Impact of URI Canonicalization on Memento Count

Mat Kelly, Lulwah M. Alkwai, Sawood Alam, Michael L. Nelson, and Michele C. Weigle
Old Dominion University
Department of Computer Science
Norfolk, Virginia, USA
{mkelly,lalkwai,salam,mln,mweigle}@cs.odu.edu

Herbert Van de Sompel
Los Alamos National Laboratory
Los Alamos, New Mexico, USA
herbertv@lanl.gov

ABSTRACT
Memento TimeMaps [5] list identifiers for archival web captures (URI-Ms). When some URI-Ms are dereferenced, they redirect to a different URI-M instead of a unique representation at the datetime. This suggests that confidently obtaining an accurate count quantifying the number of non-forwarding captures for an Original Resource URI (URI-R) is not possible using a TimeMap alone and that the magnitude of a TimeMap is not equivalent to the number of representations it identifies. This work represents an abbreviated version of the full technical report describing this phenomena in depth [3]. For google.com we found that 84.9% of the URI-Ms in a TimeMap result in an HTTP redirect when dereferenced. The full study applies this technique to seven other URI-Rs of large Web sites and 13 academic institutions. Using a ratio metric for the number of URI-Ms without redirects to those requiring a redirect when dereferenced, five of the eight large web sites’ and two of the thirteen academic institutions’ TimeMaps had a ratio of less than one, indicating that more than half of the URI-Ms in these TimeMaps result in redirects when dereferenced.

1 INTRODUCTION
Web archives return TimeMaps with a list of URI-Ms for the HTTP transactions observed at archival time. TimeMaps have generally been used as a count of the number of representations of a URI-R present in an archive. However, TimeMaps may include URI-Ms for archived representations, redirections, and errors [2]. For example, 57% of the URI-Ms for http://vimeo.com produce an HTTP Redirect another URI-M is in the TimeMap that returns a HTTP Status OK. TimeMaps do not explicitly return a “count” value to indicate the number of mementos listed in the TimeMap that produce a non-redirecting HTTP status code when dereferenced. The heuristic of determining how many captures are represented by URI-Ms in a TimeMap cannot be completed without dereferencing.

Redirection in a Web archive can be attributed to a variety of canonicalization rules [3]. Preserving and replaying these redirects allows an archive to accurately reproduce the HTTP transactions that would have occurred when the URI being accessed resided on the live Web. Because of the potential for redirection, the heuristic of counting URI-Ms with relation values of “memento” is an inaccurate means of determining the number of unique representations inferred from a TimeMap. We further emphasize the distinction per the Memento specification that the identifiers for mementos (URI-Ms) in a TimeMap are identifiers for archived HTTP transactions (e.g., transmission of HTTP 2XX, 3XX, 4XX, etc.) rather than identifiers for representations.

Based on the number of URI-Ms in a TimeMap not necessarily resolving to unique mementos when archival redirects are followed, we examined the mementos from contemporarily large TimeMaps to evaluate the patterns and schemes used in Memento canonicalization. Through this, we identify the difference between the number of mementos available as reported by the TimeMap through naive “rel” counting heuristics to the temporally unique mementos identified once these mementos are dereferenced.

2 BACKGROUND AND RELATED WORK
URI canonicalization associates differently formatted URIs [4] and allows after-the-fact clustering of URIs that likely reference the same resource. As URI schemes from a Web site change over time, canonicalization is critical for retaining a cohesive, comprehensive listing of the mementos available for a Web page.

AlSum et al. [1] analyzed memento redirection patterns relating to HTTP redirects to supply the user with the correct memento when a redirect is encountered in the archives. They introduced the notion of “URI stability” to give a quantitative measure of the presence of HTTP 3XX status codes that result when URI-Ms in TimeMaps are dereferenced.

<table>
<thead>
<tr>
<th>year</th>
<th>M_{TM}</th>
<th>M_{RC}</th>
<th>DI</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>735</td>
<td>483</td>
<td>1.917</td>
</tr>
<tr>
<td>2007</td>
<td>1,055</td>
<td>842</td>
<td>3.953</td>
</tr>
<tr>
<td>2008</td>
<td>1,376</td>
<td>894</td>
<td>1.855</td>
</tr>
<tr>
<td>2009</td>
<td>6,074</td>
<td>4,335</td>
<td>2.493</td>
</tr>
<tr>
<td>2010</td>
<td>9,326</td>
<td>6,530</td>
<td>2.335</td>
</tr>
<tr>
<td>2011</td>
<td>20,634</td>
<td>9,279</td>
<td>2.335</td>
</tr>
<tr>
<td>2012</td>
<td>102,533</td>
<td>16,240</td>
<td>0.188</td>
</tr>
<tr>
<td>2013</td>
<td>228,405</td>
<td>25,203</td>
<td>0.124</td>
</tr>
<tr>
<td>2014</td>
<td>164,865</td>
<td>22,738</td>
<td>0.160</td>
</tr>
<tr>
<td>2015</td>
<td>17,978</td>
<td>11,286</td>
<td>1.686</td>
</tr>
<tr>
<td>2016</td>
<td>139,520</td>
<td>5,805</td>
<td>0.043</td>
</tr>
</tbody>
</table>

