Deadlocks
v
Definition &
Basics:
Deadlock: A set of blocked processes each holding
a resource and
waiting to
acquire a resource held by another process in the set.
Example 1
System has 2 disk drives
Processes P1 and P2 each hold
one disk drive and each needs another one
Example 2
Semaphores A and B, initialized to
1
P0 P1
wait (A); wait(B)
wait (B); wait(A)
Deadlock can arise if four conditions
hold
simultaneously:
1) Mutual exclusion: only one process at a time can use a resource
2) Hold and wait: holding at least one resource and is waiting to acquire additional resources
held by others
3)
No preemption: a resource can be released only voluntarily
by the process holding it.
4)
Circular wait: there exists a set {P0, P1,
…, Pn
} of waiting processes such that:
P0 is waiting for a
resource that is held by P1,
P1 is waiting for
a resource that is held by P2, …,
Pn–1 is waiting for
a resource that is held by Pn, and
Pn is waiting for
a resource that is held by P0.
v Resource-Allocation Graph
A set of vertices V
and a set of edges
E
·
V is partitioned
into two types:
o
P = {P1,
P2, …, Pn}, the
set consisting of all the processes
in the system
o
R = {R1, R2,
…, Rm}, the set consisting of all resource types in the system
·
E is partitioned
into two types:
o
request edge – directed
edge Pi ® Rj
o
assignment edge – directed
edge Rj ® Pi
Example of a Resource Allocation Graph

Resource Allocation Graph With A
Deadlock

Graph With A Cycle But No
Deadlock

Basic Facts
· If graph
contains no cycles Þ no deadlock
· If graph
contains a cycle Þ
o
if
only one instance
per resource type, then deadlock
o
if
several instances
per resource type, possibility
of deadlock
v Deadlock Prevention
Restrain the
ways request can be made.
Any of the
following polices will prevent
deadlock:
1. Hold and Wait
–Require process to request and be allocated all its resources before it begins
execution,
or
allow process to request resources only when the process has none.
2. No Preemption
– If a process holding some resources and requests another resource that cannot
be immediately allocated to it, all resources currently being held are
released. Process will be restarted only when it can regain its old resources,
as well as the new ones that it is requesting.
3. Circular Wait
– impose a total ordering of all resource types, and require that each process
requests resources in an increasing order of enumeration.
v Deadlock Avoidance
Requires that the
system has a priori information available.
·
Simplest
model requires that each process declare the maximum number
of resources of each type that it may need.
·
The
deadlock-avoidance algorithm dynamically examines the resource-allocation state to ensure that
there can never be a circular-wait condition.
Safe State
·
When
a process requests an available resource, system must decide if immediate
allocation leaves the system in a safe
state.
·
System
is in safe state if there exists a sequence <P1, P2, …, Pn> of ALL processes
in the systems such that: For each Pi , the resources
that Pi can still request can be satisfied by currently
available resources + resources held by all the Pj
, with j
< i
· If a system is
in safe state Þ no deadlocks
· If a system is
in unsafe state Þ possibility of deadlock
· Avoidance Þ
ensure that a system will never enter an unsafe state.
Safe, Unsafe , Deadlock State

v Avoidance algorithms
Resource-Allocation Graph Scheme: Used for Single instance of resource types
Resources must be claimed a
priori in the system.
·
Claim edge Pi ® Rj indicated that process Pj may request
resource Rj;
represented by a dashed line
·
Claim edge converts to Request
edge when a process requests a resource
·
Request edge converted to an Assignment
edge when the
resource is allocated to the process
·
When a resource is released by a process,
assignment edge reconverts to a claim edge
Resource-Allocation Graph

