In O	troduction	Big Data's Vs 000000 0	Concepts 0 0 0000	Virtualization 000 0 00	Q & A	Conclusion	References	Files
01 01 00 01	100001 110100 100000 1 1	0111100 0110001 Big Dat Big [1 00100 1 01100 1 01100 :a: Data Data Ov	0000 011 0001 011 001 001 Wrang verview a	00010 01101 00000 ling Bo and Co	0110111 0111000 0111011 oot Camp ncepts	1 01101 0 00101 1 01101	111 100 001 110 000
01 01 01 01	100101 101111 110100 0100000 100000	01101 01101 0110111 0100001 0111010	nuck 00110 23 Fe	Cartleo oo oo oo	dge, y 201	PhD 11 0010000 8 10100	0 00100 0 00100 0 01101 0 01000	
01 01 00	1100001 101100 101100	01110010 0111010 0010000	0 0110	1001 011 1001 011 1001 011	01111 01110 01110	0110100 0110111 0110001 กินาร์กินรี		

Introduction 0	Big Data's Vs 000000 0	Concepts 0 0 0000	Virtualization 000 0 00	Q & A	Conclusion	References	Files

Table of contents (1 of 1)

- Introduction
 - What we'll be covering
- 2 Big Data's Vs
 - Classical definition
 - Data sources and types
- 3 Concepts
 - The Vs
 - Lots of data
 - What does data look like?

4 Virtualization

- Tricking hardware and software
- What is it good for?
- What is it not good for?

< □ > < @ > < E > < E > E の Q @ 2/31

- 🕽 Q & A
- Conclusion
- References
- Files

Introduction •	Big Data's Vs 000000 0	Concepts 0 0 0000	Virtualization 000 0 00	Q & A	Conclusion	References	Files
What we'll be co	overing						

On the way to a working definition of BD.

"What is Big Data? A meme and a marketing term, for sure, but also shorthand for advancing trends in technology that open the door to a new approach to understanding the world and making decisions."

Lohr [9]

Image from [3].

Introduction O	Big Data's Vs ●00000 ○	Concepts 0 0 0000	Virtualization 000 0 00	Q & A	Conclusion	References	Files
Classical definition	on						

Doug Laney, META Group

The origin of "Big Data" ideas and definitions.

- Started in the e-commerce Mergers and Acquisitions arena
- Used to explain why traditional Relational Database Management Systems (RDMS) wouldn't scale
- Intended audience was non-technical management

Image from [7].

Introduction O	Big Data's Vs o●oooo o	Concepts 0 0 0000	Virtualization 000 0 00	Q & A	Conclusion	References	Files
Classical definition	n						

Laney's original BD Vs

Figure 1 — Data Management Solutions

Volume

- Tiered storage/hub and spoke
- Selective data retention
- Statistical sampling
- Redundancy elimination
- Offload "cold" data
- Outsourcing
- Velocity
 - Operational data stores
 - Data caches
 - Point-to-point data routing
 - Balance data latency with decision cycles

Variety

- Inconsistency resolution
- XML-based "universal" translation
- Application-aware EAI adapters
- Data access middleware and ETLM
- Distributed query management
- Metadata management

E-Business-Driven Information Explosion Factors

Extending data management options enables greater returns on information assets

Introduction 0	Big Data's Vs 00€000 0	Concepts 0 0 0000	Virtualization 000 0 00	Q & A	Conclusion	References	Files
Classical definition	on						

Volume — what does it mean for Big Data?

How much is there? And, how do we store it?

- Store relational records?
- Store transactional records?
- How long to keep data available?
- How to access data?
- How to migrate data?

Image from [6].

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → � < ♡ < @

6/31

See http://en.wikipedia.org/wiki/Metric_prefix for list of prefixes.

Introduction 0	Big Data's Vs 000€00 0	Concepts 0 0 0000	Virtualization 000 0 00	Q & A	Conclusion	References	Files
Classical definiti	ion						

Velocity — what does it mean for Big Data?

