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Text Mining (or Text Analytics) applies analytic tools to learn from collections of text data,
like social media, books, newspapers, emails, etc. The goal can be considered to be similar to
humans learning by reading such material. However, using automated algorithms we can learn
from massive amounts of text, very much more than a human can. The material could consist of
millions of newspaper articles to perhaps summarise the main themes and to identify those that
are of most interest to particular people. Or we might be monitoring twitter feeds to identify
emerging topics that we might need to act upon, as it emerges.

The required packages for this chapter include:

library(tm) # Framework for text mining.

library(qdap) # Quantitative discourse analysis of transcripts.

library(qdapDictionaries)

library(dplyr) # Data wrangling, pipe operator %>%().

library(RColorBrewer) # Generate palette of colours for plots.

library(ggplot2) # Plot word frequencies.

library(scales) # Include commas in numbers.

library(Rgraphviz) # Correlation plots.

As we work through this chapter, new R commands will be introduced. Be sure to review the
command’s documentation and understand what the command does. You can ask for help using
the ? command as in:

?read.csv

We can obtain documentation on a particular package using the help= option of library():

library(help=rattle)

This chapter is intended to be hands on. To learn effectively, you are encouraged to have R
running (e.g., RStudio) and to run all the commands as they appear here. Check that you get
the same output, and you understand the output. Try some variations. Explore.
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work is provided under the same license.
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1 Getting Started: The Corpus

The primary package for text mining, tm (Feinerer and Hornik, 2015), provides a framework
within which we perform our text mining. A collection of other standard R packages add value
to the data processing and visualizations for text mining.

The basic concept is that of a corpus. This is a collection of texts, usually stored electronically,
and from which we perform our analysis. A corpus might be a collection of news articles from
Reuters or the published works of Shakespeare. Within each corpus we will have separate docu-
ments, which might be articles, stories, or book volumes. Each document is treated as a separate
entity or record.

Documents which we wish to analyse come in many different formats. Quite a few formats are
supported by tm (Feinerer and Hornik, 2015), the package we will illustrate text mining with in
this module. The supported formats include text, PDF, Microsoft Word, and XML.

A number of open source tools are also available to convert most document formats to text files.
For our corpus used initially in this module, a collection of PDF documents were converted to text
using pdftotext from the xpdf application which is available for GNU/Linux and MS/Windows
and others. On GNU/Linux we can convert a folder of PDF documents to text with:

system("for f in *.pdf; do pdftotext -enc ASCII7 -nopgbrk $f; done")

The -enc ASCII7 ensures the text is converted to ASCII since otherwise we may end up with
binary characters in our text documents.

We can also convert Word documents to text using anitword, which is another application
available for GNU/Linux.

system("for f in *.doc; do antiword $f; done")
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1.1 Corpus Sources and Readers

There are a variety of sources supported by tm. We can use getSources() to list them.

getSources()

## [1] "DataframeSource" "DirSource" "URISource" "VectorSource"

## [5] "XMLSource" "ZipSource"

In addition to different kinds of sources of documents, our documents for text analysis will come
in many different formats. A variety are supported by tm:

getReaders()

## [1] "readDOC" "readPDF"

## [3] "readPlain" "readRCV1"

## [5] "readRCV1asPlain" "readReut21578XML"

## [7] "readReut21578XMLasPlain" "readTabular"

## [9] "readTagged" "readXML"
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1.2 Text Documents

We load a sample corpus of text documents. Our corpus consists of a collection of research
papers all stored in the folder we identify below. To work along with us in this module, you
can create your own folder called corpus/txt and place into that folder a collection of text
documents. It does not need to be as many as we use here but a reasonable number makes it
more interesting.

cname <- file.path(".", "corpus", "txt")

cname

## [1] "./corpus/txt"

We can list some of the file names.

length(dir(cname))

## [1] 46

dir(cname)

## [1] "acnn96.txt"

## [2] "adm02.txt"

## [3] "ai02.txt"

## [4] "ai03.txt"

## [5] "ai97.txt"

## [6] "atobmars.txt"

....

There are 46 documents in this particular corpus.

After loading the tm (Feinerer and Hornik, 2015) package into the R library we are ready to load
the files from the directory as the source of the files making up the corpus, using DirSource().
The source object is passed on to Corpus() which loads the documents. We save the resulting
collection of documents in memory, stored in a variable called docs.

library(tm)

docs <- Corpus(DirSource(cname))

docs

## <<VCorpus>>

## Metadata: corpus specific: 0, document level (indexed): 0

## Content: documents: 46

class(docs)

## [1] "VCorpus" "Corpus"

class(docs[[1]])

## [1] "PlainTextDocument" "TextDocument"

summary(docs)

## Length Class Mode

## acnn96.txt 2 PlainTextDocument list

## adm02.txt 2 PlainTextDocument list
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## ai02.txt 2 PlainTextDocument list

## ai03.txt 2 PlainTextDocument list

## ai97.txt 2 PlainTextDocument list

....
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1.3 PDF Documents

If instead of text documents we have a corpus of PDF documents then we can use the readPDF()
reader function to convert PDF into text and have that loaded as out Corpus.

docs <- Corpus(DirSource(cname), readerControl=list(reader=readPDF))

This will use, by default, the pdftotext command from xpdf to convert the PDF into text
format. The xpdf application needs to be installed for readPDF() to work.
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1.4 Word Documents

A simple open source tool to convert Microsoft Word documents into text is antiword. The
separate antiword application needs to be installed, but once it is available it is used by tm to
convert Word documents into text for loading into R.