Table 1: Google over time (abbreviated), bucketed by year, based on IA mementos extracted from the TimeMap. M_{TM} is the memento count based solely on the data in the TimeMap, M_{RC} is the count based on exclusion of redirects when dereferenced, and DI is the ratio of non-redirecting mementos to redirecting mementos.
3 DATA COLLECTION AND ANALYSIS

To analyze the degree to which archival identifiers result in redirects, we acquired HTTP response headers for all URI-Rs accumulated from multiple Web archives for various URI-Rs. Data was collected mid-May, 2016. We obtained a TimeMap for google.com from our locally deployed Memento aggregator containing 714,470 URI-Rs from 8 different Memento-compliant archives. 89.1% of the URI-Rs returned were from Internet Archive.

Equation 1 excludes mementos that resolve to HTTP 3XX status codes. \(|TM|_D\) represents the count of mementos that result in non-3XX statuses based on the URI-Ms in a TimeMap.

\[
|TM|_D = \sum_{m=1}^{len(M)} \begin{cases}
0 & 300 \geq \text{httpStatus}(m) < 400, \\
1 & \text{otherwise}.
\end{cases}
\] (1)

\[
|TM|_I = |TM|_rel - |TM|_D
\] (2)

We quantify the ratio of mementos with non-redirecting HTTP status codes (Equation 1) to those with redirects (Equation 2) in Equation 3 as \(DI\).

\[
DI = \begin{cases}
\frac{|TM|_D}{|TM|_I} & |TM|_I > 0, \\
\infty & \text{otherwise}.
\end{cases}
\] (3)

Table 2: Scheme and subdomain breakdown for redirects when dereferencing URI-Ms for google.com.

Suppose three of eleven URI-Ms in a TimeMap resulted in 3XX redirects when dereferenced. Using Equation 3, \(DI = 11/3 \approx 3.7\). Sparsely archived URIs will often contain a list of URI-Ms where all result in an HTTP 200 status code when dereferenced, which would result in \(DI\) being undefined. It is far less likely that all URI-Ms in a TimeMap results in an HTTP redirect when dereferenced. Table 1 shows how \(DI\) has changed over time for google.com.

An additional nuance to account for the large quantity of redirects from HTTP URI-Ms to HTTP URI-Ms for google.com can be observed by the large quantity of “revisit” entries in IA’s CDX results for google.com. A revisit entry occurs when an archival crawler is returned content that is identical to a previous capture, often attributed using a hashing scheme on the live page’s content. If an archive reports revisit records as an HTTP redirect based on the CDX listing, and this redirect is propagated to the archive’s Memento endpoint thus producing a unique URI-M, the \(DI\)’s value for the URI-R decreases. Requesting the URI-M using the

<table>
<thead>
<tr>
<th>host</th>
<th>% 3XX</th>
<th>% 200</th>
<th>(M_{TM})</th>
<th>(DI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>google</td>
<td>84.89</td>
<td>15.11</td>
<td>695,525</td>
<td>0.178</td>
</tr>
<tr>
<td>yahoo</td>
<td>88.16</td>
<td>11.83</td>
<td>418,896</td>
<td>0.343</td>
</tr>
<tr>
<td>sourceforge</td>
<td>73.34</td>
<td>26.63</td>
<td>30,973</td>
<td>0.563</td>
</tr>
<tr>
<td>instagram</td>
<td>67.32</td>
<td>32.65</td>
<td>72,874</td>
<td>0.485</td>
</tr>
<tr>
<td>vimeo</td>
<td>57.04</td>
<td>42.94</td>
<td>131,973</td>
<td>0.752</td>
</tr>
<tr>
<td>cnn</td>
<td>49.97</td>
<td>50.01</td>
<td>117,525</td>
<td>1.001</td>
</tr>
<tr>
<td>wikipedia</td>
<td>44.62</td>
<td>55.19</td>
<td>87,148</td>
<td>1.240</td>
</tr>
<tr>
<td>whitehouse</td>
<td>44.57</td>
<td>55.24</td>
<td>62,006</td>
<td>1.243</td>
</tr>
</tbody>
</table>

Table 3: Dereferencing 7 other large Web sites’ TimeMaps from Internet Archive produces the above distribution of status codes for each site.

Accept-Datetime HTTP header then observing the Memento-Datetime response header’s presence often reveals this nuance, but by relying on the TimeMap data without requesting each URI-M, the \(DI\) for the URI-R is unknown. Table 3 shows the \(DI\) values based on the TimeMaps of 8 large Web sites. Table 2 shows the scheme and subdomain breakdown for google.com URI-Ms where a redirect is encountered upon dereferencing the URI-M.

4 CONCLUSIONS

This work is an abbreviated version of the study performed in [3]. It identified the problem of attempting to count the number of mementos in a TimeMap based solely on the contents of the TimeMap. Through observing google.com, a URI-R with a contemporarily large apparent number of mementos, we dereferenced all URI-Ms in an aggregated TimeMap for the URI-R to show that 84.9% of the URI-Ms are redirects to other URI-Ms in the TimeMap. More extensive results on other sites and canonicalization patterns are available in [5].

REFERENCES

