
1/16

Intro. Basics Examples Hands-on Q & A Conclusion References Files

Big Data: Data Analysis Boot Camp
Formulae Notation

Chuck Cartledge, PhDChuck Cartledge, PhDChuck Cartledge, PhDChuck Cartledge, PhDChuck Cartledge, PhDChuck Cartledge, PhDChuck Cartledge, PhDChuck Cartledge, PhDChuck Cartledge, PhDChuck Cartledge, PhDChuck Cartledge, PhDChuck Cartledge, PhDChuck Cartledge, PhDChuck Cartledge, PhDChuck Cartledge, PhDChuck Cartledge, PhDChuck Cartledge, PhDChuck Cartledge, PhDChuck Cartledge, PhDChuck Cartledge, PhDChuck Cartledge, PhD

19 January 201819 January 201819 January 201819 January 201819 January 201819 January 201819 January 201819 January 201819 January 201819 January 201819 January 201819 January 201819 January 201819 January 201819 January 201819 January 201819 January 201819 January 201819 January 201819 January 201819 January 2018



2/16

Intro. Basics Examples Hands-on Q & A Conclusion References Files

Table of contents (1 of 1)

1 Intro.
2 Basics

Details
3 Examples

Lots and lots of examples
4 Hands-on
5 Q & A

6 Conclusion

7 References

8 Files



3/16

Intro. Basics Examples Hands-on Q & A Conclusion References Files

What are we going to cover?

1 Look at the basic ideas behind R’s
formula object

2 Look at how sample R formulae
can be represented using
traditional mathematical notation

3 Use an attached program to create
linear regression error terms and
how they can be displayed



4/16

Intro. Basics Examples Hands-on Q & A Conclusion References Files

Details

Basic idea

“When discussing models, the term linear does not mean a
straight-line. Instead, a linear model contains additive terms, each
containing a single multiplicative parameter; thus, the equations

y = β0 + β1x

y = β0 + β1x
1 + β2x

2

y = β0 + β1x
2

y = β0 + β1x
1 + β2 log(x2)

are linear models. The equation y = αxβ, however, is not a linear
model.”1

1Author unknown, see attached file.



5/16

Intro. Basics Examples Hands-on Q & A Conclusion References Files

Details

A little “magic” to confuse things

“The definition of a linear model is an equation that contains
mathematical variables, parameters and random variables and that
is linear in the parameters and in the random variables. What this
means is that if a, b and c are parameters then obviously

y = a + bx
is a linear model, but so is

y = a + bx − cx2

because x2 can be replaced by z which gives a linear relationship
y = a + bx − cz

and so is
y = a + b exp(x)

because we can create a new variable z = exp(x), so that
y = a + bz

Some models are non-linear but can be readily linearized by
transformation. For example:

y = exp(a + bx)
is non-linear, but on taking logs of both sides, it becomes

ln(y) = a + bx”

M. Crawley [1]



6/16

Intro. Basics Examples Hands-on Q & A Conclusion References Files

Details

Basic operators and ideas

R uses the idea of a formula object to guide and direct modeling
scripts. Formula notation and operators have different meanings
than mathematical operators.[1]

response variable ˜explanatory variable(s)
Operator Meaning

˜ “is modeled as a function of”
+ separate explanatory terms (not addition)
: separate variable and factor names
* indicates inclusion of explanatory variables and interactions (not multiplication)
ˆ crossing to the specified degree

%in% terms on the left are nested in those on the right
- removes specified terms (not subtraction)

func mathematical functions can be used on response or explanatory variables
I() identify portions of formula to be used in their mathematical sense
. use all columns not otherwise in the formula
/ indicates nesting of explanatory variables in the model
| indicates conditioning (not ’or’), so that y˜x | z is read as “y as a function of x given

z”



7/16

Intro. Basics Examples Hands-on Q & A Conclusion References Files

Lots and lots of examples

Lots of examples (1 of 5)[1]

Model Syntax Math. Comments.
Null y ˜1 – 1 is the intercept in regression

models, but here it is the overall
mean y

Regression y ˜x y = β0 + β1x x is a continuous explanatory
variable

Regression
through
origin

y ˜x − 1 y = β1x Do not fit an intercept

One-way
ANOVA

y ˜sex – sex is a two-level categorical
variable

One-way
ANOVA

y ˜sex − 1 – as above, but do not fit an in-
tercept (gives two means rather
than a mean and a difference)



