

Table of contents (1 of 1)

- Introduction
 - What we'll be covering
- 2 Big Data's Vs
 - Classical definition
 - Data sources and types
- Concepts
 - The Vs
 - Lots of data
 - What does data look like?
- What does data look in
- 4 Virtualization

- Tricking hardware and software
- What is it good for?
- What is it not good for?
- **5** Q & A
- 6 Conclusion
- References
- 8 Files

What we'll be covering

On the way to a working definition of BD.

"What is Big Data? A meme and a marketing term, for sure, but also shorthand for advancing trends in technology that open the door to a new approach to understanding the world and making decisions."

Lohr [9]

Image from [3].

Doug Laney, META Group

The origin of "Big Data" ideas and definitions.

- Started in the e-commerce Mergers and Acquisitions arena
- Used to explain why traditional Relational Database Management Systems (RDMS) wouldn't scale
- Intended audience was non-technical management

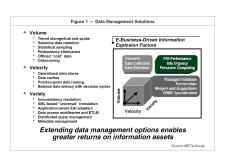


Image from [7].

Take away: traditional RDMS don't/won't scale and different approaches are needed.

Big Data's Vs Virtualization 0 & A Conclusion References Files 000000

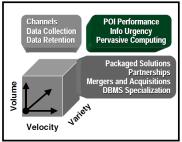
Classical definition

Laney's original BD Vs

Figure 1 — Data Management Solutions

Volume

- Tiered storage/hub and spoke
- Selective data retention
- Statistical sampling
- Redundancy elimination
 - Offload "cold" data
- Outsourcing


Velocity

- Operational data stores
- Data caches
- Point-to-point data routing
- Balance data latency with decision cycles

Variety

- Inconsistency resolution
- XML-based "universal" translation
- Application-aware EAI adapters
- Data access middleware and ETLM
- Distributed query management
- Metadata management

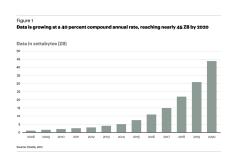
E-Business-Driven Information Explosion Factors

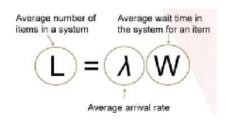
Extending data management options enables greater returns on information assets

Volume — what does it mean for Big Data?

How much is there? And, how do we store it?

- Store relational records?
- Store transactional records?
- How long to keep data available?
- How to access data?
- How to migrate data?




Image from [6].

See http://en.wikipedia.org/wiki/Metric_prefix for list of prefixes.

Velocity — what does it mean for Big Data?

- Frequency of data generation/delivery
- Think of data from a device, or sensor, robots, clicklogs
- Real-time analysis is small (9%) [10].
- Most Big Data analytics is batch

Known as "Little's Law" [8]

Take away: data is generated at a high speed, it must be analyzed before the next set of data is delivered.

Variety — what does it mean for Big Data?

Not all data is the same.

- Data from a multitude of different sources.
- Not all data is useful.
- Data is lost during "normalization"
- Hopefully not important data, when in doubt: keep it somehow
- Gets away from relational databases

The original Vs have been expanded

Lots more Vs.

- Vagueness
- Validity
- Value
- Variability
- Variety
- Velocity
- Venue

- Veracity
- Viability
- Vincularity
- Virility
- Viscosity
- Visibility
- Visible

- Visualization
- Vitality
- Vocabulary
- Volatility
- Volume

We'll talk about these later.

The Big Data challenges.

- Heterogeneity
 "the quality or state of
 being heterogeneous;
 composition from dissimilar
 parts; disparateness" a
- Scale
- Timeliness
- Complexity
- Privacy

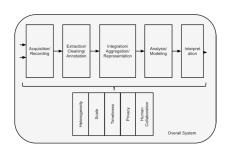


Image from [15].

The Big Data user changes the question[1].

ahttp://www.dictionary.com/browse/heterogeneity4

The Vs

Our friends the Vs

- Classic Vs (Variety, Velocity, Volume)
- Additional Vs

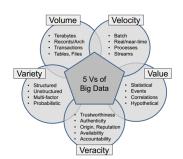


Image from [2].

The Vs tend to overlap.

Lots of data

Data sources

- Government:
 - Medicare data
 - NSA, DoD, NASA
- Private:
 - Clickstream
 - FICO
 - Walmart
 - Android devices
- Free:
 - Far too many to list. (See report.)

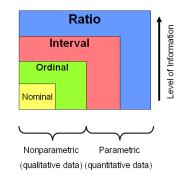
Image from [4].

Data characteristics

000

- Formatted/unformatted (even well-known numbers can be very different)
- Bits, bytes, tagged, free form
- Clean, messy
- Complete, fragmented

10000000 10000000 100000 <spaces> </spaces> There are_spaces.


We'll be looking at unformatted free form text.

OBTW, there are different types of numbers.

- Categorical (Qualitative)[16]
 - Nominal values are just different

0.00

- Ordinal values can order objects
- Numerical (Quantitative)
 - Interval differences between values are important
 - Ratio differences and ratios are important

*Nonparametric statistics may be used to analyze interval and ratio data measurements.

Torrents of data

- Primary usage
- Secondary usage
- "Exhaust"
- Storage
 - Accessibility
 - 2 Longevity
 - Privacy

Image from [13].

Data can be intentional, or accidental, or by-products, but there is lots of it.

Big data players

 Visionaries – stand on the shoulders of giants and see new horizons

റ്ററം

- Brokers have seas and lakes of data at their disposal
- Scientists dive into the seas and make the visions real

We will be performing a small part of the data scientist's labors.