- Frequency of data generation/delivery
- Think of data from a device, or sensor, robots, clicklogs
- Real-time analysis is small (9%) [10].
- Most Big Data analytics is batch

Known as "Little's Law" [8]

Take away: data is generated at a high speed, it must be analyzed before the next set of data is delivered.

Introduction 0	Big Data's Vs 0000€0 0	Concepts 0 0 0000	Virtualization 000 0 00	Q & A	Conclusion	References	Files
Classical definition	on						

Variety — what does it mean for Big Data?

Not all data is the same.

- Data from a multitude of different sources.
- Not all data is useful.
- Data is lost during "normalization"
- Hopefully not important data, when in doubt: keep it somehow
- Gets away from relational databases

4 ロ ト 4 母 ト 4 ヨ ト 4 ヨ ト ヨ の 9 0 8/31

Introduction 0	Big Data's Vs 00000● 0	Concepts O O OOOO	Virtualization 000 0 00	Q & A	Conclusion	References	Files
Classical definiti	ion						

The original Vs have been expanded

Lots more Vs.

- Vagueness
- 2 Validity
- Value
- Variability
- Sariety
- Velocity
- Venue

- Veracity
- Viability
- Vincularity
- Virility
- Viscosity
- Visibility
- Visible

- Visualization
- 🚳 Vitality
- Vocabulary

<ロ> < @> < E> < E> E の < g/31

- Volatility
- Volume

We'll talk about these later.

Introduction 0	Big Data's Vs ○○○○○○ ●	Concepts 0 0 0000	Virtualization 000 0 00	Q & A	Conclusion	References	Files
Data sources an	id types						

- The Big Data challenges.
 - Heterogeneity

"the quality or state of being heterogeneous; composition from dissimilar parts; disparateness" ^a

- Scale
- Timeliness
- Complexity
- Privacy

The Big Data user changes the question[1].

<ロト < □ ト < 三 ト < 三 ト ミ の < で 10/31

^ahttp://www.dictionary.com/browse/heterogeneity4

Introduction 0	Big Data's Vs 000000 0	Concepts ● ○ ○○○○	Virtualization 000 0 00	Q & A	Conclusion	References	Files
The Vs							

Our friends the Vs

- Classic Vs (Variety, Velocity, Volume)
- Additional Vs

Image from [2].

<ロ > < 回 > < 目 > < 目 > < 目 > 目 の へ つ 11/31

The Vs tend to overlap.

Introduction 0	Big Data's Vs 000000 0	Concepts • • • • • • •	Virtualization 000 0 00	Q & A	Conclusion	References	Files
Lots of data							

Data sources

- Government:
 - Medicare data
 - INSA, DoD, NASA
- Private:
 - Clickstream
 - 2 FICO
 - 3 Walmart
 - Android devices
- Free:
 - Far too many to list. (See report.)

Image from [4].

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Introduction 0	Big Data's Vs 000000 0	Concepts ○ ● ●○○○	Virtualization 000 0 00	Q & A	Conclusion	References	Files
What does data	look like?						

Data characteristics

- Formatted/unformatted (even well-known numbers can be very different)
- Bits, bytes, tagged, free form
- Clean, messy
- Complete, fragmented

10000000 1000000 100000 <spaces> </spaces> There are__spaces.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

We'll be looking at unformatted free form text.

Introduction 0	Big Data's Vs 000000 0	Concepts ○ ○ ○●○○	Virtualization 000 0 00	Q & A	Conclusion	References	Files
What does data	look like?						

OBTW, there are different types of numbers.

- Categorical (Qualitative)[15]
 - Nominal values are just different
 - Ordinal values can order objects
- Numerical (Quantitative)
 - Interval differences between values are important
 - Ratio differences and ratios are important

*Nonparametric statistics may be used to analyze interval and ratio data measurements.

Image from [14].

୬**୯**୧ 14/31

Introduction O	Big Data's Vs 000000 0	Concepts ○ ○ ○○●○	Virtualization 000 0 00	Q & A	Conclusion	References	Files
What does data	look like?						

Torrents of data

- Primary usage
- Secondary usage
- "Exhaust"
- Storage
 - Accessibility
 - 2 Longevity
 - In Privacy

Image from [13].

