
Archival Crawlers and JavaScript: Discover More Stuff but
Crawl More Slowly

Justin F. Brunelle∗
The MITRE Corporation

jbrunelle@mitre.org

Michele C. Weigle
Old Dominion University,

Department of Computer Science
mweigle@cs.odu.edu

Michael L. Nelson
Old Dominion University,

Department of Computer Science
mln@cs.odu.edu

ABSTRACT
The web is today’s primary publication medium, making web
archiving an important activity for historical and analytical
purposes. Web pages are increasingly interactive, resulting in
pages that are correspondingly difficult to archive. JavaScript
enables interactions that can potentially change the client-
side state of a representation. We refer to representations
that load embedded resources via JavaScript as deferred
representations. It is difficult to discover and crawl all of
the resources in deferred representations and the result of
archiving deferred representations is archived web pages that
are either incomplete or erroneously load embedded resources
from the live web. We propose a method of discovering
and archiving deferred representations and their descendants
(representation states) that are only reachable through client-
side events. Our approach identified an average of 38.5
descendants per seed URI crawled, 70.9% of which are reached
through an onclick event. This approach also added 15.6
times more embedded resources than Heritrix to the crawl
frontier, but at a crawl rate that was 38.9 times slower than
simply using Heritrix. If our method was applied to the July
2015 Common Crawl dataset, a web-scale archival crawler
will discover an additional 7.17 PB (5.12 times more) of
information per year. This illustrates the significant increase
in resources necessary for more thorough archival crawls.

CCS CONCEPTS
•Information systems →Digital libraries and archives;

KEYWORDS
Web Archiving; Digital Preservation; Memento; Web Crawl-
ing
ACM Reference format:
Justin F. Brunelle, Michele C. Weigle, and Michael L. Nelson. 2017.
Archival Crawlers and JavaScript: Discover More Stuff but Crawl
More Slowly. In Proceedings of ACM Joint Conference on Digital

∗Work performed in part during graduate work at Old Dominion
University, Department of Computer Science.

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
JCDL2017, Toronto, Ontario, Canada
© 2017 Copyright held by the owner/author(s). 978-x-xxxx-xxxx-
x/YY/MM. . . $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

Libraries, Toronto, Ontario, Canada, June 2017 (JCDL2017),
10 pages.
DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
As the web grows as the primary medium for publication,
communication, and other services, so grows the importance
of preserving the web (as evidenced by recent articles in
The New Yorker [28] and The Atlantic [27]). Web resources
are ephemeral, existing in the perpetual now; important
historical events frequently disappear from the web without
being preserved or recorded. We may miss pages because
we are not aware they should be saved or because the pages
themselves are hard to archive.

On July 17, 2015, Ukrainian separatists announced via
social media1, with video evidence, that they shot down a
military cargo plane in Ukrainian airspace. Evidence suggests
that the downed plane was the commercial Malaysian Airlines
Flight 17 (MH17). The Ukrainian separatists removed from
social media their claim of shooting down what we now know
was a non-military passenger plane. The Internet Archive
[34], using the Heritrix web crawler [33, 41], was crawling
and archiving the social media site twice daily and archived
the claimed credit for downing the aircraft; this is evidence
that Ukrainian separatists shot down MH17 [7]. This (among
others [1]) is an example of the importance of high-fidelity
web archiving to record history and establish evidence of
information published on the web.

However, not all historical events are archived as fortu-
itously as the MH17 example. In an attempt to limit online
piracy and theft of intellectual property, the U.S. Govern-
ment proposed the widely unpopular Stop Online Piracy Act
(SOPA) [37]. While the attempted passing of SOPA may
be a mere footnote in history, the overwhelming protest in
response is significant. On January 18, 2012, many prominent
websites organized a world-wide blackout in protest of SOPA.
Wikipedia blacked out their site by using JavaScript to load a
“splash page” that prevented access to Wikipedia’s content2.

The Internet Archive, using Heritrix, archived the Wikipedia
site during the protest. However, the archived January 18,
2012 page, as replayed in the Wayback Machine [44], does
not include the splash page. Because archival crawlers such
as Heritrix are not able to execute JavaScript, they neither

1VKonkakte, https://vk.com/strelkov_info, is a Russian social media
site.
2Extended examples and figures are omitted in this paper but can be
found in prior works [8, 18].

https://vk.com/strelkov_info

JCDL2017, June 2017, Toronto, Ontario, Canada Justin F. Brunelle, Michele C. Weigle, and Michael L. Nelson

discovered nor archived the splash page. Wikipedia’s protest
as it appeared on January 18, 2012 has been lost from the
archives and without human efforts, would be potentially lost
from human history.

