algorithm

follow

page

intern

http

type

point

ex
pe

rt proceed

effici

machin

open
avail

collect

object
csiro

discoveri

train

generat
scienc

m
ap

consid

confer

may

tree
packag

refer

sampl

will

group

forest
popul

also

polici

comput

interesting

first

op
er

episod
associ

problem

medic

decis se
t

interv

signific

predict

classifi

research

contain

knowledg

risk

present

develop

care

nugget

techniqu

estim

test

age

spot

We can change the range of font sizes used in the plot using the scale= option. By default the
most frequent words have a scale of 4 and the least have a scale of 0.5. Here we illustrate the
effect of increasing the scale range.

set.seed(142)

wordcloud(names(freq), freq, min.freq=100, scale=c(5, .1), colors=brewer.pal(6, "Dark2"))

Copyright © 2013-2015 Graham@togaware.com Module: TextMiningO Page: 31 of 46

Draft Only

Generated 2016-01-10 10:00:58+11:00

Data Science with R Hands-On Text Mining

13.5 Rotating Words

la
rg

evalu im
po

rt

random
like
section

un
de

rs
ta

nd

includsubset

method
in

di
vi

du

perform

combin

step

event
work
attribut

select
fo

rm averag
year

effect

univers

cl
as

s
link

repres

call

reaction

su
pp

or
t

function

base

user
explor

variabl

measur

rank
inform

tabl

st
at

is
t

st
ud

i

analysi

area

distanc

tool

le
ve

l

outlier

servic

experi

tim
edata

search

co
st

william

subspac

patient
show

implement

make

similar

databas

consist record

lead

unexpect

ex
is

t

propos
utar

angioedema

tempor
pattern

stage

intellig

figur

distribut
condit

result
discuss

accuraci

drug

australia

identifi

do
m

ai
n

appli

hospit

general

mani

number

pe
rio

d

paper

case

featur

build

process

de
sc

rib

hot

technolog
sequenc

ratio

insur
day

well

givenkdd
use

rnn

order

within

node

target

applic

two

chang
di

sc
ov

error
total

transact

sm
al

l

graham

acsi

fig

need

expect

of
te

n

learn

m
ul

tip
l

structur

in
te

re
st

current

claim

new

de
te

ct

journal
observ
report

allowsize

one

adr

provid

approach

high

can find

classif

window

weight

model

compar

neural

differ

mine
requir

three
australian

particular

vector
sourc

health

singl

indic

entiti

system

valu

common

advers

pmml

occur

cluster

exampl

st
at

e

increas

howev

ra
ttl

task

hybrid

usual

network

de
fin

mean

regress

unit

datasetrule

visual

relat

al
go

rit
hm

follow

page

intern

http

type
point

ex
pe

rt

proceed

effi
ci

machin

open

avail

collect

object

csiro

discoveri
train

generat

scienc

m
ap

consid

confer

m
ay

tree

packag
re

fe
r

sampl
will

group

fo
re

st

popul

also

polici
comput

interesting

first

op
er

episod
as

so
ci

problem

medic

decis

se
t

interv

si
gn

ifi
c

predict

classifi

research
contain
knowledg

risk

present

develop
care

nugget

techniqu

es
tim

te
st

age
sp

ot

We can change the proportion of words that are rotated by 90 degrees from the default 10% to,
say, 20% using rot.per=0.2.

set.seed(142)

dark2 <- brewer.pal(6, "Dark2")

wordcloud(names(freq), freq, min.freq=100, rot.per=0.2, colors=dark2)

Copyright © 2013-2015 Graham@togaware.com Module: TextMiningO Page: 32 of 46

Draft Only

Generated 2016-01-10 10:00:58+11:00

Data Science with R Hands-On Text Mining

14 Quantitative Analysis of Text

The qdap (Rinker, 2015) package provides an extensive suite of functions to support the quanti-
tative analysis of text.

We can obtain simple summaries of a list of words, and to do so we will illustrate with the
terms from our Term Document Matrix tdm. We first extract the shorter terms from each of our
documents into one long word list. To do so we convert tdm into a matrix, extract the column
names (the terms) and retain those shorter than 20 characters.

words <- dtm %>%

as.matrix %>%

colnames %>%

(function(x) x[nchar(x) < 20])

We can then summarise the word list. Notice, in particular, the use of dist tab() from qdap to
generate frequencies and percentages.

length(words)

[1] 6456

head(words, 15)

[1] "aaai" "aab" "aad" "aadrbhtm" "aadrbltn"

[6] "aadrhtmliv" "aai" "aam" "aba" "abbrev"

[11] "abbrevi" "abc" "abcd" "abdul" "abel"

summary(nchar(words))

Min. 1st Qu. Median Mean 3rd Qu. Max.