To load a corpus of Word documents we use the readDOC() reader function:

docs <- Corpus(DirSource(cname), readerControl=list(reader=readDOC))

Once we have loaded our corpus the remainder of the processing of the corpus within R is then
as follows.

The antiword program takes some useful command line arguments. We can pass these through
to the program from readDOC() by specifying them as the character string argument:

docs <- Corpus(DirSource(cname), readerControl=list(reader=readDOC("-r -s")))

Here, -r requests that removed text be included in the output, and -s requests that text hidden
by Word be included.
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2 Exploring the Corpus

We can (and should) inspect the documents using inspect(). This will assure us that data has
been loaded properly and as we expect.

inspect(docs[16])

## <<VCorpus>>

## Metadata: corpus specific: 0, document level (indexed): 0

## Content: documents: 1

##

## [[1]]

## <<PlainTextDocument>>

## Metadata: 7

## Content: chars: 44776

viewDocs <- function(d, n) {d %>% extract2(n) %>% as.character() %>% writeLines()}
viewDocs(docs, 16)

## Hybrid weighted random forests for

## classifying very high-dimensional data

## Baoxun Xu1 , Joshua Zhexue Huang2 , Graham Williams2 and

## Yunming Ye1

## 1

##

....
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3 Preparing the Corpus

We generally need to perform some pre-processing of the text data to prepare for the text anal-
ysis. Example transformations include converting the text to lower case, removing numbers and
punctuation, removing stop words, stemming and identifying synonyms. The basic transforms
are all available within tm.

getTransformations()

## [1] "removeNumbers" "removePunctuation" "removeWords"

## [4] "stemDocument" "stripWhitespace"

The function tm map() is used to apply one of these transformations across all documents within
a corpus. Other transformations can be implemented using R functions and wrapped within
content transformer() to create a function that can be passed through to tm map(). We will
see an example of that in the next section.

In the following sections we will apply each of the transformations, one-by-one, to remove un-
wanted characters from the text.
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3.1 Simple Transforms

We start with some manual special transforms we may want to do. For example, we might want
to replace “/”, used sometimes to separate alternative words, with a space. This will avoid the
two words being run into one string of characters through the transformations. We might also
replace “@” and “|” with a space, for the same reason.

To create a custom transformation we make use of content transformer() to create a function
to achieve the transformation, and then apply it to the corpus using tm map().

toSpace <- content_transformer(function(x, pattern) gsub(pattern, " ", x))

docs <- tm_map(docs, toSpace, "/")

docs <- tm_map(docs, toSpace, "@")

docs <- tm_map(docs, toSpace, "\\|")

This can be done with a single call:

docs <- tm_map(docs, toSpace, "/|@|\\|")

Check the email address in the following.

inspect(docs[16])

## <<VCorpus>>

## Metadata: corpus specific: 0, document level (indexed): 0

## Content: documents: 1

##

## [[1]]

## <<PlainTextDocument>>

## Metadata: 7

## Content: chars: 44776
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3.2 Conversion to Lower Case

docs <- tm_map(docs, content_transformer(tolower))

inspect(docs[16])

## <<VCorpus>>

## Metadata: corpus specific: 0, document level (indexed): 0

## Content: documents: 1

##

## [[1]]

## <<PlainTextDocument>>

## Metadata: 7

## Content: chars: 44776

General character processing functions in R can be used to transform our corpus. A common
requirement is to map the documents to lower case, using tolower(). As above, we need to
wrap such functions with a content transformer():
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3.3 Remove Numbers

docs <- tm_map(docs, removeNumbers)

viewDocs(docs, 16)

## hybrid weighted random forests for

## classifying very high-dimensional data

## baoxun xu , joshua zhexue huang , graham williams and

## yunming ye

##

##

## department of computer science, harbin institute of technology shenzhen gr...

## school, shenzhen , china

##

## shenzhen institutes of advanced technology, chinese academy of sciences, s...

## , china

## email: amusing gmail.com

## random forests are a popular classification method based on an ensemble of a

## single type of decision trees from subspaces of data. in the literature, t...

## are many different types of decision tree algorithms, including c., cart, and

## chaid. each type of decision tree algorithm may capture different information

## and structure. this paper proposes a hybrid weighted random forest algorithm,

## simultaneously using a feature weighting method and a hybrid forest method to

## classify very high dimensional data. the hybrid weighted random forest alg...

## can effectively reduce subspace size and improve classification performance

## without increasing the error bound. we conduct a series of experiments on ...

## high dimensional datasets to compare our method with traditional random fo...

## methods and other classification methods. the results show that our method

## consistently outperforms these traditional methods.

## keywords: random forests; hybrid weighted random forest; classification; d...

##

....