8/16

Intro. Basics Examples Hands-on Q & A Conclusion References Files

Lots and lots of examples

Lots of examples (2 of 5)[1]

Model Syntax Math. Comments.
Two-way
ANOVA

y ˜sex + genotype – genotype is a four-level categor-
ical variable

Factorial
ANOVA

y ˜N ∗ P ∗ K – N, P and K are two-level factors
to be fitted along with all their
interactions

Three-way
ANOVA

y ˜N ∗ P ∗ K − N :
P : K

– As above, but dont fit the three-
way interaction

Analysis of
covariance

y ˜x + sex – A common slope for y against x
but with two intercepts, one for
each sex

Nested
ANOVA

y ˜a/b/c – Factor c nested within factor b
within factor a



9/16

Intro. Basics Examples Hands-on Q & A Conclusion References Files

Lots and lots of examples

Lots of examples (3 of 5)[1]

Model Syntax Math. Comments.
Split-plot
ANOVA

y ˜a ∗ b ∗ c +
Error(a/b/c)

– A factorial experiment but with
three plot sizes and three differ-
ent error variances, one for each
plot size

Multiple re-
gression

y ˜x + z – Two continuous explanatory
variables, flat surface fit

Multiple re-
gression

y ˜x ∗ z – Fit an interaction term as well
(x + z + x:z)

Multiple re-
gression

y ˜x+I(x2) + z+I(z2) – Fit a quadratic term for both x
and z



10/16

Intro. Basics Examples Hands-on Q & A Conclusion References Files

Lots and lots of examples

Lots of examples (4 of 5)[1]

Model Syntax Math. Comments.
Multiple re-
gression

y ˜poly(x , 2) + z – Fit a quadratic polynomial for x
and linear z

Multiple re-
gression

y ˜(x + z + w)2 – Fit three variables plus all their
interactions up to two-way

Non-
parametric
model

y ˜s(x) + s(z) – y is a function of smoothed x
and z in a generalized additive
model

Transformed
response
and ex-
planatory
variables

log(y) ˜I(1/x) + sqrt(z) – All three variables are trans-
formed in the model



11/16

Intro. Basics Examples Hands-on Q & A Conclusion References Files

Lots and lots of examples

Lots of examples (5 of 5)[1]

Model Syntax Math. Comments.
Polynomial y ˜x+I(x2) y = β0 + β1x +

β2x
2

Polynomial model; note that the
identity function I() allows terms
in the model to include normal
mathematical symbols

First order y ˜x + z y = β0 + β1x +
β2z

A first-order model in x and z
without interaction terms.

First order
with inter-
action

y ˜x : z y = β0 + β1xz A model containing only first-
order interactions between x and
z.

First order
with term

y ˜x ∗ z y = β0 + β1x +
β2z + β3xz

A full first-order model with a
term; an equivalent code is y ˜x
+ z + x:z.

All first or-
der

y ˜(A + B + C)2 y = β0 + β1A +
β2B + β3C +
β4AB +β5AC +
β6BC

A model including all first-order
effects and interactions up to
the nth order, where n is given
by ()n. An equivalent code in
this case is y ˜A∗B∗CA : B : C .



12/16

Intro. Basics Examples Hands-on Q & A Conclusion References Files

Load and execute the attached script

Load the execute the attached
file.
Each plot uses different error
types, and shows:

The raw and fitted data

Comments about the
residual values

Interpretations about the
qqplot

Attached file.



13/16

Intro. Basics Examples Hands-on Q & A Conclusion References Files

Q & A time.

“A human being should be able
to change a diaper, plan an
invasion, butcher a hog, conn a
ship, design a building, write a
sonnet, balance accounts, build a
wall, set a bone, comfort the
dying, take orders, give orders,
cooperate, act alone, solve
equations, analyze a new
problem, pitch manure, program
a computer, cook a tasty meal,
fight efficiently, die gallantly.
Specialization is for insects.”
Robert Heinlein, Time Enough
for Love



14/16

Intro. Basics Examples Hands-on Q & A Conclusion References Files

What have we covered?

Reviewed R’s formula notation and
how it differs from traditional
mathematical notation
Looked at how sample R formulae
expand into traditional
mathematical notation
Looked at how different error terms
can be displayed and detected



15/16

Intro. Basics Examples Hands-on Q & A Conclusion References Files

References (1 of 1)

[1] Michael J. Crawley, The R Book, John Wiley & Sons, 2012.