The SOPA protest, like MH17, is an example of an im-
portant historical event. Unlike the MH17 example (which
establishes our need to archive with high fidelity), the SOPA
example is not well represented in the archives. This is a
result of browsers implementing (and content authors adopt-
ing) client-side technologies such as JavaScript faster than
crawlers can adapt to handle the new technologies. This
leads to a difference between the web that crawlers can dis-
cover and the web that human users experience – a challenge
impacting the archives as well as other crawlers (e.g., those
used by search engines). Over time, live web resources have
been more heavily leveraging JavaScript to load embedded
resources [14]. Because JavaScript-dependent representations
are not accessible to archival crawlers, their representations
are not fully archived. Heritrix does not execute any client-
side scripts or use headless or headful browsing technologies.
Even though it does not execute JavaScript, Heritrix v. 3.1.4
does peek into the embedded JavaScript code to extract
links where possible [23]. In contrast, Google’s search engine
crawlers execute JavaScript to discover new URIs to crawl
but does not perform page interactions [9]3.

When the representation is replayed from the archive, the
JavaScript will execute and may issue Ajax requests for a
resource that is on the live web, which leads to one of two
possible outcomes: the live web “leaking” into the archive
leading to an incorrect representation [15], or missing embed-
ded resources (i.e., returns a 400 or 500 class HTTP response)
in the archive leading to an incomplete representation, both
of which result in reduced archival quality [13]. When an
archived deferred representation loads embedded resources
from the live web via leakage, it is a zombie resource, leaving
the representation incorrect, or prima facie violative [3].

We define deferred representations as representations of
resources that rely on JavaScript and other client-side tech-
nologies to initiate requests for embedded resources after
the initial page load [11]. We use the term deferred because
the representation is not fully realized and constructed until
after the JavaScript code is executed on the client. Note
that the mere presence of JavaScript does not indicate that
a representation will be deferred. A deferred representation
may be interactive, but its reliance on Ajax and JavaScript
to initiate HTTP requests for post-load resources makes the
representation deferred.

2 CONTRIBUTIONS
In this paper, we define a representation constructed as a
result of user interaction or other client-side event without a
subsequent request for the resource’s URI as a descendant4

3Search engine crawlers are not incentivized to index embedded re-
sources such as CSS or images while archival crawlers are expected to
discover and index these elements.
4The Dincturk Hypercube model [17] refers to these as AJAX states
or client-side states.

(i.e., a member of the client-side event tree below the root).
Client-side events may also trigger a request for additional
resources to be included in the representation, which leads
to deferred representations.

We explore the number and characteristics of descendants
as they pertain to web archiving, and explore the cost-benefit
trade-off of actively crawling and archiving descendants en
route to a higher quality, more complete archive. Dincturk et
al. [17] constructed a model for crawling Rich Internet Ap-
plications (RIAs) by discovering all possible descendants and
identifying the simplest possible state machine to represent
the states. We explore the archival implementation of their
Hypercube model by discovering client-side states and their
embedded resources to understand the impact that deferred
representations have on the archives.

We evaluate the performance impacts of crawling descen-
dants (i.e., crawl time, depth, and breadth) against the im-
proved coverage of the crawler (i.e., frontier size) along with
the presence of embedded resources unique to descendants
in the Internet Archive, using Heritrix as our web crawler.
We show that there are two levels in the interaction trees of
our URI-Rs. Crawling the descendants leads to 15.6 times
more embedded resources (70.9% of which are available via
onclick events) which are largely unarchived (92% in s1 and
96% in s2).

Throughout this paper we use Memento Framework ter-
minology. Memento [45] is a framework that standardizes
Web archive access and terminology. Original (or live web)
resources are identified by URI-R, and archived versions of
URI-Rs are called mementos and are identified by URI-M.

3 RELATED WORK
Banos et al. [5] created an algorithm to evaluate archival
success based on adherence to standards for the purpose of
assigning an archivability score to a URI-R. In our previous
work [24], we studied the impact of accessibility standards on
archivability and memento completeness. We also measured
the correlation between the adoption of JavaScript and the
number of missing embedded resources in the archives [14].

In previous work [12], we assigned a quantitative metric
to a previously qualitative measurement of memento quality
and measured a reduction in memento quality caused by
JavaScript. Ben Saad and Gançarski [6] performed a similar
study regarding the importance of changes on a page. Gray
and Martin [19] created a framework for high quality me-
mentos and assessed their quality by measuring the missing
embedded resources.

Browsertrix [25] and WebRecorder.io [26] are page-at-a-
time archival tools for deferred representations and descen-
dants, but they require human interaction and are not suit-
able for automated web archiving. Archive.is [4] handles
deferred representations well, but is a page-at-a-time archival
tool and strips out embedded JavaScript from the memento.

Archival Crawlers and JavaScript: Discover More Stuff but Crawl More Slowly JCDL2017, June 2017, Toronto, Ontario, Canada

Stripping the embedded JavaScript leads to potentially re-
duced functionality in the memento and an inability to per-
form a post-mortem analysis of a page’s intended behavior
using the memento.