Tricking hardware and software

A 50,000 foot view

What are the layers in this cake?

- User the person (or thing) that want's something done
- Application the program that does the work
- Operating system arbitrates between multiple programs and limited resources
- Hardware the silicone, copper, other tangibles that generate heat

Image from [17].

Layering is a key concept.

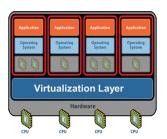
Tricking hardware and software

Focusing on the OS

What does it do?

- Provides a user interface (maybe a Command Line Interface)
- Schedules access to the hardware
- Schedules the functions of the CPU

Image from [11].


An OS is a program (albeit, a large program). What if we could write a program that would run an OS as an application?

Tricking hardware and software

Tricking the upper layer

- Higher layers rely on lower layers for services
- Layers create interfaces
- Interfaces allow for hiding details

Virtualization software allows applications that previously ran on separate computers to run on one server machine.

Image from [5].

As long as the lower layer supplies all the services, the upper layer won't know where the services originated.

What is it good for?

One hardware suite can run many OSs in virtual machines.

- Ultimately the hardware determines how many virtual machines can be run
- Faster CPU(s), more RAM, more network connections, more disks, ..., more is better
- Fewer actual machines usually means lower power, lower cooling, cheaper upgrade path

Image from [12].

With clever software, almost anything can be virtualized. Hadoop is clever software.

What is it not good for?

Anything that has to be fast.

- Underlying hardware suite is shared across all "machines"
- Mission critical applications

What is it not good for?

In summary.

- To use virtual machines, or
- To not use virtual machines.

It depends on what is important. Many BD tools and techniques make use of virtualization.

Q & A time.

Q: How many existentialists does it take to screw in a light bulb? A: Two. One to screw it in and one to observe how the light bulb itself symbolizes a single incandescent beacon of subjective reality in a netherworld of endless absurdity reaching out toward a maudlin cosmos of nothingness.

What have we covered?

- Big data Vs had a specific point of origin
- Big data has a list of challenges
- Big data can be very messy, and not neat and tidy
- Hinted at how BD tools and techniques use virtualization

Next: Understanding more about BD Vs.

References (1 of 6)

- [1] Divyakant Agrawal, Philip Bernstein, Elisa Bertino, Susan Davidson, Umeshwas Dayal, and Michael Franklin,

 <u>Challenges and Opportunities with Big Data</u>, Purde e-Pubs (2011).
- [2] Patrick Cheesman, How big data can transform your understanding of your customers, http://www.patrickcheesman.com/how-big-data-can-transform-your-understanding-of-your-customers/, 2106.

References (2 of 6)

- [3] David Gewirtz, Volume, velocity, and variety: Understanding the three v's of big data, http://www.zdnet.com/article/volume-velocity-and-variety-understanding-the-three-vs-of-big-data/, 2016.
- [4] Christian Hagen, KHalid Khan, Marco Ciobo, and Jason Miller,
 Big Data and the Creative Destruction of Today's Business Models,
 http://www.atkearney.com/strategic-it/ideasinsights/article/-/asset_publisher/LCcg0eS4t85g/
 content/big-data-and-the-creative-destructionof-today-s-business-models/10192, 2013.

References (3 of 6)

- [5] Paul Hodge,

 Virtualization 101: Understanding how to do more with less,
 https://www.isa.org/standards-and-publications/
 isa-publications/intech-magazine/2011/august/
 system-integration-virtualization-101understanding-how-to-do-more-with-less/, 2011.
- [6] Applied Innovations, <u>Track website visitors</u>, http: //www.appliedi.net/blog/track-website-visitors/, 2010.
- [7] Doug Laney, 3D Data Management: Controlling Data Volume, Velocity and Varied META Group Research Note 6 (2001).

References (4 of 6)

- [8] John DC Little, A Proof for the Queuing Formula: $L = \lambda W$, Operations Research **9** (1961), no. 3, 383–387.
- [9] Steve Lohr, The age of big data, New York Times 11 (2012).
- [10] Philip Russom, Big Data Analytics, TDWI Best Practices Report, Fourth Quarter (2011).
- [11] Willy-Peter Schaub,

 UNISA Chatter Operating System Concepts: Part 2 System Structu

 http://blogs.msdn.com/b/willy-peter_schaub/
 archive/2010/01/07/unisa-chatter-operatingsystem-concepts-part-2-system-structures.aspx,
 2010.

References (5 of 6)

- [12] NixOS Staff, Nixos screenshots, https://nixos.org/nixos/screenshots.html, 2016.
- [13] NYU Staff, Nyu launches initiative in data science and statistics to push advances in medicine, science, technology, and other fields, https:

 //www.nyu.edu/about/news-publications/news/2013/02/19/nyu-launches-initiative-in-data-science-and-statistics-to-push-advances-in-medicine-science-technology-and-other-fields.html, 2013.
- [14] Six Sigma Staff, Data Classification, 2017.

References (6 of 6)

- [15] Valsoft Services Staff, Challenges and Opportunities with Big Data, http: //valsoftservices.com/big-data-implementation/, 2016.
- [16] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar, Introduction to Data Mining, Pearson Education India, 2006.
- [17] Wikipedia, Software Wikipedia, The Free Encyclopedia, http://en.wikipedia.org/wiki/Software, 2015.

Files of interest

Big Data variety

Data Vs

Number and variety of Big

Sources of Big Data