Numbers may or may not be relevant to our analyses. This transform can remove numbers
simply.
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3.4 Remove Punctuation

docs <- tm_map(docs, removePunctuation)

viewDocs(docs, 16)

## hybrid weighted random forests for

## classifying very highdimensional data

## baoxun xu joshua zhexue huang graham williams and

## yunming ye

##

##

## department of computer science harbin institute of technology shenzhen gra...

## school shenzhen china

##

## shenzhen institutes of advanced technology chinese academy of sciences she...

## china

## email amusing gmailcom

## random forests are a popular classification method based on an ensemble of a

## single type of decision trees from subspaces of data in the literature there

## are many different types of decision tree algorithms including c cart and

## chaid each type of decision tree algorithm may capture different information

## and structure this paper proposes a hybrid weighted random forest algorithm

## simultaneously using a feature weighting method and a hybrid forest method to

## classify very high dimensional data the hybrid weighted random forest algo...

## can effectively reduce subspace size and improve classification performance

## without increasing the error bound we conduct a series of experiments on e...

## high dimensional datasets to compare our method with traditional random fo...

## methods and other classification methods the results show that our method

## consistently outperforms these traditional methods

## keywords random forests hybrid weighted random forest classification decis...

##

....

Punctuation can provide gramatical context which supports understanding. Often for initial
analyses we ignore the punctuation. Later we will use punctuation to support the extraction of
meaning.
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3.5 Remove English Stop Words

docs <- tm_map(docs, removeWords, stopwords("english"))

inspect(docs[16])

## <<VCorpus>>

## Metadata: corpus specific: 0, document level (indexed): 0

## Content: documents: 1

##

## [[1]]

## <<PlainTextDocument>>

## Metadata: 7

## Content: chars: 32234

Stop words are common words found in a language. Words like for, very, and, of, are, etc, are
common stop words. Notice they have been removed from the above text.

We can list the stop words:

length(stopwords("english"))

## [1] 174

stopwords("english")

## [1] "i" "me" "my" "myself" "we"

## [6] "our" "ours" "ourselves" "you" "your"

## [11] "yours" "yourself" "yourselves" "he" "him"

## [16] "his" "himself" "she" "her" "hers"

## [21] "herself" "it" "its" "itself" "they"

## [26] "them" "their" "theirs" "themselves" "what"

....
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3.6 Remove Own Stop Words

docs <- tm_map(docs, removeWords, c("department", "email"))

viewDocs(docs, 16)

## hybrid weighted random forests

## classifying highdimensional data

## baoxun xu joshua zhexue huang graham williams

## yunming ye

##

##

## computer science harbin institute technology shenzhen graduate

## school shenzhen china

##

## shenzhen institutes advanced technology chinese academy sciences shenzhen

## china

## amusing gmailcom

## random forests popular classification method based ensemble

## single type decision trees subspaces data literature

## many different types decision tree algorithms including c cart

## chaid type decision tree algorithm may capture different information

## structure paper proposes hybrid weighted random forest algorithm

## simultaneously using feature weighting method hybrid forest method

## classify high dimensional data hybrid weighted random forest algorithm

## can effectively reduce subspace size improve classification performance

## without increasing error bound conduct series experiments eight

## high dimensional datasets compare method traditional random forest

## methods classification methods results show method

## consistently outperforms traditional methods

## keywords random forests hybrid weighted random forest classification decis...

##

....

Previously we used the English stopwords provided by tm. We could instead or in addition
remove our own stop words as we have done above. We have chosen here two words, simply
for illustration. The choice might depend on the domain of discourse, and might not become
apparent until we’ve done some analysis.
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3.7 Strip Whitespace

docs <- tm_map(docs, stripWhitespace)

viewDocs(docs, 16)

## hybrid weighted random forests

## classifying highdimensional data

## baoxun xu joshua zhexue huang graham williams

## yunming ye

##

##

## computer science harbin institute technology shenzhen graduate

## school shenzhen china

##

## shenzhen institutes advanced technology chinese academy sciences shenzhen

## china

## amusing gmailcom

## random forests popular classification method based ensemble

## single type decision trees subspaces data literature

## many different types decision tree algorithms including c cart

## chaid type decision tree algorithm may capture different information

## structure paper proposes hybrid weighted random forest algorithm

## simultaneously using feature weighting method hybrid forest method

## classify high dimensional data hybrid weighted random forest algorithm

## can effectively reduce subspace size improve classification performance

## without increasing error bound conduct series experiments eight

## high dimensional datasets compare method traditional random forest

## methods classification methods results show method

## consistently outperforms traditional methods

## keywords random forests hybrid weighted random forest classification decis...

##

....
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3.8 Specific Transformations

We might also have some specific transformations we would like to perform. The examples here
may or may not be useful, depending on how we want to analyse the documents. This is really
for illustration using the part of the document we are looking at here, rather than suggesting
this specific transform adds value.

toString <- content_transformer(function(x, from, to) gsub(from, to, x))

docs <- tm_map(docs, toString, "harbin institute technology", "HIT")

docs <- tm_map(docs, toString, "shenzhen institutes advanced technology", "SIAT")

docs <- tm_map(docs, toString, "chinese academy sciences", "CAS")

inspect(docs[16])