16/16

Intro. Basics Examples Hands-on Q & A Conclusion References Files

Files of interest

1 Modeling different

errors

2 Using R for Linear

Regression


rm(list=ls())

library(MASS)

## The R Book, page 341

mcheck <-function (obj, ...)
{
    optionals <- list(...)

    rs<-obj$resid
    fv<-obj$fitted
    par(mfrow=c(2,2))
    myColors <- c("red", "black")
    myPch <- c(1, 2)
    plot(optionals$error, main=optionals$title, pch=myPch[1], ylab="Error to be added")
    plot(fv, ylim=c(min(optionals$x, fv), max(optionals$x, fv)), type="b", col=myColors[1], main=optionals$title, pch=myPch[1])
    points(optionals$yn, col=myColors[2], pch=myPch[2])
    legend("topleft", legend=c("Fitted data", "Raw data"), col=myColors, pch=myPch, cex=1.5)

    plot(fv,rs,xlab="Fitted values",ylab="Residuals", main=optionals$title)
    abline(h=0, lty=2)
    text(min(fv), 0.8*max(rs), pos=4, label=optionals$residualComments, cex=1.5)
    qqnorm(rs,xlab="Normal scores",ylab="Ordered residuals", main=optionals$title)
    qqline(rs,lty=2)
    text(-2, 0.9*max(rs), pos=4, label=optionals$qqComments, cex=1.5)
    par(mfrow=c(1,1))
    invisible(NULL)
}

getErrors <- function(type, ...)
{
    optionals <- list(...)

    errors <- NULL
    residualComments <- NULL
    qqComments <- NULL

    switch(type,
           "Normal" = {
               errors <- rnorm(length(optionals$x), mean=0, sd=5)
               residualComments <- "There is no suggestion of non-constant variance."
               qqComments <- "The normal plot is reasonably straight."
           },
           "Uniform" = {
               errors <-20*(runif(length(optionals$x))-0.5)
               residualComments <- "The fit in the center is fine, but the largest\nand smallest residuals are too extreme."
               qqComments <- "Uniform errors show up as a distinctly\nS-shaped pattern in the QQ plot."
           },
           "Negative binomial" = {
               errors <-rnbinom(length(optionals$x),2,.3)
               residualComments <- "The large negative residuals are all above the line,\nbut the most obvious feature of the plot is the single,\nvery large positive residual."
               qqComments <- "In general, negative binomial errors\nwill produce a J-shape on the QQ plot."
           },
           "Gamma" = {
               errors <-rgamma(length(optionals$x),1,1/optionals$x)
               residualComments <- "The residuals increasing steeply with the fitted values,\nand illustrates an asymmetry between the size of the\npositive and negative residuals."
               qqComments <- "The plot shows the highly non-normal\ndistribution of errors."
           }
           )

    returnValue <- list("errors" = errors,
                        "residualComments" = residualComments,
                        "qqComments" = qqComments)

    returnValue
}


main <- function()
{
    on.exit(
    {
        print("The program has ended.")
    }
    )

    set.seed(123)

    x <- 0:30

    errorTypes <- c("Normal",
                    "Uniform",
                    "Negative binomial",
                    "Gamma"
                    )
    for (type in errorTypes)
    {
        if (type != errorTypes[1])
        {
            readline(sprintf("Press Enter for error type: %s", type))
        }
        data <- getErrors(type, x = x)
        e <- data$errors
        yn <- 10+x+e
        mn <-lm(yn ~ x)
        mcheck(mn,
               x = x,
               title=type,
               yn=yn,
               residualComments=data$residualComments,
               qqComments=data$qqComments,
               errors=e
               )
    }

}


main()


"Chuck Cartledge"




Using R for Linear Regression 
 
In the following handout words and symbols in bold are R functions and words and 
symbols in italics are entries supplied by the user; underlined words and symbols are 
optional entries (all current as of version R-2.4.1).  Sample texts from an R session are 
highlighted with gray shading.  
 
Suppose we prepare a calibration curve using four external standards and a reference, 
obtaining the data shown here: 
 
   > conc 
   [1] 0  10  20  30  40  50 
 
   > signal 
   [1]  4  22  44  60  82 
 
The expected model for the data is 
 


signal = βo + β1×conc 
 
where βo is the theoretical y-intercept and β1 is the theoretical slope.  The goal of a linear 
regression is to find the best estimates for βo and β1 by minimizing the residual error 
between the experimental and predicted signal.  The final model is 
 


signal =  bo + b1×conc + e 
 


where bo and b1 are the estimates for βo and β1 and e is the residual error. 
 
