ERRATA

NASA Technical Memorandum 4750

UTILIZING GPS TO DETERMINE IONOSPHERIC DELAY OVER THE OCEAN

Stephen J. Katzberg and James L. Garrison, Jr.
December 1996

Equation (5a) on page 5 should read

\[ a = \frac{\sqrt{2 \delta h \sin \gamma}}{\sin^2 \gamma} \]  \hspace{1cm} (5a)

Equation (5b) on page 5 should read

\[ b = \frac{\sqrt{2 \delta h \sin \gamma}}{\sin \gamma} \]  \hspace{1cm} (5b)

Equation (12a) on page 7 should read

\[ a = \frac{\sqrt{2 h c \tau \sin \gamma}}{\sin^2 \gamma} \]  \hspace{1cm} (12a)

Equation (12b) on page 7 should read

\[ b = \frac{\sqrt{2 h c \tau \sin \gamma}}{\sin \gamma} \]  \hspace{1cm} (12b)

On page 7, in the paragraph following equation (14):

The sentence that reads “The value for \( \beta_0 \) ...” should read “The value for \( \sigma_0 \) ...”

The sentence that reads “... for a satellite at 400 km would be 0.0047 (one chip average) ...” should read “... for a satellite at 400 km would be 0.00038 (one chip average) whereas the reduction in signal at 800 km would be 0.00019 (one chip average).”

The sentence following the one above that reads “... requiring scattering angles of 3.0° (800 km) and 4.0° ...” should read “... requiring scattering angles of 0.8° (800 km) and 1.1° (400 km) ...”

On page 10:

The sentence in the third full paragraph that reads “But one chip represents 12.5 km, ...” should read “But one chip represents 15.5 km, ...”

Issued February 1997