3.000 5.000 6.000 6.644 8.000 19.000

table(nchar(words))

##

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

579 867 1044 1114 935 651 397 268 200 138 79 63 34 28 22

18 19

21 16

dist_tab(nchar(words))

interval freq cum.freq percent cum.percent

1 3 579 579 8.97 8.97

2 4 867 1446 13.43 22.40

3 5 1044 2490 16.17 38.57

4 6 1114 3604 17.26 55.82

5 7 935 4539 14.48 70.31

6 8 651 5190 10.08 80.39

7 9 397 5587 6.15 86.54

8 10 268 5855 4.15 90.69

9 11 200 6055 3.10 93.79

10 12 138 6193 2.14 95.93

....

Copyright © 2013-2015 Graham@togaware.com Module: TextMiningO Page: 33 of 46

Draft Only

Generated 2016-01-10 10:00:58+11:00

Data Science with R Hands-On Text Mining

14.1 Word Length Counts

0

300

600

900

5 10 15 20
Number of Letters

N
um

be
r o

f W
or

ds

A simple plot is then effective in showing the distribution of the word lengths. Here we create a
single column data frame that is passed on to ggplot() to generate a histogram, with a vertical
line to show the mean length of words.

data.frame(nletters=nchar(words)) %>%

ggplot(aes(x=nletters)) +

geom_histogram(binwidth=1) +

geom_vline(xintercept=mean(nchar(words)),

colour="green", size=1, alpha=.5) +

labs(x="Number of Letters", y="Number of Words")

Copyright © 2013-2015 Graham@togaware.com Module: TextMiningO Page: 34 of 46

Draft Only

Generated 2016-01-10 10:00:58+11:00

Data Science with R Hands-On Text Mining

14.2 Letter Frequency

Z
J
Q
X

W
Y
K
V
F
B
G
H
P
D
M
C
U
L
S
N
O
T
R
A
I

E

0% 2% 4% 6% 8% 10% 12%
Proportion

Le
tte

r

Next we want to review the frequency of letters across all of the words in the discourse. Some
data preparation will transform the vector of words into a list of letters, which we then construct
a frequency count for, and pass this on to be plotted.

We again use a pipeline to string together the operations on the data. Starting from the vec-
tor of words stored in word we split the words into characters using str split() from stringr
(Wickham, 2015), removing the first string (an empty string) from each of the results (using
sapply()). Reducing the result into a simple vector, using unlist(), we then generate a data
frame recording the letter frequencies, using dist tab() from qdap. We can then plot the letter
proportions.

library(dplyr)

library(stringr)

words %>%

str_split("") %>%

sapply(function(x) x[-1]) %>%

unlist %>%

dist_tab %>%

mutate(Letter=factor(toupper(interval),

levels=toupper(interval[order(freq)]))) %>%

ggplot(aes(Letter, weight=percent)) +

geom_bar() +

coord_flip() +

labs(y="Proportion") +

scale_y_continuous(breaks=seq(0, 12, 2),

label=function(x) paste0(x, "%"),

Copyright © 2013-2015 Graham@togaware.com Module: TextMiningO Page: 35 of 46

Draft Only

Generated 2016-01-10 10:00:58+11:00

Data Science with R Hands-On Text Mining

expand=c(0,0), limits=c(0,12))

Copyright © 2013-2015 Graham@togaware.com Module: TextMiningO Page: 36 of 46

Draft Only

Generated 2016-01-10 10:00:58+11:00

Data Science with R Hands-On Text Mining

14.3 Letter and Position Heatmap

.010 .019 .013 .010 .010 .007 .005 .003 .002 .002 .001 .001 .001 .000 .000 .000 .000 .000 .000

.006 .001 .004 .002 .002 .002 .001 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

.013 .003 .007 .006 .004 .004 .003 .002 .001 .001 .000 .000 .000 .000 .000 .000 .000 .000 .000

.008 .002 .005 .005 .004 .003 .002 .001 .001 .001 .001 .000 .000 .000 .000 .000 .000 .000 .000

