Network Authentication Standards: Kerberos

- Kerberos designed at MIT and it is name of a 3 headed dog!
- It is a secret key based service for providing authentication in a network.
- Some applications that use Kerberos: telnet, rsh and NFS.

Master Keys and Session Keys:

- The KDC shares a secret key, called the master key, with each principle (each user and each resource).
 Alice's master key K_A is derived from her password.

- The workstation asks the KDC for a limited-lifetime session key S_A

The KDC sends the workstation:

$$K_A\{S_A\} \text{ and a ticket-granting ticket (TGT) } K_{kdc}\{T\}$$

T contains: Alice's name, S_A and expiration time.
K_{kdc} is the he KDC master key.

The workstation forgets Alice's password K_A and remembers S_A and the TGT.

This is illustrated as:

```
Alice  workstation  KDC
Alice, passwd---->  Alice needs a TGT ------->
                   <------------K_A\{S_A\}, K_{kdc}\{T\}
```
When Alice needs to talk to Bob (e.g., % rsh Bob)

- Her workstation sends the TGT to the KDC. The KDC generates K_{AB} and send to the workstation:
 $$SA\{K_{AB}\} \text{ & a ticket to Bob } = K_B\{ "Alice", K_{AB}\}$$

- Her workstation sends this ticket to Bob along with an authenticator $K_{AB}\{t\}$
 where t is the current time to prove to Bob that she knows K_{AB} (Kerberos allows up to 5 minutes skew between clocks).

- Bob sends back $K_{AB}\{t+1\}$ to prove that he is indeed Bob (since he must knows K_B to find out K_{AB}).

- Thereafter, messages between Alice and Bob may be encrypted and integrity protected.

This is illustrated as:

```
-----------------------------------------------
Alice                workstation              KDC                           Bob
rsh Bob ------------->

Alice wants Bob, TGT --->
<------------------------ S_A\{"Bob", K_{AB}, ticket to Bob\}

ticket to Bob = K_B\{ "Alice", K_{AB}\}, K_{AB}\{t\} --------------->
<------------------------------------------------------------------- K_{AB}\{t+1\}
```