

Table of contents (1 of 1)

- Introduction
 - What we'll be covering
- Big Data's Vs
 - Classical definition
 - Modern Vs
- A laundry list of Vs
 - A long list of Vs

- Big Data over time
- 4 Q & A
- Conclusion
- 6 References

What we'll be covering

Focusing on BD Vs

"What is Big Data? A meme and a marketing term, for sure, but also shorthand for advancing trends in technology that open the door to a new approach to understanding the world and making decisions."

Lohr [15]

Image from [6].

Doug Laney, META Group

The origin of "Big Data" ideas and definitions.

- Started in the e-commerce Mergers and Acquisitions arena
- Used to explain why traditional Relational Database Management Systems (RDMS) wouldn't scale
- Intended audience was non-technical management

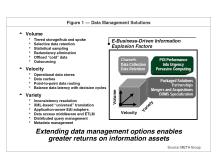


Image from [12].

Take away: traditional RDMS don't/won't scale and different approaches are needed.

Laney's original BD Vs

Figure 1 — Data Management Solutions

Volume

- Tiered storage/hub and spoke
- Selective data retention
- Statistical sampling Redundancy elimination
- Offload "cold" data
- Outsourcing

Velocity

- Operational data stores
- Data caches
- Point-to-point data routing
- Balance data latency with decision cycles

Variety

- Inconsistency resolution
- XML-based "universal" translation
- Application-aware EAI adapters
- Data access middleware and FTLM
- Distributed query management
- Metadata management

E-Business-Driven Information Explosion Factors Channels POI Performance **Data Collection** Info Urgency **Data Retention** Pervasive Computing Packaged Solutions **Partnerships** Mergers and Acquisitions Volume DBMS Specialization Velocity

Extending data management options enables greater returns on information assets

Source: META Group

Velocity

- Frequency of data generation/delivery
- Think of data from a device, or sensor, robots, clicklogs
- Real-time analysis is small (9%) [19].
- Most Big Data analytics is batch

Variety

- Data from a multitude of different sources.
- Not all data is useful.

- Data is lost during "normalization"
- Hopefully not important data, when in doubt: keep it somehow
- Gets away from relational databases

Volume

- Store relational records?
- Store transactional records?
- How long to keep data available?
- How to access data?
- How to migrate data?

Volume — what does it mean for Big Data?

How much is there? And, how do we store it?

- Store relational records?
- Store transactional records?
- How long to keep data available?
- How to access data?
- How to migrate data?

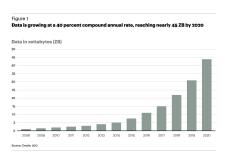
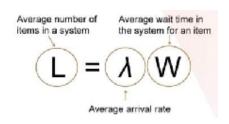



Image from [10].

See http://en.wikipedia.org/wiki/Metric_prefix for list of prefixes.

Velocity — what does it mean for Big Data?

- Frequency of data generation/delivery
- Think of data from a device, or sensor, robots, clicklogs
- Real-time analysis is small (9%) [19].
- Most Big Data analytics is batch

Known as "Little's Law" [13]

Take away: data is generated at a high speed, it must be analyzed before the next set of data is delivered.

Variety — what does it mean for Big Data?

Not all data is the same.

- Data from a multitude of different sources.
- Not all data is useful.
- Data is lost during "normalization"
- Hopefully not important data, when in doubt: keep it somehow
- Gets away from relational databases

The original Vs have been expanded

Lots more Vs.

- Vagueness
- Validity
- Value
- Variability
- Variety
- Velocity
- Venue

- Veracity
- Viability
- Vincularity
- Virility
- Viscosity
- Visibility
- Visible

- Visualization
- Vitality
- Vocabulary
- Volatility
- Volume

We'll delve into these now.

