Aircraft Structural Mass Property Prediction Using Conceptual-Level Structural Analysis

Presentation to the 57th Annual Conference of the Society of Allied Weight Engineers
Wichita, Kansas
20 May, 1998

Matt Sexstone
National Aeronautics and Space Administration
Langley Research Center, Hampton, Virginia
Summary

- ELAPS is a conceptual-level aircraft structural analysis tool uniquely situated between empirical methods and finite element analysis.
- The ELAPS-based mass property analysis process enables a low cost, high fidelity multidisciplinary approach to conceptual design.
- Stochastic analysis techniques provide a robust and efficient framework for managing uncertainty in conceptual design.
Overview

• Structural mass property prediction
• ELAPS
• ELAPS structural models
• Non-optimal mass
• Stochastic analysis and design
• ELAPS stochastic mass property analysis
• Case study: ERAST Proof-of-Concept
• Summary & Conclusions
Structural Mass Property Prediction

\[
\text{Weight}_{\text{fuselage}} = 1.35 \cdot \left[X_L \cdot \left(\frac{W_{\text{fuselage}} + D_{\text{fuselage}}}{2} \right) \right]^{1.28} \cdot \\
\left(1.0 + 0.05 \cdot N_{\text{engine}_{\text{fuselage}}} \right) \cdot \left(1.0 + 0.38 \cdot W_{\text{cargo}_{\text{fuselage}}} \right) \cdot N_{\text{fuselage}}
\]

(from Mitchell, 1993)

- Empirical equations
- Empirically-augmented physical methods
- Finite Element Analysis (FEA)
- Algorithmic Mass Factoring Method (AM-FM, Boeing)
- Mock-ups & prototypes
ELAPS

- ELAPS = Equivalent LAminated Plate Solution
- FEA elements
- ELAPS segments

- Fast modeling
- Low computational cost
ELAPS Structural Models

- Plane of Symmetry
- Discrete Spar Segments
- Control Surface Segment
- Outboard Wing Segment
- "Smeared" Spar Segments
- Control Surface Segment
- Discrete Rib Segments
- Mass of Bombs and Missiles
Non-Optimal Mass

\[NOMF = \frac{\text{as-built mass}}{\text{ideal mass}} \]

- Rod Element
- Shell Elements
- Spar Cap
- Pad-up and Splice
- Formed Angles and Adhesive
- Composite Laminates with HC Core

NASA Intercenter Systems Analysis Team
Stochastic Analysis and Design

- Management of uncertainty
- Robustness
- Risk Assessment
- Learning
ELAPS Stochastic Mass Property Analysis

NOMF Uncertainty

ELAPS Calibration Model

NOMF Calibration

NOMF Probability Density Functions

KEY
○ SKIN COVER PANEL / FUSELAGE BEAM
□ DISCRETE SPAR OR WEB
△ CONTROL SURFACE

Non-Optimal Mass Factor, NOMF
ELAPS Stochastic Mass Property Analysis
Monte Carlo Simulation

ELAPS Analysis Model

W as-built = \sum_{i=1}^{W_{\text{Ideal}_i \cdot NOMF_i}} + \sum_{i=1}^{W_{\text{Spar}_i \cdot NOMF_i}} + \sum_{i=1}^{W_{\text{Rib}_i \cdot NOMF_i}} + \ldots

Configuration Roll-up

Monte Carlo Simulation

Histogram

Median Value = 1.04 NW_wing

Normalized Wing Weight, NW_wing

Normalized Wing Weight, NW_wing
Case Study:
ERAST Proof-of-Concept

Design Proposals

Design Mission:
Subsonic
85k ft cruise altitude
50 fpm R/C at altitude
4 hr endurance at altitude
100 lb payload
Engine: 80 hp at altitude
Case Study: ERAST Proof-of-Concept

ELAPS Calibration Model

Boeing Condor UAV

Static Deflection Comparison

Flutter Mode Comparisons

Group Weight Statement

Component NOMF PDFs

\[\text{NOMF}_i = f(x) \]
Case Study: ERAST Proof-of-Concept
Aeroelasticity Analysis

Boeing Condor
$C_{\text{wing}}=1.35$

C_{L} vs Span Location

<table>
<thead>
<tr>
<th>Span Location, in</th>
<th>0</th>
<th>500</th>
<th>1000</th>
<th>1500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rigid Wing</td>
<td>▲</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deformed Wing</td>
<td>◇</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Airfoil Analysis
Lifting Line Analysis
Wing Profile Drag Utility
$\Delta C_{D pw}$
$\Delta C_{D i}$
C_i Distribution
Pressure Loads
ΔC_p vs x/c vs C_i
Airfoil Analysis

ELAPS
Tip deflection, twist

NASA Intercenter Systems Analysis Team
Case Study: ERAST Proof-of-Concept

Mass Property Analysis

ELAPS Model

Structural Sizing

Ideal Mass

\[\text{NOMF}_i = f(x) \]

As-built Mass

Monte Carlo

Histogram or PDF

0 20 40 60 80 100 120 140 160
0.5 1 1.5 2 2.5

Median Value = 1.12 NW_{wing}

Median Value = 1.04 NW_{wing}

Median Value = 1.01 NW_{wing}
Summary & Conclusions

• ELAPS is a structural analysis tool uniquely suited to multidisciplinary conceptual design
 – Enables high-fidelity structural behavior knowledge early in the design process (including aeroelasticity)
 – Speed of modeling and analysis significantly reduces design and analysis cycle time

• The ELAPS-based stochastic mass property analysis process facilitates weight risk assessment, especially in cases of advanced technology or unusual vehicle configuration