While the notion of using headless browsing tools has been
previously demonstrated by Archive-It’s use of Umbra to
crawl a human curated set of pre-defined URI-Rs [38] and
Brozzler’s headful or headless crawling [22], our work focuses
on measuring the extent of the archival challenges posed by
JavaScript and the impact of using such headless crawling
tools on mementos. We proposed a two-tiered crawling ap-
proach for autonomously archiving deferred representations
that uses Heritrix and PhantomJS [16]. We measured the
performance impact of incorporating a headless browsing
utility in an archival workflow. Our work demonstrates that
PhantomJS [36] and its headless browsing approach can be
used in conjunction with Heritrix to grow Heritrix’s crawl
frontier by 1.75 times and better archive deferred representa-
tions, but crawls 12.15 times slower than Heritrix alone. We
build on this effort by enhancing the PhantomJS branch of
the archival workflow to learn and execute interactions on
the client similar to the Hypercube model.

Several efforts have studied client-side state. Mesbah et
al. performed several experiments regarding crawling and
indexing representations of web pages that rely on JavaScript
[30, 32] focusing mainly on search engine indexing and au-
tomatic testing [31]. Singer et al. developed a method for
predicting how users interact with pages to navigate within
and between web resources [42]. Rosenthal spoke about the
difficulty of archiving representations reliant on JavaScript
[35, 39]. Rosenthal et al. extended their LOCKSS work to
include a mechanism for handling Ajax [40]. Using CRAWL-
JAX and Selenium to click on DOM elements with onclick
events attached and monitor the HTTP traffic, they capture
the Ajax-specific resources.

In this work, we build on these past investigations to
understand the multiple states that can be discovered on
the client by mapping interaction trees and the additional
resources required to build the descendants.

4 DESCENDANT MODEL
Dincturk et al. [17] present a model for crawling RIAs by
constructing a graph of descendants (they refer to these as
“AJAX states” within the Hypercube model; we use a tree
structure and therefore refer to these as descendants). A RIA
is a resource with descendants and potentially a deferred
representation. The work by Dincturk et al. focuses on
Ajax requests for additional resources initiated by client-side
events which leads to deferred representations with descen-
dants. Their work, which serves as the mathematical foun-
dation for our work, identifies the challenges with crawling
Ajax-based representations and uses a hypercube strategy to
efficiently identify and navigate all client-side states of a de-
ferred representation. Their model defines a client-side state
as a state reachable from a URL through client-side events
and is uniquely identified by the state’s DOM. That is, two

states are identified as equivalent if their DOM (e.g., HTML)
is directly equivalent.

The hypercube model is defined by the finite state machine
(FSM) M = (S, s0, Σ, δ) (Equation 1), where

• S is the finite set of client states
• s0 ∈ S is the initial state reached by dereferencing

the URI-R and executing the initial on-load events
• e ∈ Σ defines the client-side event e as a member of

the set of all events Σ
• δ : SxΣ → S is the transition function in which a

client-side event is executed and leads to a new state

si, sj ∈ S
δ(si, e) = sj

e = client-side event
j = i + 1

(1)

Dincturk et al. define a graph G = (V,E) in which V is
the set of vertices vi ∈ V where vi represents a descendant
si. Edges represent the transitions, or events e such that
(vi, vj ; e) ∈ E IFF δ(si, e) = sj . A path P is a series of edges
that constitute a series of transitions from s0 to si via ei...j .
In effect, P is a series of descendants derived from s0 with
one descendant at each level of the tree.

We make use of the FSM, mathematical model, and the
notion of establishing a graph of state transitions in an RIA
presented by Dincturk et al. However, we adapt portions
to apply to web archiving rather than to state identification
and navigation. Because our application of this FSM is web
archiving, our goal is to identify all of the embedded resources
required by the representation to build any descendant as a
result of user interactions or client-side events, archive them,
and be able to replay them when a user interacts with the
memento. Our model differs in two aspects: the first differ-
ence is in our calculation of state equivalency (see Section 5;
we consider states equivalent only if they require the same
set of embedded resources) and the second difference is our
notation for states reached after a series of events, described
further in this section. In short, we use a tree representation
rather than a hypercube to represent the notional model of
our state transitions; our intent is to discover all possible
states reachable from all possible events to ensure we discover
all possible embedded resources. The need for the exhaustive
breadth and depth of the interactions lends itself to a tree
rather than the hypercube which is designed to eliminate
identical states reached by different events.

The representation returned by simply dereferencing a
URI-R is defined as URI-Rs0 . Subsequent descendants URI-
Rsi and URI-Rsj are derived from URI-Rs0 through a series
of events ei...j ∈ Σ. We define a descendant URI-Rsi as a
client-side state originating at URI-Rs0 as transitioning via
events e such that δ(s0, e) = s1.

Since our model focuses on web archiving rather than
testing and because executing JavaScript by a crawler is
slow, the effort expended by a crawler to discover states
and embedded resources becomes important. We adapt the

JCDL2017, June 2017, Toronto, Ontario, Canada Justin F. Brunelle, Michele C. Weigle, and Michael L. Nelson

notation in our model from the Dincturk et al. model to
identify states reached by the execution of an event (e.g.,
s1 as a state reaching from s0 by executing some e1) in
order to differentiate between candidate members of a path
through a deferred representation as opposed to JavaScript-
based interactions not part of a deferred representation. We
define our paths through G as the set of embedded resources
required to move from s0 to si (that is, starting at s0, an
event moves the state to some vertex Vn in s1).