## <<VCorpus>>

## Metadata: corpus specific: 0, document level (indexed): 0

## Content: documents: 1

##

## [[1]]

## <<PlainTextDocument>>

## Metadata: 7

## Content: chars: 30117

Copyright © 2013-2015 Graham@togaware.com Module: TextMiningO Page: 16 of 46

Draft Only

Generated 2016-01-10 10:00:58+11:00



Data Science with R Hands-On Text Mining

3.9 Stemming

docs <- tm_map(docs, stemDocument)

viewDocs(docs, 16)

## hybrid weight random forest

## classifi highdimension data

## baoxun xu joshua zhexu huang graham william

## yunm ye

##

##

## comput scienc HIT shenzhen graduat

## school shenzhen china

##

## SIAT CAS shenzhen

## china

## amus gmailcom

## random forest popular classif method base ensembl

## singl type decis tree subspac data literatur

## mani differ type decis tree algorithm includ c cart

## chaid type decis tree algorithm may captur differ inform

## structur paper propos hybrid weight random forest algorithm

## simultan use featur weight method hybrid forest method

## classifi high dimension data hybrid weight random forest algorithm

## can effect reduc subspac size improv classif perform

## without increas error bound conduct seri experi eight

## high dimension dataset compar method tradit random forest

## method classif method result show method

## consist outperform tradit method

## keyword random forest hybrid weight random forest classif decis tree

##

....

Stemming uses an algorithm that removes common word endings for English words, such as “es”,
“ed” and “’s”.
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4 Creating a Document Term Matrix

A document term matrix is simply a matrix with documents as the rows and terms as the columns
and a count of the frequency of words as the cells of the matrix. We use DocumentTermMatrix()

to create the matrix:

dtm <- DocumentTermMatrix(docs)

dtm

## <<DocumentTermMatrix (documents: 46, terms: 6508)>>

## Non-/sparse entries: 30061/269307

## Sparsity : 90%

## Maximal term length: 56

## Weighting : term frequency (tf)

We can inspect the document term matrix using inspect(). Here, to avoid too much output,
we select a subset of inspect.

inspect(dtm[1:5, 1000:1005])

## <<DocumentTermMatrix (documents: 5, terms: 6)>>

## Non-/sparse entries: 7/23

## Sparsity : 77%

## Maximal term length: 9

## Weighting : term frequency (tf)

##

....

The document term matrix is in fact quite sparse (that is, mostly empty) and so it is actually
stored in a much more compact representation internally. We can still get the row and column
counts.

class(dtm)

## [1] "DocumentTermMatrix" "simple_triplet_matrix"

dim(dtm)

## [1] 46 6508

The transpose is created using TermDocumentMatrix():

tdm <- TermDocumentMatrix(docs)

tdm

## <<TermDocumentMatrix (terms: 6508, documents: 46)>>

## Non-/sparse entries: 30061/269307

## Sparsity : 90%

## Maximal term length: 56

## Weighting : term frequency (tf)

We will use the document term matrix for the remainder of the chapter.
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5 Exploring the Document Term Matrix

We can obtain the term frequencies as a vector by converting the document term matrix into a
matrix and summing the column counts:

freq <- colSums(as.matrix(dtm))

length(freq)

## [1] 6508

By ordering the frequencies we can list the most frequent terms and the least frequent terms:

ord <- order(freq)

# Least frequent terms.

freq[head(ord)]

## aaaaaaeaceeaeeieaeaeeiiaiaciaiicaiaeaeaoeneiacaeaaeooooo

## 1

## aab

## 1

## aadrbltn

## 1

## aadrhtmliv

## 1

## aai

## 1

....

Notice these terms appear just once and are probably not really terms that are of interest to us.
Indeed they are likely to be spurious terms introduced through the translation of the original
document from PDF to text.

# Most frequent terms.

freq[tail(ord)]

## can dataset pattern use mine data

## 709 776 887 1366 1446 3101

These terms are much more likely to be of interest to us. Not surprising, given the choice
of documents in the corpus, the most frequent terms are: data, mine, use, pattern, dataset,
can.
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6 Distribution of Term Frequencies

# Frequency of frequencies.

head(table(freq), 15)

## freq

## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

## 2381 1030 503 311 210 188 134 130 82 83 65 61 54 52 51

tail(table(freq), 15)

## freq

## 483 544 547 555 578 609 611 616 703 709 776 887 1366 1446 3101

## 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

So we can see here that there are 2381 terms that occur just once.
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7 Conversion to Matrix and Save to CSV

We can convert the document term matrix to a simple matrix for writing to a CSV file, for
example, for loading the data into other software if we need to do so. To write to CSV we first
convert the data structure into a simple matrix:

m <- as.matrix(dtm)

dim(m)

## [1] 46 6508

For very large corpus the size of the matrix can exceed R’s calculation limits. This will manifest
itself as a integer overflow error with a message like:

## Error in vector(typeof(x$v), nr * nc) : vector size cannot be NA

## In addition: Warning message:

## In nr * nc : NAs produced by integer overflow

If this occurs, then consider removing sparse terms from the document term matrix, as we discuss
shortly.