Modern Vs

Big Data as 3 Vs

•00000

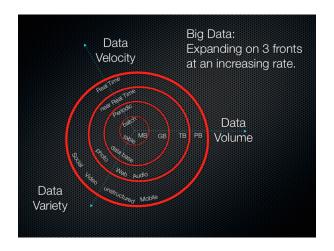
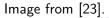


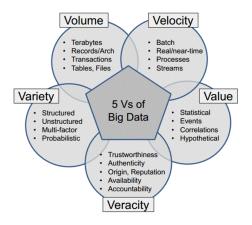

Image from [20].



roduction Big Data's Vs A laundry list of Vs Q & A Conclusion References

Modern Vs

Big Data as 4 Vs



roduction Big Data's Vs A laundry list of Vs Q & A Conclusion References

Modern Vs

Big Data as 5 Vs

Big Data's Vs A laundry list of Vs Q & A References 000000

Modern Vs

Big Data as 6 Vs

Volume Value Multi-domain data · Spectrum modeling User/device data · Spectrum prediction · Geolocation data · Spectrum management Big Velocity Variety · Data in motion · Crowd sensing Spectrum · Stream computing · Geolocation database · Batch algorithms Data · Heterogeneous sensors Real-time algorithms · Different data types Veracity Viability · Spectrum data quality · Variable selection · Variable relevance · Data uncertainty · Variable relationship · Data security

Big Data's Vs A laundry list of Vs Q & A References 000000

Modern Vs

Big Data as 7 Vs

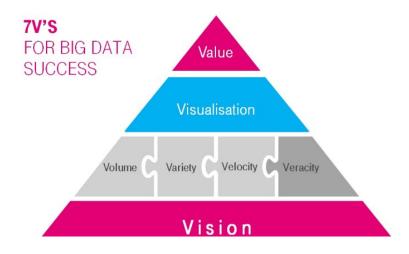


Image from [21].

roduction Big Data's Vs A laundry list of Vs Q & A Conclusion References

Modern Vs

Big Data as 8 Vs

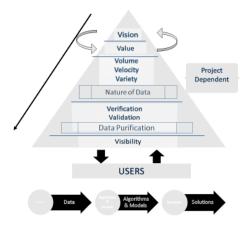


Image from [8].

Vs (part 1 of 7)

Num.	Year	V	Definition	Source
1	2001	Variety	no greater barrier to effective data management will exist than the va-	[12, 16]
			riety of incompatible data formats, non-aligned data structures, and in- consistent data semantics.	•
2	2001	Velocity	E-commerce has also increased point- of-interaction (POI) speed and, con- sequently, the pace data used to sup- port interactions and generated by in- teractions.	[12]
3	2001	Volume	E-commerce channels increase the depth/breadth of data available about a transaction (or any point of interaction).	[12]

References

Vs (part 2 of 7)

Num.	Year	V	Definition	Source
4	2013	Validity	is the data correct and accurate	[2, 14,
			for the intended use.	16, 17,
				25]
5	2013	Value	How to determine the prescriptive	[2, 7,
			value of data?	14, 22,
				25, 26,
				11, 9,
				4, 1]
6	2013	Variability	Many options or variable interpreta-	[2, 7,
			tions can confuse interpretation.	16, 22,
				26]

Vs (part 3 of 7)

Num.	Year	V	Definition	Source
7	2013	Veracity	to the biases, noise and abnormality in data.	[2, 7, 14, 17, 25, 26, 18, 9, 4, 5, 1]
8	2013	Viability	can the data be analyzed in a way that makes it decision-relevant?	[7, 16]
9	2013	Virility	Defined by some users as the rate at which the data spreads; how often it is picked up and repeated by other users or events.	[26]

Vs (part 4 of 7)

Num.	Year	V	Definition	Source
10	2013	Viscosity	used to describe the latency or lag time in the data relative to the event being described.	[26]
11	2013	Visibility	the state of being able to see or be seen - is implied. [14, 25, 16]	
12	2013	Visualization	Making all that vast amount of data comprehensible in a manner that is easy to understand and read. With the right analyses and visualizations, raw data can be put to use otherwise raw data remains essentially useless.	[22]