Defining Models in R 
 
To complete a linear regression using R it is first necessary to understand the syntax for 
defining models.  Let’s assume that the dependent variable being modeled is Y and that 
A, B and C are independent variables that might affect Y.  The general format for a 
linear1 model is 
 


response ~ op1  term1 op2  term 2  op3  term3…
 


                                                 
1  When discussing models, the term ‘linear’ does not mean a straight-line.  Instead, a linear model contains 


additive terms, each containing a single multiplicative parameter; thus, the equations 
 


y = β0 + β1x    y = β0 + β1x1 + β2x2   y = β0 + β11x2   y = β0 + β1x1 + β2log(x2) 
 


 are linear models.  The equation y = αxβ, however, is not a linear model. 
 







where term is an object or a sequence of objects and op is an operator, such as a + or a −, 
that indicates how the term that follows is to be included in the model.  The table below 
provides some useful examples.  Note that the mathematical symbols used to define 
models do not have their normal meanings! 
 


Syntax Model Comments 
Y ~ A Y = βo + β1A Straight-line with an implicit y-


intercept 
Y ~ -1 + A Y = β1A Straight-line with no y-intercept; 


that is, a fit forced through (0,0) 
Y ~ A + I(A^2) Y = βo+ β1A + β2A2 Polynomial model; note that the 


identity function I( ) allows terms 
in the model to include normal 
mathematical symbols.  


Y ~ A + B Y = βo+ β1A + β2B A first-order model in A and B 
without interaction terms. 


Y ~ A:B Y = βo + β1AB A model containing only first-order 
interactions between A and B. 


Y ~ A*B Y = βo+ β1A + β2B + β3AB A full first-order model with a term; 
an equivalent code is Y ~ A + B + 
A:B. 


Y ~ (A + B + C)^2 Y = βo+ β1A + β2B + β3C + 
β4AB + β5AC + β6AC 


A model including all first-order 
effects and interactions up to the nth 
order, where n is given by ( )^n.  
An equivalent code in this case is 
Y ~ A*B*C – A:B:C. 


 
Completing a Regression Analysis 
 
The basic syntax for a regression analysis in R is 
 


lm(Y ~ model) 
 
where Y is the object containing the dependent variable to be predicted and model is the 
formula for the chosen mathematical model.  The command lm( ) provides the model’s 
coefficients but no further statistical information; thus 
 
   > lm(signal ~ conc) 
 
   Call: 
   lm(formula = signal ~ conc) 
 
   Coefficients: 
   (Intercept)         conc   
      3.60            1.94 
 







To obtain more useful information, and to obtain access to many more useful functions 
for manipulating the data, it is best to create an object that contains the command for the 
model 
 
   > lm.r = lm(signal ~ conc) 
 
This object can then be used as an argument for other commands.  To obtain a more 
complete statistical summary of the model, for example, we use the summary( ) 
command. 
 
  > summary(lm.r) 
 
   Call: 
   lm(formula = signal ~ conc) 
 
   Residuals: 
      1        2     3      4      5  
     0.4  -1.0   1.6  -1.8    0.8  
 
   Coefficients: 
                  Estimate Std.  Error    t value    Pr(>|t|)     
     (Intercept)  3.60000    1.23288    2.92     0.0615 .   
     conc          1.94000     0.05033   38.54  3.84e-05 *** 
   --- 
   Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
   Residual standard error: 1.592 on 3 degrees of freedom 
   Multiple R-Squared: 0.998,      Adjusted R-squared: 0.9973  
   F-statistic:  1486 on 1 and 3 DF,  p-value: 3.842e-05 
 
The section of output labeled ‘Residuals’ gives the difference between the experimental 
and predicted signals.  Estimates for the model’s coefficients are provided along with the 
their standard deviations (‘Std Error’), and a t-value and probability for a null hypothesis 
that the coefficients have values of zero.  In this case, for example, we see that there is no 
evidence that the intercept  (βo) is different from zero and strong evidence that the slope 
(β1) is significantly different than zero.  At the bottom of the table we find the standard 
deviation about the regression (sr or residual standard error), the correlation coefficient 
and an F-test result on the null hypothesis that the MSreg/MSres is 1. 
 