Once converted into a standard matrix the usual write.csv() can be used to write the data to
file.

write.csv(m, file="dtm.csv")
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8 Removing Sparse Terms

We are often not interested in infrequent terms in our documents. Such “sparse” terms can be
removed from the document term matrix quite easily using removeSparseTerms():

dim(dtm)

## [1] 46 6508

dtms <- removeSparseTerms(dtm, 0.1)

dim(dtms)

## [1] 46 6

This has removed most terms!

inspect(dtms)

## <<DocumentTermMatrix (documents: 46, terms: 6)>>

## Non-/sparse entries: 257/19

## Sparsity : 7%

## Maximal term length: 7

## Weighting : term frequency (tf)

##

....

We can see the effect by looking at the terms we have left:

freq <- colSums(as.matrix(dtms))

freq

## data graham inform time use william

## 3101 108 467 483 1366 236

table(freq)

## freq

## 108 236 467 483 1366 3101

## 1 1 1 1 1 1
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9 Identifying Frequent Items and Associations

One thing we often to first do is to get an idea of the most frequent terms in the corpus. We use
findFreqTerms() to do this. Here we limit the output to those terms that occur at least 1,000
times:

findFreqTerms(dtm, lowfreq=1000)

## [1] "data" "mine" "use"

So that only lists a few. We can get more of them by reducing the threshold:

findFreqTerms(dtm, lowfreq=100)

## [1] "accuraci" "acsi" "adr" "advers" "age"

## [6] "algorithm" "allow" "also" "analysi" "angioedema"

## [11] "appli" "applic" "approach" "area" "associ"

## [16] "attribut" "australia" "australian" "avail" "averag"

## [21] "base" "build" "call" "can" "care"

## [26] "case" "chang" "claim" "class" "classif"

....

We can also find associations with a word, specifying a correlation limit.

findAssocs(dtm, "data", corlimit=0.6)

## $data

## mine induct challeng know answer

## 0.90 0.72 0.70 0.65 0.64

## need statistician foundat general boost

## 0.63 0.63 0.62 0.62 0.61

## major mani come

....

If two words always appear together then the correlation would be 1.0 and if they never appear
together the correlation would be 0.0. Thus the correlation is a measure of how closely associated
the words are in the corpus.
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10 Correlations Plots
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plot(dtm,

terms=findFreqTerms(dtm, lowfreq=100)[1:50],

corThreshold=0.5)

Rgraphviz (Hansen et al., 2016) from the BioConductor repository for R (bioconductor.org) is
used to plot the network graph that displays the correlation between chosen words in the corpus.
Here we choose 50 of the more frequent words as the nodes and include links between words
when they have at least a correlation of 0.5.

By default (without providing terms and a correlation threshold) the plot function chooses a
random 20 terms with a threshold of 0.7.
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11 Correlations Plot—Options

accuraci acsi adr

advers

age

algorithm

allowalso

analysi

angioedema

appli applic

approach

area

associ

attribut

australia

australian avail

averag

base

build

call can

care

case

chang

claim

class

classif

classifi

cluster

collect

combin common compar

comput

condit

confer

consid consist

contain cost

csiro

current

data

databas dataset

day

decis

plot(dtm,

terms=findFreqTerms(dtm, lowfreq=100)[1:50],

corThreshold=0.5)
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12 Plotting Word Frequencies

We can generate the frequency count of all words in a corpus:

freq <- sort(colSums(as.matrix(dtm)), decreasing=TRUE)

head(freq, 14)

## data mine use pattern dataset can model

## 3101 1446 1366 887 776 709 703

## cluster algorithm rule featur set tree method

## 616 611 609 578 555 547 544

wf <- data.frame(word=names(freq), freq=freq)

head(wf)

## word freq

## data data 3101

## mine mine 1446

## use use 1366

## pattern pattern 887

## dataset dataset 776

....

We can then plot the frequency of those words that occur at least 500 times in the corpus:

library(ggplot2)

subset(wf, freq>500) %>%

ggplot(aes(word, freq)) +

geom_bar(stat="identity") +

theme(axis.text.x=element_text(angle=45, hjust=1))
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13 Word Clouds
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We can generate a word cloud as an effective alternative to providing a quick visual overview of
the frequency of words in a corpus.

