
MemGator - A Portable Concurrent Memento Aggregator

Cross-Platform CLI and Server Binaries in Go

Sawood Alam
Department of Computer Science

Old Dominion University
Norfolk, Virginia - 23529 (USA)

salam@cs.odu.edu

Michael L. Nelson
Department of Computer Science

Old Dominion University
Norfolk, Virginia - 23529 (USA)

mln@cs.odu.edu

ABSTRACT
The Memento protocol makes it easy to build a uniform
lookup service to aggregate the holdings of web archives.
However, there is a lack of tools to utilize this capability
in archiving applications and research projects. We created
MemGator, an open source, easy to use, portable, concur-
rent, cross-platform, and self-documented Memento aggre-
gator CLI and server tool written in Go. MemGator imple-
ments all the basic features of a Memento aggregator (e.g.,
TimeMap and TimeGate) and gives the ability to customize
various options including which archives are aggregated. It
is being used heavily by tools and services such as Mink,
WAIL, OldWeb.today, and archiving research projects and
has proved to be reliable even in conditions of extreme load.

Keywords
MemGator; Memento; Aggregator; Web Archiving

1. INTRODUCTION
With the growth in the number of public web archives

it is becoming important to provide a means to aggregate
them for better coverage and completeness. The Memento
protocol [3] provides a uniform API to lookup URIs in web
archives. Due to the wide support of the Memento proto-
col in the archiving ecosystem, it is now easy to aggregate
archives’ holdings for any given query. However, current
applications can either use an ad hoc aggregator implemen-
tation or rely on centralized services such as LANL’s Time
Travel portal1 and ODU Memento Aggregator2. While cen-
tralized third party services are serving their purpose well,
the convenience has the tradeoff of lack of customization
and control such as the client application’s inability to spec-
ify which archives are aggregated. Centralized services are
usually good for general usage, but are not suitable for spe-
cialized purposes such as research or heavy traffic applica-
tions. For example, certain archives have IP-based traffic

1http://timetravel.mementoweb.org/guide/api/
2http://mementoproxy.cs.odu.edu/

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

JCDL ’16 June 19-23, 2016, Newark, NJ, USA
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4229-2/16/06.

DOI: http://dx.doi.org/10.1145/2910896.2925452

$ memgator --format=JSON --verbose http://example.com/
{
"original_uri": "http://example.com/",
"self": "http://localhost:1208/timemap/json/http:...",
"mementos": {
"list": [
{
"datetime": "2002-01-20T14:25:10Z",
"uri": "https://archive.is/20020120142510/ht..."

},
---TRUNCATED---
$ memgator --arcs=./archives.json --log=./memgator.log \
> --agent="MemGator:1.0 Test Run <@WebSciDL>" \
> --host=localhost --port=1208 \
> --contimeout=20s --restimeout=45s server
MemGator Server is listening at:
http://localhost:1208/timemap/{FORMAT}/{URI-R}
http://localhost:1208/timegate/{URI-R} [Accept-Datetime]
---TRUNCATED---

Figure 1: CLI and Server Mode Examples

throttling policies that might limit the ability of centralized
servers in case of heavy traffic. Similarly, the recent surge
of OldWeb.today caused increased load on archives. As a
result, one archive requested to be excluded from polling.
This would have been an issue if they were using a central-
ized service.

There are a few open source aggregator implementations
such as Memento Server3 and Memento Java Client Library4,
but they are either outdated or require a server setup.

With these issues in mind, we created the MemGator tool
that provides a standalone cross-platform binary without
any external dependencies. It can be used as a one-off com-
mand to retrieve the response on the standard output or run
as a web service to replicate necessary features of the cen-
tralized memento aggregator services (Figure 1). We tried to
keep the service API as close to the LANL’s Time Travel ser-
vice as possible for greater interoperability. Both the modes
(CLI and server) come with a handful of customization op-
tions that are documented in the binary itself and can be
seen using standard help flag. One such configuration op-
tion is to supply a custom list of archives to be aggregated
or use the archive profile [1] based archive ranking to query
top-K archives only. We made the source code and binaries
publicly available5. The tool is currently being used heavily
in OldWeb.today and WAIL6. We are also running it as a
web service7 that is primarily being used by Mink [2].

