**1474**

**1474:2=737**, no remainder.

So we add a 0 to the left of our binary number: 0

**737:2=368**, and the remainder is 1.

So we add a 1 to the left of our binary number: 10

**368:2=184**, no remainder.

So we add a 0 to the left of our binary number: 010

**184:2=92**, no remainder.

So we add a 0 to the left of our binary number: 0010

**92:2=46**, no remainder.

So we add a 0 to the left of our binary number: 00010

**46:2=23**, no remainder.

So we add a 0 to the left of our binary number: 000010

**23:2=11**, and the remainder is 1.

So we add a 1 to the left of our binary number: 1000010

**11:2=5**, and the remainder is 1.

So we add a 1 to the left of our binary number: 11000010

**5:2=2**, and the remainder is 1.

So we add a 1 to the left of our binary number: 111000010

**2:2=1**, no remainder.

So we add a 0 to the left of our binary number: 0111000010

**1:2=0**, and the remainder is 1.

So we add a 1 to the left of our binary number: 10111000010

The remaining fraction is zero, so we stop dividing.

**1474 (base10) -> 10111000010 (base2)**

Enter new base 10 number:

Check here why 10111000010 is a base 2 representation of 1474