Vs (part 5 of 7)

Num.	Year	V	Definition	Source
13	2013	Volatility	how long is data valid and how	[16,
			long should it be stored.	17]
14	2014	Vagueness	confusion over the meaning of big	[2]
			data (Is it Hadoop? Is it something	
			that weve always had? Whats new	
			about it? What are the tools? Which	
			tools should I use? etc.)	
15	2014	Venue	distributed, heterogeneous data	[2]
			from multiple platforms, from differ-	
			ent owners systems, with different	
			access and formatting requirements,	
			private vs. public cloud.	

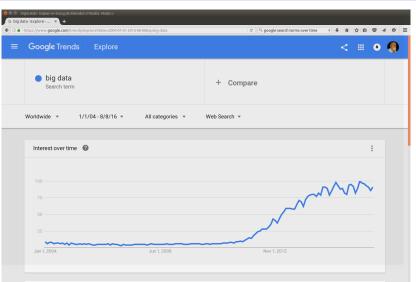
References

Vs (part 6 of 7)

Num.	Year	V	Definition	Source
16	2014	Vocabulary	schema, data models, semantics, ontologies, taxonomies, and other content- and context-based metadata that describe the datas structure, syntax, content, and provenance.	[2]
17	2015	Vincularity	it implies connectivity or linkage.	[16]
18	2015	Visible	We live in an increasingly visual world and the statistics of increase in the number of images and videos shared on the Internet is staggering.	[16]

References

000000

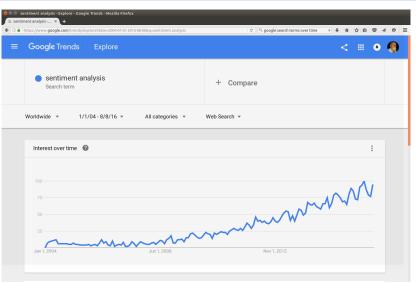

A long list of Vs

Vs (part 7 of 7)

Num.	Year	V	Definition	Source
19	2015	Vitality	criticality of the data is another concept that is crucial and is embedded in the concept of Value.	[16]

Introduction Big Data's Vs A laundry list of Vs Q & A Conclusion References

Big Data over time



Data source: Google Trends (www.google.com/trends).

oduction Big Data's Vs A laundry list of Vs Q & A Conclusion References

Big Data over time

Data source: Google Trends (www.google.com/trends).

Q & A time.

Q: Name two families whose kids won't join the Marines.

A: The Halls of Montezuma and the Shores of Tripoli.

What have we covered?

- Big Data Vs had a specific point of origin
- The list of Big Data continues to grow
- Big Data can be a very nebulous term

Conclusion

References

Next: Publicly available sources of Big Data.

- [1] Marcos D Assunção, Rodrigo N Calheiros, Silvia Bianchi, Marco AS Netto, and Rajkumar Buyya, Big data computing and clouds: Trends and future directions, Journal of Parallel and Distributed Computing **79** (2015), 3–15.
- [2] Kirk Borne, Top 10 big data challenges a serious look at 10 big data vs, https:
 //www.mapr.com/blog/top-10-big-data-challenges-%E2%80%93-serious-look-10-big-data-v%E2%80%99s, 2014.

References (2 of 8)

- [3] Patrick Cheesman, How big data can transform your understanding of your customers, http://www.patrickcheesman.com/how-big-data-can-transform-your-understanding-of-your-customers/, 2106.
- [4] Yuri Demchenko, Paola Grosso, Cees De Laat, and Peter Membrey, <u>Addressing big data issues in scientific data</u> <u>infrastructure</u>, Collaboration Technologies and Systems (CTS), 2013 International Conference on, IEEE, 2013, pp. 48–55.
- [5] Xin Luna Dong and Divesh Srivastava, Big data integration, Data Engineering (ICDE), 2013 IEEE 29th International Conference on, IEEE, 2013, pp. 1245–1248.