We present a generic interaction tree of descendants in Fig-
ure 1. When we dereference a URI-R, we get a representation
from the server; this is s0. If there are two interactions avail-
able from s0 (in this example, an onclick and an onmouseover
event), we can execute the interactions to get to Va or Vb
from our root s0 (note that the events required an external
image to be retrieved). In this example, Va (reached from
s0 via onclick1) and Vb (reached from s0 via onmouseover1)
are descendants of s0 and are both s1 in P from s0. If new
interactions are available from Va, we can reach Vc and Vd,
which are both s2 in P from s0 (similarly, we can reach Ve

and Vf from Vb, peers of Vc and Vd).

Figure 1: A generic, three-level client-side state tree with
interactions as state transitions.

5 STATE EQUIVALENCY
Due to the archival focus of this study, we have a differ-
ent concept of state equivalence than the Hypercube model.
While Dincturk establishes state equivalence based on the
DOM (using strict equivalence based on string comparison),
we consider the embedded resources required to construct a
descendant. We consider states to be equivalent if they rely
on the same embedded resources. As such, we define the set
of embedded resources for a descendant sn as Rn.

Any two states with identical unordered sets of embedded
resources are defined as equivalent. Two paths are identical
if, over the course of each sn ∈ P , the cumulative set of
embedded resources required to render each descendant is
identical. With a path P being the series of descendants from
s0 to sn (meaning there is a path Pn for every leaf node in
the tree), we define the set of embedded resources over the
entire path as RP in Equation 2.

RP =

n∈P∑
i=0

Rn (2)

We traverse all states within the interaction tree to under-
stand what embedded resources are required by each state.
If a state s requires a new embedded resource that has not
yet been added to the crawl frontier, it is added as part of
path P . From RP , we identify the archival coverage (using
Memento). We also identify the duplicate URI-Rs by canoni-
calizing, trimming fragment identifiers from the URI-R, and
using string comparisons to determine equality.

As an example, we present the state tree of a Bloomberg.com
page in Figure 2. At s0, the page has a menu at the top
of the page with a mouseover event listener. Mousing over
the labels initiates Ajax requests for JSON data, and the
data is used to populate a sub-menu (s1). The sub-menu
has another mouseover menu that requests images and other
JSON data to display new information, such as stock market
data and movie reviews (s2). Note that s1 and s2 are very
broad given the number of menu items. This is an exam-
ple of P through two levels of mouseover interactions that
leads to new JSON and image embedded resources. While
archival crawlers are motivated to discover and store the
images, search engine crawlers are more interested in the
initial representation rather than the embedded resources.

The page also has onclick events (not shown in Figure 2).
These onclick events also lead to descendants at s1, but not s2.
However, the onclick events lead to equivalent descendants
that we identify as equivalent.

6 APPROACH
To measure descendants, we needed to construct a tool that
can crawl, uncover, and understand descendants and deferred
representations. We have previously shown that PhantomJS
is an effective utility for crawling deferred representations [16].
We constructed a PhantomJS-based utility that dereferences
a URI-R, identifies the interactive portions of the DOM (i.e.,
the DOM elements with event listeners), and constructs a tree
of descendants, reached via initiating interactions and client-
side events (just as in the Hypercube model). PhantomJS
records the set of embedded resources requested by the client;
in a production system, this would be the set of resources
added to the Heritrix crawl frontier.

Because PhantomJS is closely tied to the DOM and client’s
JavaScript engine, race conditions and other event listener
assignments prevents PhantomJS from understanding the
entirety of events available on a representation. As such, we
leveraged VisualEvent, a bookmarklet that is designed to
visually display the DOM elements that have event listen-
ers and JavaScript functions attached, to understand which
events and interactions can be executed on the client [10].
Our PhantomJS tool uses the list of events identified by Vi-
sualEvent to construct a set of interactions E that may lead
to descendants. PhantomJS performs an exhaustive depth-
first traversal of all possible combinations of interactions.
Post-mortem, we perform state equivalence and identify the

Archival Crawlers and JavaScript: Discover More Stuff but Crawl More Slowly JCDL2017, June 2017, Toronto, Ontario, Canada

Figure 2: Example state tree of http://www.bloomberg.com/bw/articles/2014-06-16/open
-plan-offices-for-people-who-hate-open-plan-offices. Mouseover events lead to multiple descendants at s1 and
further mouseover events lead to descendants at s2, each requiring Ajax requests for JSON and image resources.

number of unique paths P , states sn, and embedded re-
sources RP that a crawler would have to visit in order to
comprehensively archive the resources needed to provide full
functionality in a memento.

We use the same 440 URI-R dataset from our prior in-
vestigation of crawling deferred representations [16]. We
generated URI-Rs by randomly generating Bitly strings and
identifying their redirection targets. We used PhantomJS
to identify each URI-R as having a deferred or nondeferred
representation and identify the number and type of descen-
dants and interactions available on the representations of
URI-Rs in this set, along with the descendants within the
interaction tree and embedded resources required to build
the descendant representations.