The wordcloud (?) package provides the required function.

library(wordcloud)

set.seed(123)

wordcloud(names(freq), freq, min.freq=40)

Notice the use of set.seed() only so that we can obtain the same layout each time—otherwise
a random layout is chosen, which is not usually an issue.
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13.1 Reducing Clutter With Max Words
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To increase or reduce the number of words displayed we can tune the value of max.words=. Here
we have limited the display to the 100 most frequent words.

set.seed(142)

wordcloud(names(freq), freq, max.words=100)
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13.2 Reducing Clutter With Min Freq
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A more common approach to increase or reduce the number of words displayed is by tuning the
value of min.freq=. Here we have limited the display to those words that occur at least 100
times.

set.seed(142)

wordcloud(names(freq), freq, min.freq=100)
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13.3 Adding Some Colour

la
rg

evalu

import
random

like

section

un
de

rs
ta

nd

includ
subset

method
individu

perform

combin

stepevent work
attribut selectform

averag
year

effect

univers

cl
as

s

link

repres

call

reaction

su
pp

or
tfunction

baseuser
explorvariabl

measur
rank

inform
tabl

st
at

is
t

st
ud

i

analysi area

distanc
tool

level

outlier

servic

experi

tim
e

data

search

co
st

william

subspac

patientshow

implement

make

similar

databas

consist

record

lead unexpect

ex
is

t

propos

utar

angioedematempor

pattern
stage

intellig

figur
distribut

condit

result

discuss
accuraci

drug

australia

identifi

do
m

ai
n

appli

hospit

general
mani

number

pe
rio

d

paper

case

featur
build

process

describ

hot

technolog

sequenc
ratio

insur

day

well

given

kdd
use

rnn

order

within

node

target

applic

two

chang

discov

error

total

transact

sm
al

l

graham

acsi

fig

need

expect

of
te

n

learn

multipl

structur

interest

current

claim

new

de
te

ct

journal
observ

report

allow

size
one

adr

provid

approach
high

can

find

classif

window

weight

model
compar

neural

differ

mine

requir

threeaustralian

particular

vectorsourc

health
singl

indic
entiti

system

valu
common

advers

pmml

occur

cluster

exampl

state

increas

howev

ra
ttl

task

hybrid
usual

network

defin

mean

regress

unit

dataset

rule

visual
relat

algorithm

follow

page

intern

http

type

point

ex
pe

rt
proceed

effici

machin

open

avail

collect

object

csiro

discoveritrain

generat

scienc

m
ap

consid

confer

may

tree

packag

refer

sampl

will

group

forest

popul

also

polici

comput

interesting

firstop
er

episod

associ

problem

medic

decis

se
t

interv

signific

predict

classifi

research

contain

knowledg

risk

present

develop
care

nugget

techniqu

estim

test

age

spot

We can also add some colour to the display. Here we make use of brewer.pal() from RColor-
Brewer (Neuwirth, 2014) to generate a palette of colours to use.

set.seed(142)

wordcloud(names(freq), freq, min.freq=100, colors=brewer.pal(6, "Dark2"))
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13.4 Varying the Scaling
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We can change the range of font sizes used in the plot using the scale= option. By default the
most frequent words have a scale of 4 and the least have a scale of 0.5. Here we illustrate the
effect of increasing the scale range.

set.seed(142)

wordcloud(names(freq), freq, min.freq=100, scale=c(5, .1), colors=brewer.pal(6, "Dark2"))
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13.5 Rotating Words
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We can change the proportion of words that are rotated by 90 degrees from the default 10% to,
say, 20% using rot.per=0.2.

set.seed(142)

dark2 <- brewer.pal(6, "Dark2")

wordcloud(names(freq), freq, min.freq=100, rot.per=0.2, colors=dark2)
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14 Quantitative Analysis of Text

The qdap (Rinker, 2015) package provides an extensive suite of functions to support the quanti-
tative analysis of text.

We can obtain simple summaries of a list of words, and to do so we will illustrate with the
terms from our Term Document Matrix tdm. We first extract the shorter terms from each of our
documents into one long word list. To do so we convert tdm into a matrix, extract the column
names (the terms) and retain those shorter than 20 characters.

words <- dtm %>%

as.matrix %>%

colnames %>%

(function(x) x[nchar(x) < 20])

We can then summarise the word list. Notice, in particular, the use of dist tab() from qdap to
generate frequencies and percentages.

length(words)

## [1] 6456

head(words, 15)

## [1] "aaai" "aab" "aad" "aadrbhtm" "aadrbltn"

## [6] "aadrhtmliv" "aai" "aam" "aba" "abbrev"

## [11] "abbrevi" "abc" "abcd" "abdul" "abel"

summary(nchar(words))

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 3.000 5.000 6.000 6.644 8.000 19.000

table(nchar(words))

##

## 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

## 579 867 1044 1114 935 651 397 268 200 138 79 63 34 28 22

## 18 19

## 21 16

dist_tab(nchar(words))

## interval freq cum.freq percent cum.percent

## 1 3 579 579 8.97 8.97

## 2 4 867 1446 13.43 22.40

## 3 5 1044 2490 16.17 38.57

## 4 6 1114 3604 17.26 55.82

## 5 7 935 4539 14.48 70.31

## 6 8 651 5190 10.08 80.39

## 7 9 397 5587 6.15 86.54

## 8 10 268 5855 4.15 90.69

## 9 11 200 6055 3.10 93.79

## 10 12 138 6193 2.14 95.93

....
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14.1 Word Length Counts
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A simple plot is then effective in showing the distribution of the word lengths. Here we create a
single column data frame that is passed on to ggplot() to generate a histogram, with a vertical
line to show the mean length of words.

data.frame(nletters=nchar(words)) %>%

ggplot(aes(x=nletters)) +

geom_histogram(binwidth=1) +

geom_vline(xintercept=mean(nchar(words)),

colour="green", size=1, alpha=.5) +

labs(x="Number of Letters", y="Number of Words")
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14.2 Letter Frequency
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Next we want to review the frequency of letters across all of the words in the discourse. Some
data preparation will transform the vector of words into a list of letters, which we then construct
a frequency count for, and pass this on to be plotted.

