## Table of contents (1 of 1 )

(1) Intro.
(2) Basics

- Details
(3) Examples
- Lots and lots of examples
(4) Hands-on
(5) Q \& A
(6) Conclusion
(7) References
(8) Files


## Basic idea

"When discussing models, the term linear does not mean a straight-line. Instead, a linear model contains additive terms, each containing a single multiplicative parameter; thus, the equations

$$
\begin{aligned}
& y=\beta_{0}+\beta_{1} x \\
& y=\beta_{0}+\beta_{1} x^{1}+\beta_{2} x^{2} \\
& y=\beta_{0}+\beta_{1} x^{2} \\
& y=\beta_{0}+\beta_{1} x^{1}+\beta_{2} \log \left(x^{2}\right)
\end{aligned}
$$

are linear models. The equation $y=\alpha x^{\beta}$, however, is not a linear model." ${ }^{1}$

[^0]
## A little "magic" to confuse things

"The definition of a linear model is an equation that contains mathematical variables, parameters and random variables and that is linear in the parameters and in the random variables. What this means is that if $a, b$ and $c$ are parameters then obviously

$$
y=a+b x
$$

is a linear model, but so is

$$
y=a+b x-c x^{2}
$$

because $x^{2}$ can be replaced by $z$ which gives a linear relationship

$$
y=a+b x-c z
$$

and so is

$$
y=a+b \exp (x)
$$

because we can create a new variable $z=\exp (x)$, so that

$$
y=a+b z
$$

Some models are non-linear but can be readily linearized by transformation. For example:

$$
y=\exp (a+b x)
$$

is non-linear, but on taking logs of both sides, it becomes
$\ln (y)=a+b x^{\prime \prime}$

## Basic operators and ideas

R uses the idea of a formula object to guide and direct modeling scripts. Formula notation and operators have different meanings than mathematical operators.[1]
response variable ~explanatory variable(s)

| Operator | Meaning |
| :---: | :---: |
|  | "is modeled as a function of" |
| + | separate explanatory terms (not addition) |
| : | separate variable and factor names |
| * | indicates inclusion of explanatory variables and interactions (not multiplication) |
| ^ | crossing to the specified degree |
| \% in \% | terms on the left are nested in those on the right |
| - | removes specified terms (not subtraction) |
| func | mathematical functions can be used on response or explanatory variables |
| I() | identify portions of formula to be used in their mathematical sense |
|  | use all columns not otherwise in the formula |
| / | indicates nesting of explanatory variables in the model |
| \| | indicates conditioning (not 'or'), so that $y^{\sim} x \mid z$ is read as " $y$ as a function of $x$ given z" |

## Lots of examples (1 of 5)[1]

| Model | Syntax | Math. | Comments. |
| :---: | :---: | :---: | :---: |
| Null | $y^{\sim} 1$ | - | 1 is the intercept in regression models, but here it is the overall mean $y$ |
| Regression | $y^{\sim} x$ | $y=\beta_{0}+\beta_{1} x$ | $x$ is a continuous explanatory variable |
| Regression through origin | $y^{\sim}{ }^{\sim} x-1$ | $y=\beta_{1} x$ | Do not fit an intercept |
| One-way ANOVA | $y^{\sim}$ sex | - | sex is a two-level categorical variable |
| One-way ANOVA | $y^{\sim}$ sex -1 | - | as above, but do not fit an intercept (gives two means rather than a mean and a difference) |

## Lots of examples (2 of 5)[1]

| Model | Syntax | Math. | Comments. |
| :---: | :---: | :---: | :---: |
| Two-way | $y^{\sim}$ sex + genotype | - | genotype is a four-level categor- |
| ANOVA |  |  | ical variable |
| Factorial | $y^{\sim} N * P * K$ | - | $\mathrm{N}, \mathrm{P}$ and K are two-level factors |
| ANOVA |  |  | to be fitted along with all their interactions |
| Three-way | $y^{\sim} N * P * K-N:$ | - | As above, but dont fit the three- |
| ANOVA | $P: K$ |  | way interaction |
| Analysis of covariance | $y^{\sim} x+s e x$ | - | A common slope for $y$ against $x$ but with two intercepts, one for each sex |
| Nested ANOVA | $y^{\sim} a / b / c$ | - | Factor c nested within factor b within factor a |

## Lots of examples (3 of 5)[1]

| Model | Syntax | Math. | Comments. |
| :---: | :---: | :---: | :---: |
| Split-plot | $y \sim a * b * c+$ | - | A factorial experiment but with |
| ANOVA | $\operatorname{Error}(\mathrm{a} / \mathrm{b} / \mathrm{c})$ |  | three plot sizes and three different error variances, one for each plot size |
| Multiple regression | $y^{\sim} x+z$ | - | Two continuous explanatory variables, flat surface fit |
| Multiple regression | $y^{\sim}{ }^{\sim} x * z$ | - | Fit an interaction term as well ( $x+z+x: z$ ) |
| Multiple regression | $y^{\sim} x+l\left(x^{2}\right)+z+l\left(z^{2}\right)$ | - | Fit a quadratic term for both $x$ and $z$ |

## Lots of examples (4 of 5)[1]

| Model | Syntax | Math. | Comments. |
| :---: | :---: | :---: | :---: |
| Multiple regression | $y^{\sim} \operatorname{poly}(x, 2)+z$ | - | Fit a quadratic polynomial for $x$ and linear z |
| Multiple regression | $y^{\sim}(x+z+w)^{2}$ | - | Fit three variables plus all their interactions up to two-way |
| Nonparametric model | $y \sim s(x)+s(z)$ | - | $y$ is a function of smoothed $x$ and $z$ in a generalized additive model |
| Transformed response | $\log (y){ }^{\sim} 1(1 / x)+\operatorname{sqrt}(z)$ | - | All three variables are transformed in the model |
| and explanatory variables |  |  |  |

## Lots of examples (5 of 5)[1]

\(\left.$$
\begin{array}{llll}\hline \text { Model } & \text { Syntax } & \text { Math. } & \text { Comments. } \\
\hline \text { Polynomial } & y^{\sim} x+\mathrm{I}\left(x^{2}\right) & \begin{array}{l}y=\beta_{0}+\beta_{1} x+ \\
\beta_{2} x^{2}\end{array} & \begin{array}{l}\text { Polynomial model; note that the } \\
\text { identity function } 1() \text { allows terms }\end{array}
$$ <br>

in the model to include normal\end{array}\right]\)| mathematical symbols |
| :--- |

## Load and execute the attached script

Load the execute the attached file.
Each plot uses different error types, and shows:

- The raw and fitted data
- Comments about the residual values
- Interpretations about the


Attached file. qqplot

## Q \& A time.

"A human being should be able to change a diaper, plan an invasion, butcher a hog, conn a ship, design a building, write a sonnet, balance accounts, build a wall, set a bone, comfort the dying, take orders, give orders, cooperate, act alone, solve equations, analyze a new problem, pitch manure, program a computer, cook a tasty meal, fight efficiently, die gallantly.
Specialization is for insects."
Robert Heinlein, Time Enough for Love

## References (1 of 1 )

[1] Michael J. Crawley, The R Book, John Wiley \& Sons, 2012.

## Files of interest

(1) Modeling different

(2) Using R for Linear

Regression



[^0]:    ${ }^{1}$ Author unknown, see attached file.