We consider a descendant that is a candidate to add to
the tree identical to another descendant within the tree if the
set of interactions to reach the descendant are identical. If
we encounter a potential descendant that is reachable by the
same interactions as another descendant within the tree, we
do not add the descendant to the tree because the descendant
already exists within the tree5.

To crawl descendants, we begin by using PhantomJS to
dereference a URI-R at s0, and use VisualEvent to extract the
interactive elements. We identify all possible combinations
5Note that this refers to equivalency of interaction scripts, meaning
the crawler should not visit this state, rather than two states that are
reached with different interactions but have the same sets of embedded
resources (Section 5).

of interactions and use them as an interaction frontier, and
iterate through the interaction frontier to crawl s1. From s1,
we extract all possible interactions available and add them to
the interaction frontier. We iterate through the interaction
frontier until we have exhausted all possible combinations of
interactions at each sn. At the end of each sn construction,
we run state deduplication. We deem two interaction scripts
as equivalent if they perform identical actions in identical
order ({ei, ei+1, ..., ei + n} = {ej , ej+1, ..., ej + n}).

7 EDGE CASES
The approach that we identify in Section 6 is suitable for
most of the deferred representations that a web user may
encounter while browsing. However, deferred representations
with certain conditions are not handled by our approach.
Some representations use a DIV overlayed on the entire
window area and identify interactions and events according
to the pixel the user clicks. This creates an interaction
frontier of (Width×Height)! or 2, 073, 600! for a screen size of
1920× 1080 pixels. Due to this massive frontier size, we omit
such interactions. Mapping (e.g., Google Maps) and similar
applications that might have a near-infinite descendants are
outside the scope of this work.

For these style of deferred representations, a canned set of
interactions (e.g., pan once, zoom twice, pan again) would be
more useful [10]. With enough of these canned interactions,
a sizable portion of the descendants can be identified by a

JCDL2017, June 2017, Toronto, Ontario, Canada Justin F. Brunelle, Michele C. Weigle, and Michael L. Nelson

Event Type Deferred Nondeferred
Average s Average s

Depth 0.47 0.5 0 0
Breadth 36.16 97.15 0.53 2.62
Descendants 38.5 780.72 0.62 2.81

Table 1: The average distribution of descendants within the
deferred representation URI-R set.

States Deferred Nondeferred
Min 0 0
Max 7,308 13
Median 1 (occurrences 17) 0 (occurrences 119)

Table 2: The range of descendants varies greatly among the
deferred representations.

crawler over time, with coverage scaling with the number
of executions performed. This is the archival equivalent of
the Halting Problem – it is difficult to recognize when the
crawler has captured enough of the embedded resources, when
it should stop, or when it has captured everything.

8 DESCENDANT STATES
During our crawl of the 440 URI-Rs, we classified each as
having a deferred or nondeferred representation. As previ-
ously discussed, URI-Rs with deferred representations will
have an event that causes the JavaScript and Ajax in the
representation to request additional resources. We derefer-
enced each of our 440 URI-Rs and identified 137 URI-Rs with
nondeferred representations and 303 URI-Rs with deferred
representations.

8.1 Dataset Differences
The nondeferred URI-Rs have a much smaller graph of de-
scendants, and therefore we expect them to be easier to
crawl. The nondeferred representation set of URI-Rs had
|Sdescendants| = 0.62 per URI-R (s = 2.81, M = 101) as
shown in Table 1. Nondeferred representations have a depth
(i.e., max length of the P) of 0 (after state deduplication)
since there are no new states reached as a result of the first
round of interactions (that is, the set of interactions avail-
able in the initial representation does not grow as a result
of subsequent interactions). Nondeferred representations
have descendants at s1 but the descendants do not result
in additional embedded resources. However, there are 0.53
interactions or events in s0 that, without our a priori knowl-
edge of the dataset, may lead to new states or event-triggered
requests for new embedded resources.

Deferred representations are much more complex, with
|Sdescendants| = 38.5 per URI-R (s = 780.72). The standard
deviation of the sample is quite large, with the number of
states varying greatly from resource to resource. For example,
the maximum number of descendants for a URI-R is 7,308
(Table 2). Further, there are many interactions available

Event Type Percent of URI-Rs Contribution
Deferred Nondeferred to RPnew

click 62.11% 4.29% 63.2%
mouseover 25.26% 3.00% 4.7%
mousedown 16.84% 1.72% 2.8%
blur 14.74% 0.86% 9.8%
change 11.58% 2.14% 0.0%
mouseout 8.42% 0.00% 0.8%
submit 6.32% 0.00% 0.0%
unload 5.26% 0.00% 1.2%
keydown 4.21% 0.00% 0.2%
focus 4.21% 0.00% 0.0%
keypress 2.11% 0.00% 5.5%
focusout 1.05% 0.00% 0.0%
dblclick 1.05% 0.00% 0.0%
submit 0.10% 0.43% 0.9%
mouseup 0.00% 0.86% 0.0%
focus 0.00% 0.43% 0.0%
other 29.47% 0.86% 11.0%

Table 3: Breakdown of the URI-Rs with various events at-
tached to their DOMs and the percent of all new embedded
resources contributed by the events.

in deferred representations (36.16 per URI-R). Surprisingly,
deferred representations are relatively shallow, with an aver-
age depth of 0.47 levels beyond the first set of interactions
per URI-R (s = 0.5) and a maximum path depth of 2. This
is counter to our initial intuition that deferred representa-
tions would have large, deep trees of interactions to traverse
to retrieve all of the possible embedded resources for all
descendants6.