Other useful commands are shown below: 
 
   > coef(lm.r)                              # gives the model’s coefficients 
 
   (Intercept)           conc  
     3.69           1.94 
 







   > resid(lm.r)                                # gives the residual errors in Y 
 
           1       2    3      4     5  
      0.4  -1.0  1.6  -1.8   0.8 
 
> fitted(lm.r)                                        # gives the predicted values for Y 
 
          1     2       3     4      5  
      3.6  23.0  42.4  61.8  81.2 
 
Evaluating the Results of a Linear Regression 
 
Before accepting the result of a linear regression it is important to evaluate it suitability at 
explaining the data.  One of the many ways to do this is to visually examine the residuals.  
If the model is appropriate, then the residual errors should be random and normally 
distributed.  In addition, removing one case should not significantly impact the model’s 
suitability.  R provides four graphical approaches for evaluating a model using the plot( ) 
command. 
 
   > layout(matrix(1:4,2,2)) 
   > plot(lm.r) 
 


 
 







The plot in the upper left shows the residual errors plotted versus their fitted values.  The 
residuals should be randomly distributed around the horizontal line representing a 
residual error of zero; that is, there should not be a distinct trend in the distribution of 
points.  The plot in the lower left is a standard Q-Q plot, which should suggest that the 
residual errors are normally distributed.  The scale-location plot in the upper right shows 
the square root of the standardized residuals (sort of a square root of relative error) as a 
function of the fitted values.  Again, there should be no obvious trend in this plot.  
Finally, the plot in the lower right shows each points leverage, which is a measure of its 
importance in determining the regression result.  Superimposed on the plot are contour 
lines for the Cook’s distance, which is another measure of the importance of each 
observation to the regression.  Smaller distances means that removing the observation has 
little affect on the regression results.  Distances larger than 1 are suspicious and suggest 
the presence of a possible outlier or a poor model. 
 
Sometimes a model has known values for one or more of its parameters.  For example, 
suppose we know that the true model relating the signal and concentration is 
 


signal = 3.00×conc 
 
Our regression model is 
 


signal = 3.60 + 1.94×conc 
 
We can use a standard t-test to evaluate the slope and intercept.  The confidence interval 
for each is 
 


βo = bo ± tsbo      β1 = b1 ± tsb1
 
where sbo and sb1 are the standard errors for the intercept and slope, respectively.  To 
determine if there is a significant difference between the expected (β) and calculated (b) 
values we calculate t and compare it to its standard value for the correct number of 
degrees of freedom, which in this case is 3 (see earlier summary). 
 
   > tb1 = abs((3.00 – 1.94)/0.05033); tb1               # calculate absolute value of t 
    
    [1] 21.06100 
 
   > pt(tb1, 3, lower.tail = FALSE)                     # calculate probability for t 
 
   [1] 0.0001170821                                # double this value for a two- 
                                                # tailed evaluation; difference  
                                               # is significant at p = 0.05 
 
   > tb0=abs((0-3.60)/1.23288);tb0                     # calculate absolute value of t 
 
   [1] 2.919992 







 
   > pt(tb0, 3, lower.tail = FALSE)                    # calculate probability for t 
 
   [1] 0.03074826                                  # double this value for a two- 
                                               # tailed evaluation; difference  
                                               # is not significant at p = 0.05 
 
Here we calculate the absolute value of t using the calculated values and standard errors 
from our earlier summary of results.  The command  
 


pt(value, degrees of freedom, lower.tail = FALSE) 
 
returns the one-tailed probability that there is no difference between the expected and 
calculated values.  In this example, we see that there is evidence that the calculated slope 
of 1.94 is significantly different than the expected value of 3.00.  The expected intercept 
of 0, however, is not significantly different than the calculated value of 3.60.  Note that 
the larger standard deviation for the intercept makes it more difficult to show that there is 
a significant difference between the experimental and theoretical values. 
 
Using the Results of a Regression to Make Predictions 
 
The purpose of a regression analysis, of course, is to develop a model that can be used to 
predict the results of future experiments.  In our example, for instance, the calibration 
equation 
 


signal = 3.60 + 1.94×conc 
 
Because there is uncertainty in both the calculated slope and intercept, there will be 
uncertainty in the calculated signals. 
 