References (3 of 8)

- [6] David Gewirtz, Volume, velocity, and variety: Understanding the three v's of big data, http://www.zdnet.com/article/volume-velocity-and-variety-understanding-the-three-vs-of-big-data/, 2016.
- [7] Seth Grimes, <u>Big data: Avoid 'wanna v' confusion</u>, http://www.informationweek.com/big-data/big-dataanalytics/big-data-avoid-wanna-v-confusion/d/did/1111077?, 2013.
- [8] Uma G Gupta and Mr Ashok Gupta, Vision: A missing key dimension in the 5v big data framework, International Business Research and Marketing 1 (2016).

References (4 of 8)

- [9] Pascal Hitzler and Krzysztof Janowicz, <u>Linked data</u>, <u>big data</u>, and the 4th paradigm., Semantic Web **4** (2013), no. 3, 233–235.
- [10] Applied Innovations, <u>Track website visitors</u>, http: //www.appliedi.net/blog/track-website-visitors/, 2010.
- [11] Stephen Kaisler, Frank Armour, Juan Antonio Espinosa, and William Money, <u>Big data: Issues and challenges moving forward</u>, System Sciences (HICSS), 2013 46th Hawaii International Conference on, IEEE, 2013, pp. 995–1004.
- [12] Doug Laney,

 3D Data Management: Controlling Data Volume, Velocity and Varie

 META Group Research Note 6 (2001).

References

- [13] John DC Little, A Proof for the Queuing Formula: $L = \lambda W$, Operations Research 9 (1961), no. 3, 383–387.
- [14] Rob Livingstone, The 7 vs of big data, http://roblivingstone.com/2013/06/big-data-or-black-hole/, 2013.
- [15] Steve Lohr, The age of big data, New York Times 11 (2012).
- [16] Rajiv Maheshwari, 3 vs or 7 vs whats the value of big data?, https://www.linkedin.com/pulse/3-vs-7-whatsvalue-big-data-rajiv-maheshwari, 2105.

References (6 of 8)

- [17] Kevin Normandeau, Beyond volume, variety and velocity is the issue of big data veracity,

 http://insidebigdata.com/2013/09/12/beyondvolume-variety-velocity-issue-big-data-veracity/,
 2013.
- [18] Wullianallur Raghupathi and Viju Raghupathi, Big data analytics in healthcare: promise and potential, Health Information Science and Systems 2 (2014), no. 1, 3.
- [19] Philip Russom, Big Data Analytics, TDWI Best Practices Report, Fourth Quarter (2011).
- [20] Diya Soubra, The 3vs that define big data, http://www.datasciencecentral.com/forum/topics/the-3vs-that-define-big-data, 2012.

References (7 of 8)

- [21] Vit Soupal, 7v's for successful big data project, https://www.linkedin.com/pulse/7vs-successful-big-data-project-vit-soupal, 2015.
- [22] BI Staff, Why the 3vs are not sufficient to describe big data, https://datafloq.com/read/3vs-sufficient-describe-big-data/166, 2013.
- [23] IBM Staff, The Four V's of Big Data, http://www.ibmbigdatahub.com/infographic/four-vs-big-data, 2016.
- [24] Infolvy Staff, How to use big data to predict utilization of a wireless network?, http://www.infoivy.com/2014/05/how-to-use-big-data-to-predict.html, 2014.

References

- [25] University of Technology Staff, The 7 vs of big data, http://mbitm.uts.edu.au/feed/7-vs-big-data, 2013.
- [26] Bill Vorhies, How many vs in big data the characteristics that define big data.

http://data-magnum.com/how-many-vs-in-big-datathe-characteristics-that-define-big-data/, 2013.