The types of events on the client also vary depending
on the event that is executed to create the new sn. For
example, onclick events are prevalent in URI-Rs with deferred
representations, with 62.11% of all URI-Rs containing an
onclick event (Table 3). Even in the nondeferred set of URI-
Rs, 4.29% of the URI-Rs have an onclick event attached to
their DOM. While other events occur with relative frequency,
clicks dominate the initiated requests for additional embedded
resources in deferred representations (Table 3), with onclick
events being responsible for initiating the requests for 63.2%
of new embedded resources (and, by definition, 0% in the
nondeferred representation set). Recall that Rosenthal et al.
are using only click interactions to interact with pages. Table
3 suggests that their approach is effective considering most
events are onclick events and the highest value target event
(i.e., the most embedded resources are discovered through
onclick events).

8.2 Traversing Paths
As we discussed in Section 5, P identifies a unique navigation
through descendants to uncover the URI-Rs of new embedded
resources. In our dataset, we uncovered 8,691 descendants
6Our dataset and toolset omits the edge cases in Section 7.

Archival Crawlers and JavaScript: Discover More Stuff but Crawl More Slowly JCDL2017, June 2017, Toronto, Ontario, Canada

(8,519 for the deferred set, 172 for the nondeferred set) as
a result of client-side events, which is 19.7 descendants per
URI-R. However, we only identified 2,080 paths through these
descendants to uncover all of the new embedded resources,
which is 4.7 paths per URI-R.

Nondeferred representations have more embedded resources
(R0= 31.02 per URI-R) than their deferred counterparts
(R0= 25.39 per URI-R) at their initial s0. The paths P
through the descendants are responsible for uncovering 54,378
new embedded resources (out of 66,320 total). That is,
|R0|=11,942 (7,692 from the deferred representations and
4,350 from the nondeferred representations), |R0+R1|=56,957,
and |R0+R1+R2|=|RP |=66,320. This shows that traversing
Pn to reach s1 and s2 will significantly increase the crawl
frontier beyond the base case of s0, but crawling s1 provides
larger contributions to the frontier than both s0 and s2. As
we mentioned in Section 8.1, the depth of the deferred repre-
sentations was shallow (max(|P |)=2). However, the majority
of the URI-Rs added to the crawl frontier were identified by
exploring the paths P of the descendants.

Note that out of the total 8,691 total descendants, the
nondeferred representations have only 138 occurrences of
s0 and 34 occurrences of s1. The deferred representations
have 6,051 occurrences of s1 and 2,468 occurrences of s2.
Following P through each s1 adds R1=53,706 URI-Rs to the
crawl frontier, or 8.88 URI-Rs per descendant. This shows
that deferred representations have many more descendants
than nondeferred representations. Since R2=10,208, we add,
on average, 4.14 new URI-Rs to the frontier per s2 followed
in P . According to these averages, crawling s1 provides the
largest benefit to the crawl frontier. If we consider only the
2,080 paths that lead to new embedded resources, we would
add 30.73 URI-Rs to the crawl frontier per P .

8.3 Impact on Crawl Time
Our prior work [16] measured crawl times for Heritrix and
PhantomJS, including deferred and nondeferred representa-
tions. We measured that Heritrix is 12.15 times faster than
PhantomJS (2.065 URIs/second versus 0.170 URIs/second,
respectively). Using these results and the set of states S that
PhantomJS can uncover and visit, we calculate the expected
frontier size and crawl time that we can expect during a crawl
of our 440 URI-Rs. Using these metrics, we calculated the
s0 crawl time for Heritrix-only crawls, PhantomJS crawls of
only the URI-Rs with deferred representations, and s1 and
s2 uncovered by our PhantomJS utility.

As we note in Table 4, s1 has the greatest addition to the
crawl frontier. As shown in Table 4, crawling s0, s1, and s2
will lead to a crawl time 38.9 times longer than using only
Heritrix to perform the crawl, but will also discover and add
to the crawl frontier 15.60 times more URI-Rs. Alternatively,
crawling only s0 and s1 will have a crawl time 27.04 times
longer than Heritrix-only crawls, but will add 13.40 times
more URI-Rs to the frontier for an improved frontier size
return on the time-based crawling investment.

H-
only

s0 s1 s2

Time (s) 1,035 8,452 27,990 40,258
Size (URI-Rs) 4,250 11,942 56,957 66,320
Time Increase - 8.12x 27.04x 38.90x
Size Increase - 2.81x 13.40x 15.60x
Growth rate per
added unit time

- 0.35x 0.50x 0.40x

Table 4: The increases in run time and frontier size relative
to the Heritrix-only (H-only) run.

Figure 3: Embedded resources discovered in s1 and s2 are
much more frequently unarchived (92% and 96%, respec-
tively) than s0 (12% unarchived).