.006 .021 .010 .016 .014 .008 .005 .003 .002 .001 .001 .001 .000 .000 .000 .000 .000 .000 .000

.005 .001 .003 .002 .001 .001 .001 .001 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

.004 .001 .004 .004 .002 .002 .002 .001 .001 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

.005 .005 .002 .004 .003 .002 .001 .001 .001 .001 .000 .000 .000 .000 .000 .000 .000 .000 .000

.007 .015 .009 .011 .012 .009 .007 .005 .003 .002 .001 .001 .001 .000 .000 .000 .000 .000 .000

.002 .000 .001 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

.002 .000 .001 .003 .001 .000 .001 .001 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

.005 .005 .008 .008 .006 .004 .004 .002 .001 .001 .001 .001 .000 .000 .000 .000 .000 .000 .000

.009 .003 .007 .005 .003 .003 .002 .002 .001 .001 .000 .000 .000 .000 .000 .000 .000 .000 .000

.005 .010 .012 .008 .007 .009 .005 .004 .003 .002 .001 .001 .000 .000 .000 .000 .000 .000 .000

.005 .021 .009 .008 .009 .005 .005 .003 .002 .002 .001 .001 .000 .000 .000 .000 .000 .000 .000

.011 .003 .006 .005 .002 .002 .001 .001 .001 .001 .000 .000 .000 .000 .000 .000 .000 .000 .000

.001 .001 .001 .001 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

.009 .012 .013 .009 .010 .009 .006 .004 .002 .002 .001 .001 .000 .000 .000 .000 .000 .000 .000

.015 .004 .011 .008 .007 .006 .005 .003 .002 .001 .001 .001 .000 .000 .000 .000 .000 .000 .000

.008 .005 .012 .013 .009 .008 .007 .005 .003 .002 .001 .001 .001 .000 .000 .000 .000 .000 .000

.004 .010 .005 .005 .004 .003 .002 .002 .001 .001 .000 .000 .000 .000 .000 .000 .000 .000 .000

.003 .001 .003 .002 .001 .001 .001 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

.005 .002 .002 .001 .001 .001 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

.001 .002 .001 .001 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

.001 .001 .002 .001 .001 .001 .001 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

.001 .000 .000 .001 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000Z

Y

X

W

V

U

T

S

R

Q

P

O

N

M

L

K

J

I

H

G

F

E

D

C

B

A

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Position

Le
tte

r

Proportion
0.000

0.005

0.010

0.015

0.020

The qheat() function from qdap provides an effective visualisation of tabular data. Here we
transform the list of words into a position count of each letter, and constructing a table of the
proportions that is passed on to qheat() to do the plotting.

words %>%

lapply(function(x) sapply(letters, gregexpr, x, fixed=TRUE)) %>%

unlist %>%

(function(x) x[x!=-1]) %>%

(function(x) setNames(x, gsub("\\d", "", names(x)))) %>%

(function(x) apply(table(data.frame(letter=toupper(names(x)),

position=unname(x))),

1, function(y) y/length(x))) %>%

qheat(high="green", low="yellow", by.column=NULL,

values=TRUE, digits=3, plot=FALSE) +

labs(y="Letter", x="Position") +

theme(axis.text.x=element_text(angle=0)) +

guides(fill=guide_legend(title="Proportion"))

Copyright © 2013-2015 Graham@togaware.com Module: TextMiningO Page: 37 of 46

Draft Only

Generated 2016-01-10 10:00:58+11:00

Data Science with R Hands-On Text Mining

14.4 Miscellaneous Functions

We can generate gender from a name list, using the genderdata (?) package

devtools::install_github("lmullen/gender-data-pkg")

name2sex(qcv(graham, frank, leslie, james, jacqui, jack, kerry, kerrie))

The genderdata package needs to be installed.

Error in install genderdata package(): Failed to install the genderdata package.