Unsafe State In
Resource-Allocation Graph

Resource-Allocation Graph Algorithm
Suppose that process Pi requests a
resource Rj
The request can be granted only if :
converting
the request edge to an assignment edge
does not
result in the formation of a cycle in the resource allocation graph
Banker’s
Algorithm ( by Edsger
Dijkstra)
Used for Multiple instances of a
resource type
Each process must a priori claim maximum use.
Ø Data Structures
Let n = number of processes, and
m = number of resources
types
ü Available: vector of length m.
If Available
[j] = k, there are k instances of
resource type Rj available
ü Max: n x m matrix.
If Max [i,j] = k, then
process Pi may request at most k instances
of resource type Rj
ü Allocation: n x m matrix.
If Allocation
[i,j] = k then Pi is currently allocated k
instances of Rj
ü Need: n x m matrix.
If Need [i,j] = k, then
Pi may need
k more instances of Rj to complete its task
Need [i,j]
= Max [i,j] – Allocation [i,j]
êSafety Algorithm
1. Let Work and Finish be vectors of
length m and n, respectively.
Initialize:
Work = Available
Finish [i] = false for i = 0, 1, …, n- 1
2. Find an index i such that:
Finish [i] = false AND Needi
£ Work
If no such i exists, go to step 4
3. Work = Work + Allocationi
Finish[i]
= true
go to step 2
4. If Finish [i] == true for all i, then the
system is in a safe state,
otherwise it is unsafe
The
Algorithm requires m x n2 operations to detect whether the system is in
deadlocked state
êResource-Request for a Process
Request =
request vector for process Pi
If Requesti [j] = k
then process Pi wants
k instances of resource type Rj
· If Requesti > Needi
Raise
error condition, since process has exceeded its maximum claim.
· If Requesti > Available
Pi must wait,
since resources are not available
· If Requesti <= Available
Pretend to
allocate requested resources to Pi by modifying
the state as follows:
Available = Available – Requesti
Allocationi = Allocationi + Requesti
Needi = Needi – Requesti
·
If state is safe
Þ
the resources are allocated to Pi
·
If state is unsafe Þ Pi must wait, and the old
resource-allocation state is restored
êExample of Banker’s Algorithm
·
5 processes P0 through P4;
·
3 resource types:
A B
C
10 5
7
Snapshot at time T0:
Allocation Max Available
A B
C A B C A B C
P0 0
1 0 7 5 3 3 3 2
P1 2 0 0 3
2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0 0 2 4 3 3
· The content of the matrix Need is
defined to be Max – Allocation
Need
A
B C
P0 7
4 3
P1 1
2 2
P2 6 0 0
P3 0 1 1
P4 4 3 1
· The system is in a safe state since the
sequence < P1, P3, P4,
P2, P0> satisfies safety criteria
Example:
P1
Request (1,0,2)
·
Check that Request
£
Available that is, (1,0,2) £
(3,3,2) Þ true
Allocation
Need Available
A B C A B C A
B C
P0 0 1 0 7 4 3 2 3 0
P1 3
0 2
0 2 0
P2 3 0 1 6 0 0
P3 2 1 1 0 1 1
P4 0 0 2 4 3 1
·
Executing safety algorithm shows that sequence < P1,
P3, P4, P0, P2> satisfies safety requirement
v
Deadlock
Detection
Allow system to enter
deadlock state then: Detect
& Recover.
Single
Instance of Each Resource Type
· Maintain wait-for graph
o
Nodes are processes
o
Pi ® Pj if Pi is waiting for Pj
· Periodically invoke an
algorithm that searches for a cycle in the graph.
· If there is a cycle, there exists a deadlock
· An algorithm to detect a cycle in a graph requires an order of n2 operations,
where n is the number of vertices in the
graph
Resource-Allocation Graph and Wait-for Graph

Resource-Allocation Graph Corresponding wait-for graph
Several
Instances of a Resource Type
ü Available: A vector of length m
indicates the number of available resources of each type.
ü Allocation: An n x m matrix
defines the number of resources of each type currently allocated to each
process.
ü Request: An n x m matrix
indicates the current request of each process.
If Request [ij] = k,
then process Pi is requesting k
more instances of resource type Rj.
Detection
Algorithm
1. Let Work and Finish be
vectors of length m and n, respectively
Initialize:
Work = Available
For i = 1,2, …, n: if Allocationi
¹ 0, then
Finish[i] = false; else Finish[i] = true
2. Find an index i such that both:
Finish[i]
== false AND Requesti £
Work
If no such i exists, go to step 4
3.
Work
= Work + Allocationi
Finish[i] = true
go to step 2
4.
If Finish[i]
== false, for some i, 1 £ i £ n, then the system is in deadlock
state.
and Pi is deadlocked
The
Algorithm requires m x n2 operations to detect whether the system is in
deadlocked state
Example
of Detection Algorithm
·
Five processes
P0 through P4;
·
Three resource types
A B
C
7 2
6
Snapshot
at time T0:
Allocation Request
Available
A B C A B C A B C
P0 0 1 0 0
0 0 0 0 0
P1 2 0 0 2
0 2
P2 3
0 3 0 0 0
P3 2 1 1 1
0 0
P4 0 0 2 0
0 2
System is not deadlocked, sequence <P0, P2,
P3, P1, P4> will
result in Finish[i] = true for all i
P2
requests an additional instance of type C
Request
A
B C
P0 0 0 0
P1 2 0 2
P2 0
0 1
P3 1 0 0
P4 0 0 2
·
State of system?
o
Can reclaim resources held by process P0,
but insufficient resources to fulfill other processes
requests
o
Deadlock exists,
consisting of processes P1, P2, P3,
and P4
v
Recovery
from Deadlock:
Options:
·
Abort all deadlocked
processes
·
Abort one process at a
time until the deadlock cycle is eliminated
·
In which order should we choose to abort?
o Priority of the process
o How long process has computed, and how much longer to completion
o Resources the process has used
o Resources process needs to complete
o How many
processes will need to be terminated
o Is process interactive or batch?
·
Selecting a victim to minimize cost
·
Rollback – return to
some safe state, restart process for that state
· Starvation – same process may always
be picked as victim, include number of rollback in cost factor