

Table of contents (1 of 1)

< □ > < @ > < E > < E > E の Q @ 2/16

What are we going to cover?

- Look at the basic ideas behind R's formula object
- Look at how sample R formulae can be represented using traditional mathematical notation
- Use an attached program to create linear regression error terms and how they can be displayed

< □ > < @ > < E > < E > E の Q @ 3/16

"When discussing models, the term linear does not mean a straight-line. Instead, a linear model contains additive terms, each containing a single multiplicative parameter; thus, the equations

$$y = \beta_0 + \beta_1 x$$

$$y = \beta_0 + \beta_1 x^1 + \beta_2 x^2$$

$$y = \beta_0 + \beta_1 x^2$$

$$y = \beta_0 + \beta_1 x^1 + \beta_2 \log(x^2)$$

are linear models. The equation $y = \alpha x^{\beta}$, however, is not a linear model."¹

¹Author unknown, see attached file.

Intro.	Basics 0●0	Examples 00000	Hands-on	Q & A	Conclusion	References	Files
Details							

A little "magic" to confuse things

"The definition of a linear model is an equation that contains mathematical variables, parameters and random variables and that is linear in the parameters and in the random variables. What this means is that if a, b and c are parameters then obviously

y = a + bxis a linear model, but so is $y = a + bx - cx^2$ because x^2 can be replaced by z which gives a linear relationship y = a + bx - czand so is $y = a + b \exp(x)$

because we can create a new variable $z = \exp(x)$, so that

y = a + bz

Some models are non-linear but can be readily linearized by transformation. For example:

 $y = \exp(a + bx)$ is non-linear, but on taking logs of both sides, it becomes $\ln(y) = a + bx''$

Basic operators and ideas

R uses the idea of a formula object to guide and direct modeling scripts. Formula notation and operators have different meanings than mathematical operators.[1]

Operator	Meaning
~	"is modeled as a function of"
+	separate explanatory terms (not addition)
:	separate variable and factor names
*	indicates inclusion of explanatory variables and interactions (not multiplication)
^	crossing to the specified degree
%in%	terms on the left are nested in those on the right
-	removes specified terms (not subtraction)
func	mathematical functions can be used on response or explanatory variables
I()	identify portions of formula to be used in their mathematical sense
	use all columns not otherwise in the formula
/	indicates nesting of explanatory variables in the model
Ì	indicates conditioning (not 'or'), so that $y^{\tilde{x}} \mid z$ is read as "y as a function of x given
	z"

response variable ~explanatory variable(s)

Intro.	Basics 000	Examples •0000	Hands-on	Q & A	Conclusion	References	Files
Lots and lo	ts of examples						

Lots of examples (1 of 5)[1]

Model	Syntax	Math.	Comments.
Null	y ~1	_	1 is the intercept in regression models, but here it is the overall mean y
Regression	y ~x	$y = \beta_0 + \beta_1 x$	<i>x</i> is a continuous explanatory variable
Regression through origin	<i>y</i> [∼] <i>x</i> − 1	$y = \beta_1 x$	Do not fit an intercept
One-way ANOVA	y ~sex	-	sex is a two-level categorical variable
One-way ANOVA	<i>y</i> ~ <i>sex</i> − 1	-	as above, but do not fit an in- tercept (gives two means rather than a mean and a difference)

Intro.	Basics 000	Examples 0●000	Hands-on	Q & A	Conclusion	References	Files
Lots and lo	ots of examples						

Lots of examples (2 of 5)[1]

Model	Syntax	Math.	Comments.
Two-way	y ~sex + genotype	-	genotype is a four-level categor-
ANOVA			ical variable
Factorial	y ~N * P * K	-	N, P and K are two-level factors
ANOVA			to be fitted along with all their
			interactions
Three-way	y ~N ∗ P ∗ K − N :	-	As above, but dont fit the three-
ANOVA	P : K		way interaction
Analysis of	$y \ x + sex$	-	A common slope for y against x
covariance			but with two intercepts, one for
			each sex
Nested	y ~a/b/c	-	Factor c nested within factor b
ANOVA			within factor a