Please try installing the package for yourself using the following command:

install.packages("genderdata", repos = "http://packages.ropensci.org", type

= "source")

Copyright © 2013-2015 Graham@togaware.com Module: TextMiningO Page: 38 of 46

Draft Only

Generated 2016-01-10 10:00:58+11:00

Data Science with R Hands-On Text Mining

15 Word Distances

Continuous bag of words (CBOW). Word2Vec associates each word in a vocabulary with a unique
vector of real numbers of length d. Words that have a similar syntactic context appear closer
together within the vector space. The syntactic context is based on a set of words within a
specific window size.

install.packages("tmcn.word2vec", repos="http://R-Forge.R-project.org")

Installing package into ’/home/gjw/R/x86 64-pc-linux-gnu-library/3.2’

(as ’lib’ is unspecified)

##

The downloaded source packages are in

'/tmp/Rtmpt1u3GR/downloaded_packages'

library(tmcn.word2vec)

model <- word2vec(system.file("examples", "rfaq.txt", package = "tmcn.word2vec"))

The model was generated in '/home/gjw/R/x86_64-pc-linux-gnu-library/3.2/tm...

distance(model$model_file, "the")

Word CosDist

1 a 0.8694174

2 is 0.8063422

3 and 0.7908007

4 an 0.7738196

5 please 0.7595193

....

Copyright © 2013-2015 Graham@togaware.com Module: TextMiningO Page: 39 of 46

Draft Only

Generated 2016-01-10 10:00:58+11:00

Data Science with R Hands-On Text Mining

16 Review—Preparing the Corpus

Here in one sequence is collected the code to perform a text mining project. Notice that we would
not necessarily do all of these steps so pick and choose as is appropriate to your situation.

Required packages

library(tm)

library(wordcloud)

Locate and load the Corpus.

cname <- file.path(".", "corpus", "txt")

docs <- Corpus(DirSource(cname))

docs

summary(docs)

inspect(docs[1])

Transforms

toSpace <- content_transformer(function(x, pattern) gsub(pattern, " ", x))

docs <- tm_map(docs, toSpace, "/|@|\\|")

docs <- tm_map(docs, content_transformer(tolower))

docs <- tm_map(docs, removeNumbers)

docs <- tm_map(docs, removePunctuation)

docs <- tm_map(docs, removeWords, stopwords("english"))

docs <- tm_map(docs, removeWords, c("own", "stop", "words"))

docs <- tm_map(docs, stripWhitespace)

toString <- content_transformer(function(x, from, to) gsub(from, to, x))

docs <- tm_map(docs, toString, "specific transform", "ST")

docs <- tm_map(docs, toString, "other specific transform", "OST")

docs <- tm_map(docs, stemDocument)

Copyright © 2013-2015 Graham@togaware.com Module: TextMiningO Page: 40 of 46

Draft Only

Generated 2016-01-10 10:00:58+11:00

Data Science with R Hands-On Text Mining

17 Review—Analysing the Corpus

Document term matrix.

dtm <- DocumentTermMatrix(docs)

inspect(dtm[1:5, 1000:1005])

Explore the corpus.

findFreqTerms(dtm, lowfreq=100)

findAssocs(dtm, "data", corlimit=0.6)

freq <- sort(colSums(as.matrix(dtm)), decreasing=TRUE)

wf <- data.frame(word=names(freq), freq=freq)

library(ggplot2)

p <- ggplot(subset(wf, freq>500), aes(word, freq))

p <- p + geom_bar(stat="identity")

p <- p + theme(axis.text.x=element_text(angle=45, hjust=1))

Generate a word cloud

library(wordcloud)

wordcloud(names(freq), freq, min.freq=100, colors=brewer.pal(6, "Dark2"))

Copyright © 2013-2015 Graham@togaware.com Module: TextMiningO Page: 41 of 46

Draft Only

Generated 2016-01-10 10:00:58+11:00

Data Science with R Hands-On Text Mining

18 LDA

Topic Models such as Latent Dirichlet Allocation has been popular for text mining in last 15
years. Applied with varying degrees of success. Text is fed into LDA to extract the topics
underlying the text document. Examples are the AP corpus and the Science Corpus 1880-2002
(Blei and Lafferty 2009). PERHAPS USEFUL IN BOOK?

When is LDA applicable - it will fail on some data and need to choose number of topics to
find and how many documents are needed. HOw do we know the topics learned are correct
topics.

Two fundemental papers - independelty discovered: Blei, Ng, Jordan - NIPS 2001 with 11k
citations. Other paper is Pritchard, Stephens, and Donnelly in Genetics June 200 14K citations
- models are exactly the same except for minor differences: except topics versus population
structures.

No theoretic analysis as such. How to guarantee correct topics and how efficient is the learning
procedure?

Observations:

LDA won’t work on many short tweets or very few long documents.

We should not liberally over-fit the LDA with too many redundant topics...

Limiting factors:

We should use as many documents as we can and short documents less than 10 words won’t
work even if there are many of them. Need sufficiently long documents.