3https://code.google.com/p/memento-server/
4https://github.com/ukwa/mementoweb-client-java
5https://github.com/oduwsdl/memgator
6http://machawk1.github.io/wail/
7http://memgator.cs.odu.edu/



Figure 2: MemGator Workflow Diagram

2. IMPLEMENTATION
An aggregator is a good example of a concurrent appli-

cation. It relies on various upstream archives which con-
sumes the maximum amount of the overall time in network
I/O while the process sits idle. Performing this operation
sequentially will make it useless as the number of upstream
services grows. We chose the Go language primarily because
it is designed with concurrency in mind and has features that
make development of concurrent web applications easy. Ad-
ditionally, it provides the ability to create cross-compiled
cross-platform static binaries.

Figure 2 illustrates the workflow of the MemGator im-
plementation. The main thread (the request listener) loads
the list of archives and other configuration options. When
a lookup request is received, MemGator spins off gorou-
tines (lightweight threads of Go) for each individual archive.
These individual goroutines fetch the TimeMap from indi-
vidual archives independently. If the response is successful
the goroutine passes the data to a TimeMap parser via a
channel (message passing mechanism of Go), which makes
a linked list of the response in a chronological order. The
parser sends the linked list data to the collator which accu-
mulates responses from each individual goroutine and merges
them while maintaining the sorting. Once all goroutines are
completed or timeout occurs, the accumulator passes the
aggregated linked list to the serializer. Depending on the
format requested by the client (such as Link or JSON), the
data is serialized and returned as the response to the user.

3. EVALUATION
We profiled individual functional blocks of a usual Mem-

Gator TimeMap request session with the microsecond pre-
cision and plotted them on a timeline to assess the gain of
the concurrency. The top row of the Figure 3 shows activity
in the main collator function when a response from an indi-
vidual upstream goroutine is merged in the main linked list
(while maintaining the canonical order). The far right activ-
ity in the first row is the time it took to serialize the response
in the required format. The last row is the over all session
time as observed by the MemGator. For a fairly large re-
sponse (with 100,000+ Mementos) of cnn.com it took about
8 seconds. All the other middle rows show the time taken
by the goroutines of individual archives for fetching the re-
sponse (in red color) and parsing the fetched TimeMap (in
yellow color) before passing the data to the main collator.

We then stress tested a server instance of MemGator us-
ing ApacheBench8 for cs.odu.edu (with about 1,000 Me-

8https://httpd.apache.org/docs/2.2/programs/ab.html

Figure 3: TimeMap Aggregation Request Timeline

Table 1: Stress Test Using ApacheBench
Concurrency #Requests/sec (mean of 10 tests)

1 2.23
10 7.76

100 12.03
1000 64.70

>10000 ApacheBench I/O limit

mentos). Table 1 shows the number of requests MemGator
was able to serve per second on various concurrency levels.
Greater throughput on higher stress level is due to better
utilization of the compute resources. For any individual re-
quest the processor is mostly sitting idle (and can be used
for processing other requests), waiting for the network I/O
to complete as illustrated in Figure 3 in red.

4. FUTURE WORK AND CONCLUSIONS
The project repository has various feature requests that

we need to assess and implement in a clean way while main-
taining the interoperability with the existing tools to the
extent possible. So far the MemGator implements all the
basic features of a Memento aggregator (such as TimeMap
and TimeGate) and gives the ability to customize various
options including which archives are aggregated. It is being
used heavily by tools and services such as Mink, WAIL, Old-
Web.today, and archiving research projects and has proved
to be reliable even in conditions of extreme load.

5. ACKNOWLEDGMENTS
This work is supported in part by the IIPC. Mat Kelly,

Ilya Kreymer, Herbert Van de Sompel, and Harihar Shankar
provided helpful feedback for the MemGator development.

6. REFERENCES
[1] S. Alam, M. L. Nelson, H. V. de Sompel, L. Balakireva,

H. Shankar, and D. S. H. Rosenthal. Web Archive
Profiling Through CDX Summarization. In Proceedings
of 19th International Conference on Theory and
Practice of Digital Libraries, TPDL 2015, pages 3–14.

[2] M. Kelly, M. L. Nelson, and M. C. Weigle. Mink:
Integrating the Live and Archived Web Viewing
Experience Using Web Browsers and Memento. In
Proceedings of the 14th ACM/IEEE-CS Joint
Conference on Digital Libraries, pages 469–470, 2014.

[3] H. Van de Sompel, M. L. Nelson, and R. Sanderson.
HTTP Framework for Time-Based Access to Resource
States – Memento. RFC 7089, Dec. 2013.