Intro.	Basics 000	Examples 00●00	Hands-on	Q & A	Conclusion	References	Files
Lots and le	ots of examples						

Lots of examples (3 of 5)[1]

Model	Syntax	Math.	Comments.
Split-plot	y ~a * b * c +	-	A factorial experiment but with
ANOVA	Error(a/b/c)		three plot sizes and three differ-
			ent error variances, one for each plot size
Multiple re-	$y \tilde{x} + z$	-	Two continuous explanatory
gression			variables, flat surface fit
Multiple re-	<i>y ~ x * z</i>	-	Fit an interaction term as well
gression			(x + z + x:z)
Multiple re-	$y \tilde{x} + I(x^2) + z + I(z^2)$	-	Fit a quadratic term for both x
gression			and z

Intro.	Basics 000	Examples 000●0	Hands-on	Q & A	Conclusion	References	Files
Lots and lo	ots of examples						

Lots of examples (4 of 5)[1]

Model	Syntax	Math.	Comments.
Multiple re-	$y \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	-	Fit a quadratic polynomial for x
gression			and linear z
Multiple re-	$y (x + z + w)^2$	-	Fit three variables plus all their
gression			interactions up to two-way
Non-	$y \ \tilde{s}(x) + s(z)$	-	y is a function of smoothed \boldsymbol{x}
parametric			and z in a generalized additive
model			model
Transformed	$log(y) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	-	All three variables are trans-
response			formed in the model
and ex-			
planatory			
variables			

Intro.	Basics 000	Examples 0000●	Hands-on	Q & A	Conclusion	References	Files
Lots and lo	ts of examples						
	_		<i>(</i> -)				

Lots of examples (5 of 5)[1]

Model	Syntax	Math.	Comments.
Polynomial	$y x + I(x^2)$	$y = \beta_0 + \beta_1 x +$	Polynomial model; note that the
		$\beta_2 x^2$	identity function I() allows terms
			in the model to include normal
			mathematical symbols
First order	y x + z	$y = \beta_0 + \beta_1 x +$	A first-order model in x and z
		$\beta_2 z$	without interaction terms.
First order	<i>y</i> ~ <i>x</i> : <i>z</i>	$y = \beta_0 + \beta_1 xz$	A model containing only first-
with inter-			order interactions between x and
action			Ζ.
First order	<i>y ~ x * z</i>	$y = \beta_0 + \beta_1 x +$	A full first-order model with a
with term		$\beta_2 z + \beta_3 x z$	term; an equivalent code is y ~x
			+ z + x:z.
All first or-	$y ~(A+B+C)^2$	$y = \beta_0 + \beta_1 A +$	A model including all first-order
der		$\beta_2 B + \beta_3 C +$	effects and interactions up to
		$\beta_4 AB + \beta_5 AC +$	the nth order, where n is given
		$\beta_6 BC$	by $()^n$. An equivalent code in
			this case is $y \ ^{\sim}A * B * CA : B : C$.

Load and execute the attached script

Load the execute the attached file.

Each plot uses different error types, and shows:

- The raw and fitted data
- Comments about the residual values
- Interpretations about the qqplot

Attached file.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Q & A time.

"A human being should be able to change a diaper, plan an invasion, butcher a hog, conn a ship, design a building, write a sonnet, balance accounts, build a wall, set a bone, comfort the dying, take orders, give orders, cooperate, act alone, solve equations, analyze a new problem, pitch manure, program a computer, cook a tasty meal, fight efficiently, die gallantly. Specialization is for insects." **Robert Heinlein, Time Enough** for Love

< □ > < 母 > < 臣 > < 臣 > 臣 > ○ Q @ 13/16

What have we covered?

- Reviewed R's formula notation and how it differs from traditional mathematical notation
- Looked at how sample R formulae expand into traditional mathematical notation
- Looked at how different error terms can be displayed and detected

<ロト < 母 ト < 臣 ト < 臣 ト 三 の へ C 14/16

[1] Michael J. Crawley, The R Book, John Wiley & Sons, 2012.

<ロト < 回 > < 三 > < 三 > < 三 > の へ ? 15/16