We again use a pipeline to string together the operations on the data. Starting from the vec-
tor of words stored in word we split the words into characters using str split() from stringr
(Wickham, 2015), removing the first string (an empty string) from each of the results (using
sapply()). Reducing the result into a simple vector, using unlist(), we then generate a data
frame recording the letter frequencies, using dist tab() from qdap. We can then plot the letter
proportions.

library(dplyr)

library(stringr)

words %>%

str_split("") %>%

sapply(function(x) x[-1]) %>%

unlist %>%

dist_tab %>%

mutate(Letter=factor(toupper(interval),

levels=toupper(interval[order(freq)]))) %>%

ggplot(aes(Letter, weight=percent)) +

geom_bar() +

coord_flip() +

labs(y="Proportion") +

scale_y_continuous(breaks=seq(0, 12, 2),

label=function(x) paste0(x, "%"),
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expand=c(0,0), limits=c(0,12))
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14.3 Letter and Position Heatmap
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The qheat() function from qdap provides an effective visualisation of tabular data. Here we
transform the list of words into a position count of each letter, and constructing a table of the
proportions that is passed on to qheat() to do the plotting.

words %>%

lapply(function(x) sapply(letters, gregexpr, x, fixed=TRUE)) %>%

unlist %>%

(function(x) x[x!=-1]) %>%

(function(x) setNames(x, gsub("\\d", "", names(x)))) %>%

(function(x) apply(table(data.frame(letter=toupper(names(x)),

position=unname(x))),

1, function(y) y/length(x))) %>%

qheat(high="green", low="yellow", by.column=NULL,

values=TRUE, digits=3, plot=FALSE) +

labs(y="Letter", x="Position") +

theme(axis.text.x=element_text(angle=0)) +

guides(fill=guide_legend(title="Proportion"))
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14.4 Miscellaneous Functions

We can generate gender from a name list, using the genderdata (?) package

devtools::install_github("lmullen/gender-data-pkg")

name2sex(qcv(graham, frank, leslie, james, jacqui, jack, kerry, kerrie))

## The genderdata package needs to be installed.

## Error in install genderdata package(): Failed to install the genderdata package.

## Please try installing the package for yourself using the following command:

## install.packages("genderdata", repos = "http://packages.ropensci.org", type

= "source")
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15 Word Distances

Continuous bag of words (CBOW). Word2Vec associates each word in a vocabulary with a unique
vector of real numbers of length d. Words that have a similar syntactic context appear closer
together within the vector space. The syntactic context is based on a set of words within a
specific window size.

install.packages("tmcn.word2vec", repos="http://R-Forge.R-project.org")

## Installing package into ’/home/gjw/R/x86 64-pc-linux-gnu-library/3.2’

## (as ’lib’ is unspecified)

##

## The downloaded source packages are in

## '/tmp/Rtmpt1u3GR/downloaded_packages'

library(tmcn.word2vec)

model <- word2vec(system.file("examples", "rfaq.txt", package = "tmcn.word2vec"))

## The model was generated in '/home/gjw/R/x86_64-pc-linux-gnu-library/3.2/tm...

distance(model$model_file, "the")

## Word CosDist

## 1 a 0.8694174

## 2 is 0.8063422

## 3 and 0.7908007

## 4 an 0.7738196

## 5 please 0.7595193

....
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16 Review—Preparing the Corpus

Here in one sequence is collected the code to perform a text mining project. Notice that we would
not necessarily do all of these steps so pick and choose as is appropriate to your situation.

# Required packages

library(tm)

library(wordcloud)

# Locate and load the Corpus.

cname <- file.path(".", "corpus", "txt")

docs <- Corpus(DirSource(cname))

docs

summary(docs)

inspect(docs[1])

# Transforms

toSpace <- content_transformer(function(x, pattern) gsub(pattern, " ", x))

docs <- tm_map(docs, toSpace, "/|@|\\|")

docs <- tm_map(docs, content_transformer(tolower))

docs <- tm_map(docs, removeNumbers)

docs <- tm_map(docs, removePunctuation)

docs <- tm_map(docs, removeWords, stopwords("english"))

docs <- tm_map(docs, removeWords, c("own", "stop", "words"))

docs <- tm_map(docs, stripWhitespace)

toString <- content_transformer(function(x, from, to) gsub(from, to, x))

docs <- tm_map(docs, toString, "specific transform", "ST")

docs <- tm_map(docs, toString, "other specific transform", "OST")

docs <- tm_map(docs, stemDocument)
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17 Review—Analysing the Corpus

# Document term matrix.

dtm <- DocumentTermMatrix(docs)

inspect(dtm[1:5, 1000:1005])