Data can be intentional, or accidental, or by-products, but there is lots of it.

Introduction O	Big Data's Vs 000000 0	Concepts	Virtualization 000 0	Q & A	Conclusion	References	Files
What does data	look like?	0000	00				

Big data players

- Visionaries stand on the shoulders of giants and see new horizons
- Brokers have seas and lakes of data at their disposal
- Scientists dive into the seas and make the visions real

We will be performing a small part of the data scientist's labors.

Introduction 0	Big Data's Vs 000000 0	Concepts O O OOOO	Virtualization •••• •••	Q & A	Conclusion	References	Files
Tricking hardwa	re and software						

A 50,000 foot view

What are the layers in this cake?

- User the person (or thing) that want's something done
- Application the program that does the work
- Operating system arbitrates between multiple programs and limited resources
- Hardware the silicone, copper, other tangibles that generate heat

Layering is a key concept.

Image from [16].

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 ⑦ < ♡ 17/31

Introduction 0	Big Data's Vs 000000 0	Concepts 0 0 0000	Virtualization ○●○ ○○	Q & A	Conclusion	References	Files
Tricking hardwar	e and software						

Focusing on the OS

What does it do?

- Provides a user interface (maybe a Command Line Interface)
- Schedules access to the hardware
- Schedules the functions of the CPU

Image from [11].

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 りへで 18/31

An OS is a program (albeit, a large program). What if we could write a program that would run an OS as an application?

Introduction 0	Big Data's Vs 000000 0	Concepts 0 0 0000	Virtualization ○ ○ ○	Q & A	Conclusion	References	Files
Tricking hardware	e and software						

Tricking the upper layer

- Higher layers rely on lower layers for services
- Layers create interfaces
- Interfaces allow for hiding details

Virtualization software allows applications that previously ran on separate computers to run on one server machine.

Image from [5].

Introduction 0	Big Data's Vs 000000 0	Concepts 0 0 0000	Virtualization	Q & A	Conclusion	References	Files
	1.6.2						

What is it good for?

One hardware suite can run many OSs in virtual machines.

- Ultimately the hardware determines how many virtual machines can be run
- Faster CPU(s), more RAM, more network connections, more disks, ..., more is better
- Fewer actual machines usually means lower power, lower cooling, cheaper upgrade path

Image from [12].

With clever software, almost anything can be virtualized. Hadoop is clever software.

Introduction 0	Big Data's Vs 000000 0	Concepts O O OOOO	Virtualization ○○○ ●○	Q & A	Conclusion	References	Files
What is it not g	ood for?						

Anything that has to be fast.

- Underlying hardware suite is shared across all "machines"
- Mission critical applications

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 りへで 21/31

Introduction O	Big Data's Vs 000000 0	Concepts 0 0 0000	Virtualization ○○○ ○●	Q & A	Conclusion	References	Files
What is it not go	od for?						

- To use virtual machines, or
- To not use virtual machines.

It depends on what is important. Many BD tools and techniques make use of virtualization.

Introduction 0	Big Data's Vs 000000 0	Concepts O O OOOO	Virtualization 000 0 00	Q & A	Conclusion	References	Files

Q & A time.

Q: How many existentialists does it take to screw in a light bulb? A: Two. One to screw it in and one to observe how the light bulb itself symbolizes a single incandescent beacon of subjective reality in a netherworld of endless absurdity reaching out toward a maudlin cosmos of nothingness.

▲ロト ▲圖ト ▲ヨト ▲ヨト 三ヨ - のへで、

Introduction 0	Big Data's Vs 000000 0	Concepts 0 0 0000	Virtualization 000 0 00	Q & A	Conclusion	References	Files

What have we covered?

- Big data Vs had a specific point of origin
- Big data has a list of challenges
- Big data can be very messy, and not neat and tidy
- Hinted at how BD tools and techniques use virtualization

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ● ⑦ Q @ 24/31

Next: Understanding more about BD Vs.