9 ARCHIVAL COVERAGE
While the increases in frontier size as presented in Section 8
appear impressive, we can only identify the impact on the
archives’ holdings by identifying which embedded resources
have mementos in today’s archives (i.e., are shown to have
been previously discovered). We used Memento to retrieve the
TimeMap of each embedded resource’s URI-R to determine
whether the embedded resource had any mementos (i.e., has
been archived before) or if the resource identified by the
URI-R has not been previously archived.

The embedded resources from our entire set of 440 URI-Rs
are very well archived – only 12% of the set of embedded
resources in s0 do not have a memento. This is consistent
with the archival rates of resources from our prior studies
[2, 14]. We only consider the new embedded resources in
the descendants in s1 and s2. That is, we only consider the
embedded resources added to the descendant that were not
present in the previous state, or the set of resources Rn+1
not a subset of the previous state’s Rn. More formally, we
define new embedded resources Rnew in Equation 3.

Rnew = ∀r ∈ (Rn+1 −Rn), n ≥ 0 (3)

However, the archival coverage of s1 and s2 is much lower,
with 92% of Rnew in s1 missing from the archives (i.e., the
URI-R of the embedded resource does not have a memento),
and 96% of Rnew in s2 missing from the archives. This

JCDL2017, June 2017, Toronto, Ontario, Canada Justin F. Brunelle, Michele C. Weigle, and Michael L. Nelson

URI-R Occurrences
ads.pubmatic.com/AdServer/
js/showad.js#PIX&kdntuid=
1&p=52041&s=undefined&a=
undefined&it=0

1782

edge.quantserve.com/quant.js 1656
www.benzinga.com/ajax-cache/
market-overview/index-update

1629

ads.pubmatic.com/AdServer/js/
showad.js

1503

www.google-analytics.com/
analytics.js

1330

b.scorecardresearch.com/beacon.js 1291
www.google-analytics.com/ga.js 1208
www.google.com/pagead/drt/ui 1151
js.moatads.com/
advancedigital402839074273/
moatad.js

1112

a.postrelease.com/serve/load.js?
async=true

907

Total 12,239
Table 5: The top 10 URI-Rs that appear as embedded re-
sources in descendants make up 22.4% of all resources added
to the crawl frontier.

demonstrates that the embedded resources required to con-
struct descendants are not well archived. Because s0 is highly
visible to crawlers such as Heritrix and archival services like
Archive.is [4], it is archived at a much higher rate than the
descendants (Figure 3).

In deferred representations, the unarchived embedded re-
sources are most frequently images (Figure 4), with additional
JavaScript files edging out HTML as the second most fre-
quently unarchived MIME-type. The unarchived images
specific to deferred representations vary in size between near
0B to 4.6MB, and average 3.5KB. The majority of images
are small in size but several are quite large and presumably
important (according to our importance metric Dm which
evaluates the relative importance of embedded resources [13]).

We also observe a large amount of overlap between the
embedded resources among descendants. For example, the
top 10 embedded resources and their occurrence counts are
provided in Table 5 (we trim the session-specific portions of
the URI-Rs for comparison purposes). In all, just the top
10 occurring embedded resources account for 22.4% of Rnew

discovered by traversing through the paths. In theory, if we
can archive these embedded resources once, they should be
available for their peer mementos while in the archives.

The resources in Table 5 are mostly ad servers and data
services such as Google Analytics 7. The top 300 occurring
embedded resources in our entire crawl frontier are graphed –
in order of most frequent to least frequently occurring – in

7We have previously demonstrated the value of archiving advertise-
ments and other data services [11].

Figure 4: Images, JavaScript, and HTML are the most fre-
quently occurring unarchived resources in deferred represen-
tations, with some unarchived images being quite large.

Figure 5: The occurrence of embedded resources loaded into
deferred representation descendants.

Figure 5. We also measured the number of Rnew and the
deduplicated crawl frontier if we crawl all descendants with
deferred representations per URI-R. The largest 10% of our
frontier contributes 91% of RP ; that is, a large portion of
the discovered crawl frontier is shared by our seed list.

10 STORING DESCENDANTS
The International Internet Preservation Consortium proposed
[20, 21] an additional set of JSON metadata to better rep-
resent deferred representations and descendants in WARCs
[43]. We adapt the metadata to describe descendants and
include the interactions, state transitions, rendered content,
and interactive elements (Table 6).

We present a summary of the storage requirements for
descendants in Table 7. If we write out the JSON describing
the states, transitions, rendered content, and other informa-
tion, it would add, on average, 16.45 KB per descendant or
memento. With 8,691 descendants, a total of 143 MB of
storage space will be required just for the metadata, along
with the storage space for the representations of the 54,378
new embedded resources.