Suppose we wish to predict the signal for concentrations of 0.05, 0.15, 0.25, 0.35 and 
0.45 along with the confidence interval for each  We can use the predict( ) command to 
do this; the syntax is 
 


predict(model, data.frame(pred = new pred), level = 0.95, interval = “confidence”) 
 
where pred is the object containing the original independent variables and new pred is the 
object containing the new values for which predictions are desired, and level is the 
desired confidence level. 
 
   > newconc=c(5,15,25,35,45);newconc 
 
    [1] 5  15  25  35  45 
 
   > predict(lm.result,data.frame(conc = newconc), level = 0.9, interval = "confidence") 
 







         fit         lwr          upr 
   1 13.3   10.85809   15.74191 
   2 32.7   30.92325   34.47675 
   3 52.1   50.32325   53.87675 
   4 71.5   69.05809   73.94191 
   5 90.9   87.49778   94.30222 
 
where ‘lwr’ is the lower limit of the confidence interval and ‘upr’ is the upper limit of the 
confidence interval.  R does not contain a feature for finding the confidence intervals for 
predicted values of the independent variable for specified values of dependent variables, 
a common desire in chemistry.  Too bad. 
 
Adding Regression Lines to Plots 
 
For straight-lines this is easy to accomplish. 
 
   > plot(conc, signal) 
   > abline(lm.r) 
 
gives the following plot. 
 
 


 
 
 
For data that does not follow a straight-line we must be more creative. 







 
   > height = c(100, 200, 300, 450, 600, 800, 1000) 
   > distance = c(253, 337, 395, 451, 495, 534, 574)              # data from Galileo 
 
   > lm.r = lm(distance ~ height + I(height^2)); lm.r              # a quadratic model 
 
   Call: 
   lm(formula = distance ~ height + I(height^2)) 
 
   Coefficients: 
   (Intercept)          height    I(height^2)   
    200.211950     0.706182    -0.000341   
 
   > newh = seq(100, 1000, 10); newh                         # create heights for  
                                                       # predictions 
 
    [1]  100  110  120  130  140  150  160  170  180  190  200 
   [12]  210  220  230  240  250  260  270  280  290  300  310 
   [23]  320  330  340  350  360  370  380  390  400  410  420 
   [34]  430  440  450  460  470  480  490  500  510  520  530 
   [45]  540  550  560  570  580  590  600  610  620  630  640 
   [56]  650  660  670  680  690  700  710  720  730  740  750 
   [67]  760  770  780  790  800  810  820  830  840  850  860 
   [78]  870  880  890  900  910  920  930  940  950  960  970 
   [89]  980  990 1000 
 
   > fit = 200.211950 + 0.706182*newh - 0.000341*newh^2;fit    # calculate distance     
                                                       # for new heights  
                                                       # using model 
 
    [1] 267.4201 273.7659 280.0434 286.2527 292.3938 298.4667 304.4715 310.4080 
    [9] 316.2763 322.0764 327.8084 333.4721 339.0676 344.5949 350.0540 355.4450 
   [17] 360.7677 366.0222 371.2085 376.3266 381.3766 386.3583 391.2718 396.1171 
   [25] 400.8942 405.6032 410.2439 414.8164 419.3207 423.7568 428.1248 432.4245 
   [33] 436.6560 440.8193 444.9144 448.9414 452.9001 456.7906 460.6129 464.3670 
   [41] 468.0530 471.6707 475.2202 478.7015 482.1146 485.4595 488.7363 491.9448 
   [49] 495.0851 498.1572 501.1612 504.0969 506.9644 509.7637 512.4948 515.1578 
   [57] 517.7525 520.2790 522.7373 525.1274 527.4493 529.7031 531.8886 534.0059 
   [65] 536.0550 538.0359 539.9487 541.7932 543.5695 545.2776 546.9176 548.4893 
   [73] 549.9928 551.4281 552.7952 554.0941 555.3249 556.4874 557.5817 558.6078 
   [81] 559.5657 560.4555 561.2770 562.0303 562.7154 563.3323 563.8811 564.3616 
   [89] 564.7739 565.1180 565.3940 
 
   > plot(height, distance)                                   # original data 
   > lines(newh, fit, lty=1)                                 # display best fit  
 







The resulting plot is shown here. 
 
 


 
 






	Intro.
	Basics
	Details

	Examples
	Lots and lots of examples

	Hands-on
	Q & A
	Conclusion
	References
	Files