Introduction	Big Data's Vs	Concepts	Virtualization	Q & A	Conclusion	References	Files
0	000000	0 0 0000	000 0 00				

References (1 of 6)

- [1] Divyakant Agrawal, Philip Bernstein, Elisa Bertino, Susan Davidson, Umeshwas Dayal, and Michael Franklin, <u>Challenges and Opportunities with Big Data</u>, Purde e-Pubs (2011).
- [2] Patrick Cheesman, How big data can transform your understanding of your customers, http://www.patrickcheesman.com/how-big-data-cantransform-your-understanding-of-your-customers/, 2106.

◆□▶ < @ ▶ < E ▶ < E ▶ E りへで 25/31</p>

Introduction O	Big Data's Vs 000000 0	Concepts 0 0 0000	Virtualization 000 00	Q & A	Conclusion	References	Files

References (2 of 6)

- [3] David Gewirtz, Volume, velocity, and variety: Understanding the three v's of big data, http://www.zdnet.com/article/volume-velocity-andvariety-understanding-the-three-vs-of-big-data/, 2016.
- [4] Christian Hagen, KHalid Khan, Marco Ciobo, and Jason Miller, Big Data and the Creative Destruction of Today's Business Models, http://www.atkearney.com/strategic-it/ideasinsights/article/-/asset_publisher/LCcgDeS4t85g/ content/big-data-and-the-creative-destructionof-today-s-business-models/10192, 2013.

Introduction 0	Big Data's Vs 000000 0	Concepts 0 0 0000	Virtualization 000 0 00	Q & A	Conclusion	References	Files

References (3 of 6)

[5] Paul Hodge,

Virtualization 101: Understanding how to do more with less, https://www.isa.org/standards-and-publications/ isa-publications/intech-magazine/2011/august/ system-integration-virtualization-101understanding-how-to-do-more-with-less/, 2011.

- [6] Applied Innovations, <u>Track website visitors</u>, http: //www.appliedi.net/blog/track-website-visitors/, 2010.
- [7] Doug Laney, <u>3D Data Management: Controlling Data Volume, Velocity and Varie</u> META Group Research Note 6 (2001).

Introduction 0	Big Data's Vs 000000 0	Concepts O O OOOO	Virtualization 000 0 00	Q & A	Conclusion	References	Files

References (4 of 6)

- [8] John DC Little, <u>A Proof for the Queuing Formula: $L = \lambda W$ </u>, Operations Research **9** (1961), no. 3, 383–387.
- [9] Steve Lohr, The age of big data, New York Times 11 (2012).
- [10] Philip Russom, <u>Big Data Analytics</u>, TDWI Best Practices Report, Fourth Quarter (2011).
- [11] Willy-Peter Schaub, UNISA Chatter Operating System Concepts: Part 2 System Structu http://blogs.msdn.com/b/willy-peter_schaub/ archive/2010/01/07/unisa-chatter-operatingsystem-concepts-part-2-system-structures.aspx, 2010.

Introduction 0	Big Data's Vs 000000 0	Concepts O O OOOO	Virtualization 000 0 00	Q & A	Conclusion	References	Files

References (5 of 6)

- [12] NixOS Staff, <u>Nixos screenshots</u>, https://nixos.org/nixos/screenshots.html, 2016.
- [13] NYU Staff, Nyu launches initiative in data science and statistics to push advances in medicine, science, technology, and other fields, https: //www.nyu.edu/about/news-publications/news/2013/ 02/19/nyu-launches-initiative-in-data-scienceand-statistics-to-push-advances-in-medicine
 - science-technology-and-other-fields.html, 2013.
- [14] Six Sigma Staff, Data Classification, 2017.
- [15] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar, Introduction to Data Mining, Pearson Education India, 2006.

Introduction	Big Data's Vs	Concepts	Virtualization	Q & A	Conclusion	References	Files
0	000000	0 0 0000	000 0 00				

References (6 of 6)

[16] Wikipedia, Software — Wikipedia, The Free Encyclopedia, http://en.wikipedia.org/wiki/Software, 2015.

<□ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の < ℃ 30/31

Introduction 0	Big Data's Vs 000000 0	Concepts O O OOOO	Virtualization 000 0 00	Q & A	Conclusion	References	Files

Files of interest

31/31