Small Dirichlet paramenter helps especially if we overfit. See Long Nguen’s keynote at PAKDD
2015 in Vietnam.

number of documents the most important factor

document length plays a useful role too

avoid overfitting as you get too many topics and don’t really learn anything as the humn needs
to cull the topics.

New work detects new topics as they emerge.

library(lda)

Error in library(lda): there is no package called ’lda’

From demo(lda)

library("ggplot2")

library("reshape2")

data(cora.documents)

Warning in data(cora.documents): data set ’cora.documents’ not found

data(cora.vocab)

Warning in data(cora.vocab): data set ’cora.vocab’ not found

Copyright © 2013-2015 Graham@togaware.com Module: TextMiningO Page: 42 of 46

Draft Only

Generated 2016-01-10 10:00:58+11:00

Data Science with R Hands-On Text Mining

theme_set(theme_bw())

set.seed(8675309)

K <- 10 ## Num clusters

result <- lda.collapsed.gibbs.sampler(cora.documents,

K, ## Num clusters

cora.vocab,

25, ## Num iterations

0.1,

0.1,

compute.log.likelihood=TRUE)

Error in eval(expr, envir, enclos): could not find function "lda.collapsed.gibbs.sampler"

Get the top words in the cluster

top.words <- top.topic.words(result$topics, 5, by.score=TRUE)

Error in eval(expr, envir, enclos): could not find function "top.topic.words"

Number of documents to display

N <- 10

topic.proportions <- t(result$document_sums) / colSums(result$document_sums)

Error in t(result$document sums): object ’result’ not found

topic.proportions <-

topic.proportions[sample(1:dim(topic.proportions)[1], N),]

Error in eval(expr, envir, enclos): object ’topic.proportions’ not found

topic.proportions[is.na(topic.proportions)] <- 1 / K

Error in topic.proportions[is.na(topic.proportions)] <- 1/K: object ’topic.proportions’

not found

colnames(topic.proportions) <- apply(top.words, 2, paste, collapse=" ")

Error in apply(top.words, 2, paste, collapse = " "): object ’top.words’ not found

topic.proportions.df <- melt(cbind(data.frame(topic.proportions),

document=factor(1:N)),

variable.name="topic",

id.vars = "document")

Error in data.frame(topic.proportions): object ’topic.proportions’ not found

ggplot(topic.proportions.df, aes(x=topic, y=value, fill=topic)) +

geom_bar(stat="identity") +

theme(axis.text.x = element_text(angle=45, hjust=1, size=7),

legend.position="none") +

coord_flip() +

facet_wrap(~ document, ncol=5)

Error in ggplot(topic.proportions.df, aes(x = topic, y = value, fill = topic)):

object ’topic.proportions.df’ not found

Copyright © 2013-2015 Graham@togaware.com Module: TextMiningO Page: 43 of 46

Draft Only

Generated 2016-01-10 10:00:58+11:00

Data Science with R Hands-On Text Mining

19 Further Reading and Acknowledgements

The Rattle Book, published by Springer, provides a comprehensive
introduction to data mining and analytics using Rattle and R.
It is available from Amazon. Other documentation on a broader
selection of R topics of relevance to the data scientist is freely
available from http://datamining.togaware.com, including the
Datamining Desktop Survival Guide.

This chapter is one of many chapters available from http://

HandsOnDataScience.com. In particular follow the links on the
website with a * which indicates the generally more developed chap-
ters.

Other resources include:

� The Journal of Statistical Software article, Text Mining Infrastructure in R is a good start
http://www.jstatsoft.org/v25/i05/paper

� Bilisoly (2008) presents methods and algorithms for text mining using Perl.

Thanks also to Tony Nolan for suggestions of some of the examples used in this chapter.

Some of the qdap examples were motivated by http://trinkerrstuff.wordpress.com/2014/

10/31/exploration-of-letter-make-up-of-english-words/.