# Explore the corpus.

findFreqTerms(dtm, lowfreq=100)

findAssocs(dtm, "data", corlimit=0.6)

freq <- sort(colSums(as.matrix(dtm)), decreasing=TRUE)

wf <- data.frame(word=names(freq), freq=freq)

library(ggplot2)

p <- ggplot(subset(wf, freq>500), aes(word, freq))

p <- p + geom_bar(stat="identity")

p <- p + theme(axis.text.x=element_text(angle=45, hjust=1))

# Generate a word cloud

library(wordcloud)

wordcloud(names(freq), freq, min.freq=100, colors=brewer.pal(6, "Dark2"))
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18 LDA

Topic Models such as Latent Dirichlet Allocation has been popular for text mining in last 15
years. Applied with varying degrees of success. Text is fed into LDA to extract the topics
underlying the text document. Examples are the AP corpus and the Science Corpus 1880-2002
(Blei and Lafferty 2009). PERHAPS USEFUL IN BOOK?

When is LDA applicable - it will fail on some data and need to choose number of topics to
find and how many documents are needed. HOw do we know the topics learned are correct
topics.

Two fundemental papers - independelty discovered: Blei, Ng, Jordan - NIPS 2001 with 11k
citations. Other paper is Pritchard, Stephens, and Donnelly in Genetics June 200 14K citations
- models are exactly the same except for minor differences: except topics versus population
structures.

No theoretic analysis as such. How to guarantee correct topics and how efficient is the learning
procedure?

Observations:

LDA won’t work on many short tweets or very few long documents.

We should not liberally over-fit the LDA with too many redundant topics...

Limiting factors:

We should use as many documents as we can and short documents less than 10 words won’t
work even if there are many of them. Need sufficiently long documents.

Small Dirichlet paramenter helps especially if we overfit. See Long Nguen’s keynote at PAKDD
2015 in Vietnam.

number of documents the most important factor

document length plays a useful role too

avoid overfitting as you get too many topics and don’t really learn anything as the humn needs
to cull the topics.

New work detects new topics as they emerge.

library(lda)

## Error in library(lda): there is no package called ’lda’

# From demo(lda)

library("ggplot2")

library("reshape2")

data(cora.documents)

## Warning in data(cora.documents): data set ’cora.documents’ not found

data(cora.vocab)

## Warning in data(cora.vocab): data set ’cora.vocab’ not found
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theme_set(theme_bw())

set.seed(8675309)

K <- 10 ## Num clusters

result <- lda.collapsed.gibbs.sampler(cora.documents,

K, ## Num clusters

cora.vocab,

25, ## Num iterations

0.1,

0.1,

compute.log.likelihood=TRUE)

## Error in eval(expr, envir, enclos): could not find function "lda.collapsed.gibbs.sampler"

## Get the top words in the cluster

top.words <- top.topic.words(result$topics, 5, by.score=TRUE)

## Error in eval(expr, envir, enclos): could not find function "top.topic.words"

## Number of documents to display

N <- 10

topic.proportions <- t(result$document_sums) / colSums(result$document_sums)

## Error in t(result$document sums): object ’result’ not found

topic.proportions <-

topic.proportions[sample(1:dim(topic.proportions)[1], N),]

## Error in eval(expr, envir, enclos): object ’topic.proportions’ not found

topic.proportions[is.na(topic.proportions)] <- 1 / K

## Error in topic.proportions[is.na(topic.proportions)] <- 1/K: object ’topic.proportions’

not found

colnames(topic.proportions) <- apply(top.words, 2, paste, collapse=" ")

## Error in apply(top.words, 2, paste, collapse = " "): object ’top.words’ not found

topic.proportions.df <- melt(cbind(data.frame(topic.proportions),

document=factor(1:N)),

variable.name="topic",

id.vars = "document")

## Error in data.frame(topic.proportions): object ’topic.proportions’ not found

ggplot(topic.proportions.df, aes(x=topic, y=value, fill=topic)) +

geom_bar(stat="identity") +

theme(axis.text.x = element_text(angle=45, hjust=1, size=7),

legend.position="none") +

coord_flip() +

facet_wrap(~ document, ncol=5)

## Error in ggplot(topic.proportions.df, aes(x = topic, y = value, fill = topic)):

object ’topic.proportions.df’ not found
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19 Further Reading and Acknowledgements

The Rattle Book, published by Springer, provides a comprehensive
introduction to data mining and analytics using Rattle and R.
It is available from Amazon. Other documentation on a broader
selection of R topics of relevance to the data scientist is freely
available from http://datamining.togaware.com, including the
Datamining Desktop Survival Guide.

This chapter is one of many chapters available from http://

HandsOnDataScience.com. In particular follow the links on the
website with a * which indicates the generally more developed chap-
ters.

Other resources include:

� The Journal of Statistical Software article, Text Mining Infrastructure in R is a good start
http://www.jstatsoft.org/v25/i05/paper

� Bilisoly (2008) presents methods and algorithms for text mining using Perl.

Thanks also to Tony Nolan for suggestions of some of the examples used in this chapter.

Some of the qdap examples were motivated by http://trinkerrstuff.wordpress.com/2014/

10/31/exploration-of-letter-make-up-of-english-words/.
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