Parallel Approximate Matching

Florin Dobrian  Mahantesh Halappanavar  Alex Pothen

Old Dominion University
Outline

1. Introduction
2. Optimal Algorithms
3. Approximation Algorithms
4. Parallel Approximation Algorithm
5. Conclusion
Outline

1. Introduction
2. Optimal Algorithms
3. Approximation Algorithms
4. Parallel Approximation Algorithm
5. Conclusion
Outline

1. Introduction
2. Optimal Algorithms
3. Approximation Algorithms
4. Parallel Approximation Algorithm
5. Conclusion
Matching
Vertex Packing/Covering

Florin Dobrian, Mahantesh Halappanavar, Alex Pothen

Parallel Approximate Matching
Edge Packing/Covering
Scientific Computing and Combinatorics

Scope of CSCAPES

Scientific Computing Tool

HPC Task

Combinatorial Problem

Florin Dobrian, Mahantesh Halappanavar, Alex Pothen

Old Dominion University

Parallel Approximate Matching
Linear Solvers and Matching

\[ A \mathbf{x} = \mathbf{b} \]
Linear Solvers and Matching
Linear Solvers and Matching
Linear Solvers and Matching

Florin Dobrian, Mahantesh Halappanavar, Alex Pothen

Old Dominion University

Parallel Approximate Matching
Linear Solvers and Matching

Florin Dobrian, Mahantesh Halappanavar, Alex Pothen
Old Dominion University
Cardinality Problem, Optimal Solution
Weighted Problem, Optimal Solution
Weighted Problem, Optimal Solution

Florin Dobrian, Mahantesh Halappanavar, Alex Pothen
Old Dominion University
Computational Complexity

- Cardinality: $O(\sqrt{|V||E|})$.
- Weighted: $O(|V||E| + |V|^2 \log |V|)$. 
Outline

1. Introduction
2. Optimal Algorithms
3. Approximation Algorithms
4. Parallel Approximation Algorithm
5. Conclusion

Parallel Approximate Matching
Computational Complexity

- Globally dominating edges (Avis): $1/2$ approximation ratio, $\Theta(|E| \log |V|)$.
- Locally dominating edges (Preis): $1/2$ approximation ratio, $\Theta(|E|)$.
- Path growing (Drake & Hougardy): $1/2$ approximation ratio, $\Theta(|E|)$. 
Approximate Solution (1)
Approximate Solution (1)
Approximate Solution (1)
Approximate Solution (2)
Approximate Solution (2)
Locally Dominating Edges

- Preis: complexity $\Theta(|E|)$, difficult to parallelize.
- Manne & Bisseling: $\Theta(|V|d^2 + |E|)$, easy to parallelize.
Pointer Based Approximate Solution (1)

Florin Dobrian, Mahantesh Halappanavar, Alex Pothen
Old Dominion University

Parallel Approximate Matching
Pointer Based Approximate Solution (1)
Pointer Based Approximate Solution (1)
Pointer Based Approximate Solution (1)
Pointer Based Approximate Solution (2)
Pointer Based Approximate Solution (2)
Pointer Based Approximate Solution (2)

Florin Dobrian, Mahantesh Halappanavar, Alex Pothen

Parallel Approximate Matching
Outline

1. Introduction
2. Optimal Algorithms
3. Approximation Algorithms
4. Parallel Approximation Algorithm
5. Conclusion
Parallel Approximate Solution (1)
Parallel Approximate Solution (1)
Parallel Approximate Solution (1)
Parallel Approximate Solution (1)
Parallel Approximate Solution (2)
Parallel Approximate Solution (2)
Parallel Approximate Solution (2)
Parallel Approximate Solution (2)
Communication Patterns

Florin Dobrian, Mahantesh Halappanavar, Alex Pothen
Old Dominion University
Data Distribution
Data Distribution
Preliminary Results

- \texttt{bcsstk35}, |V| = 60,474, E = 740,200
- 2.2 GHz AMD Opteron, 4GB RAM, Gigabit Ethernet

<table>
<thead>
<tr>
<th>p</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_{min}$</td>
<td>4.41</td>
<td>2.09</td>
<td>1.02</td>
<td>0.45</td>
</tr>
<tr>
<td>$t_{max}$</td>
<td>4.79</td>
<td>2.88</td>
<td>2.10</td>
<td>2.56</td>
</tr>
<tr>
<td>$t_{avg}$</td>
<td>4.57</td>
<td>2.48</td>
<td>1.45</td>
<td>1.41</td>
</tr>
</tbody>
</table>
Conclusion

- Collection of sequential matching algorithms.
- Prototyped a first parallel matching algorithm (approximation).
- Code clean-up and optimization.
- Scalability issues (different data distribution, different data structure, different communication pattern).
- Better approximation ratios?
- Optimal parallel matching algorithm?