Copyright © 2013-2015 Graham@togaware.com Module: TextMiningO Page: 44 of 46

Draft Only

Generated 2016-01-10 10:00:58+11:00

http://www.amazon.com/gp/product/1441998896/ref=as_li_qf_sp_asin_tl?ie=UTF8&tag=togaware-20&linkCode=as2&camp=217145&creative=399373&creativeASIN=1441998896
http://www.amazon.com/gp/product/1441998896/ref=as_li_qf_sp_asin_tl?ie=UTF8&tag=togaware-20&linkCode=as2&camp=217145&creative=399373&creativeASIN=1441998896
http://datamining.togaware.com
http://datamining.togaware.com/survivor/index.html
http://HandsOnDataScience.com
http://HandsOnDataScience.com
http://www.jstatsoft.org/v25/i05/paper
http://trinkerrstuff.wordpress.com/2014/10/31/exploration-of-letter-make-up-of-english-words/
http://trinkerrstuff.wordpress.com/2014/10/31/exploration-of-letter-make-up-of-english-words/

Data Science with R Hands-On Text Mining

20 References

Bilisoly R (2008). Practical Text Mining with Perl. Wiley Series on Methods and Applications
in Data Mining. Wiley. ISBN 9780470382851. URL http://books.google.com.au/books?id=

YkMFVbsrdzkC.

Feinerer I, Hornik K (2015). tm: Text Mining Package. R package version 0.6-2, URL https:

//CRAN.R-project.org/package=tm.

Hansen KD, Gentry J, Long L, Gentleman R, Falcon S, Hahne F, Sarkar D (2016). Rgraphviz:
Provides plotting capabilities for R graph objects. R package version 2.12.0.

Neuwirth E (2014). RColorBrewer: ColorBrewer Palettes. R package version 1.1-2, URL
https://CRAN.R-project.org/package=RColorBrewer.

R Core Team (2015). R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Rinker T (2015). qdap: Bridging the Gap Between Qualitative Data and Quantitative Analysis.
R package version 2.2.4, URL https://CRAN.R-project.org/package=qdap.

Wickham H (2015). stringr: Simple, Consistent Wrappers for Common String Operations. R
package version 1.0.0, URL https://CRAN.R-project.org/package=stringr.

Williams GJ (2009). “Rattle: A Data Mining GUI for R.” The R Journal, 1(2), 45–55. URL
http://journal.r-project.org/archive/2009-2/RJournal_2009-2_Williams.pdf.

Williams GJ (2011). Data Mining with Rattle and R: The art of excavating data for knowledge
discovery. Use R! Springer, New York.

This document, sourced from TextMiningO.Rnw bitbucket revision 76, was processed by KnitR
version 1.12 of 2016-01-06 and took 41.3 seconds to process. It was generated by gjw on nyx
running Ubuntu 14.04.3 LTS with Intel(R) Xeon(R) CPU W3520 @ 2.67GHz having 8 cores and
12.3GB of RAM. It completed the processing 2016-01-10 09:58:57.

Copyright © 2013-2015 Graham@togaware.com Module: TextMiningO Page: 45 of 46

Draft Only

Generated 2016-01-10 10:00:58+11:00

http://books.google.com.au/books?id=YkMFVbsrdzkC
http://books.google.com.au/books?id=YkMFVbsrdzkC
https://CRAN.R-project.org/package=tm
https://CRAN.R-project.org/package=tm
https://CRAN.R-project.org/package=RColorBrewer
https://www.R-project.org/
https://CRAN.R-project.org/package=qdap
https://CRAN.R-project.org/package=stringr
http://journal.r-project.org/archive/2009-2/RJournal_2009-2_Williams.pdf

Draft Only

Generated 2016-01-10 10:00:58+11:00

	Getting Started: The Corpus
	Corpus Sources and Readers
	Text Documents
	PDF Documents
	Word Documents

	Exploring the Corpus
	Preparing the Corpus
	Simple Transforms
	Conversion to Lower Case
	Remove Numbers
	Remove Punctuation
	Remove English Stop Words
	Remove Own Stop Words
	Strip Whitespace
	Specific Transformations
	Stemming

	Creating a Document Term Matrix
	Exploring the Document Term Matrix
	Distribution of Term Frequencies
	Conversion to Matrix and Save to CSV
	Removing Sparse Terms
	Identifying Frequent Items and Associations
	Correlations Plots
	Correlations Plot—Options
	Plotting Word Frequencies
	Word Clouds
	Reducing Clutter With Max Words
	Reducing Clutter With Min Freq
	Adding Some Colour
	Varying the Scaling
	Rotating Words

	Quantitative Analysis of Text
	Word Length Counts
	Letter Frequency
	Letter and Position Heatmap
	Miscellaneous Functions

	Word Distances
	Review—Preparing the Corpus
	Review—Analysing the Corpus
	LDA
	Further Reading and Acknowledgements
	References