The embedded resources discovered in our crawl average
2.5 KB in size. The embedded resources at s0 were 2.6 KB
on average, and the newly discovered embedded resources,

ads.pubmatic.com/AdServer/js/showad.js#PIX&kdntuid=1&p=52041&s=undefined&a=undefined&it=0
ads.pubmatic.com/AdServer/js/showad.js#PIX&kdntuid=1&p=52041&s=undefined&a=undefined&it=0
ads.pubmatic.com/AdServer/js/showad.js#PIX&kdntuid=1&p=52041&s=undefined&a=undefined&it=0
ads.pubmatic.com/AdServer/js/showad.js#PIX&kdntuid=1&p=52041&s=undefined&a=undefined&it=0
edge.quantserve.com/quant.js
www.benzinga.com/ajax-cache/market-overview/index-update
www.benzinga.com/ajax-cache/market-overview/index-update
ads.pubmatic.com/AdServer/js/showad.js
ads.pubmatic.com/AdServer/js/showad.js
www.google-analytics.com/analytics.js
www.google-analytics.com/analytics.js
b.scorecardresearch.com/beacon.js
www.google-analytics.com/ga.js
www.google.com/pagead/drt/ui
js.moatads.com/advancedigital402839074273/moatad.js
js.moatads.com/advancedigital402839074273/moatad.js
js.moatads.com/advancedigital402839074273/moatad.js
a.postrelease.com/serve/load.js?async=true
a.postrelease.com/serve/load.js?async=true

Archival Crawlers and JavaScript: Discover More Stuff but Crawl More Slowly JCDL2017, June 2017, Toronto, Ontario, Canada

Field Name Data within field
startedDateTime Timestamp of interactions (no

change from WARC Spec)
id ID of sn represented by these inter-

actions and resulting Rn.
title URI-R of the descendant
pageTimings Script of interactions (as CSV) to

reach sn from s0. E.g., click button
A, click button B, then double click
image C.

comment Additional information
renderedContent The resulting DOM of sn.
renderedElements RP from s0 to sn.
map The set of interactions available

from sn that will transition to sn+1.
Table 6: JSON object with the IIPC-proposed metadata fields
representing sn stored as the deferred representation meta-
data of a WARC.

as a result of deferred representations, were 2.4 KB in size
on average. We estimate that nondeferred representations,
which have 31.02 embedded resources on average, would
require 80.7 KB per URI-R, or 11.1 MB of storage for the 137
URI-Rs in the collection. The storage requirement increases
to 13.4 MB with the additional metadata.

Deferred representations have 25.4 embedded resources
at s0, or 70.0 KB per URI-R. For the 303 URI-Rs in the
collection, s0 would require 21.21 MB of storage. In s1, the
crawl discovered 45,015 embedded resources which requires
108.0 MB of additional storage, and 9,363 embedded resources
at s2, or an additional 22.5 MB of storage. In all, deferred
representations require 151.71 MB of storage for the entire
collection and all crawl levels. This is 11.3 times more storage
than is required for the nondeferred representations, or 5.12
times more storage per URI-R crawled.

If we consider the July 2015 Common Crawl [29] as repre-
sentative of what an archive might be able to crawl in one
month (145 TB, 1.81 billion URIs), an archive would require
597.4 TB of additional storage (for a total of 742.4 TB) to
house descendants and metadata. If we assume that the July
crawl is a representative sample, an archive would need 7.17
PB of additional storage per year. Alternatively, can also say
that an archive will miss 7.17 PB of data per year because
of deferred representations.
11 CONCLUSIONS
In this paper, we present a model for crawling deferred rep-
resentations by identifying interactive portions of pages and
discovering descendants. We adapt prior work by Dincturk et
al. and present a FSM to describe descendants and estimate
storage requirements for the descendants.

We show that the deferred representations from our 440
URI-R sample set have 38.5 descendants per URI-R, and are
surprisingly shallow, only reaching a depth of two levels. This
means that these deferred representations are shallower than

Storage Target Size
JSON Metadata per descen-
dant/memento

16.5 KB

JSON Metadata of all descendants 143 MB
Nondeferred (137 URIs)

Average Embedded Resource 2.5 KB
Embedded Resources per URI 80.7 KB
Total embedded resource storage 11.1 MB
Total with JSON Metadata 13.4 MB

Deferred (303 URIs)
Average Embedded Resource 2.6 KB
Embedded Resources per URI 70.0 KB
Embedded resource storage s0 21.21 MB
Embedded resource storage s1 108.0 MB
Embedded resource storage s2 22.5 MB
Total with JSON Metadata 151.71 MB

Table 7: The storage impact of deferred representations and
their descendants is 5.12 times higher per URI-R than archiv-
ing nondeferred representations.

originally anticipated (but also very broad) and therefore
it is more feasible to completely archive deferred represen-
tations using automated methods than previously thought.
Archives that do not execute JavaScript during archiving are
incomplete; 69% of URIs have descendants and 96% of the
embedded resources in those descendants are not archived.

Crawling all descendants is 38.9 times slower than crawling
with only Heritrix, but adds 15.60 times more URI-Rs to the
crawl frontier than Heritrix alone.

Crawling all descendants in the sample is 38.9 times slower
than crawling with only Heritrix, but adds 15.60 times more
URI-Rs to the crawl frontier than Heritrix alone. However,
most of Rnew (newly discovered by traversing the paths) are
unarchived (92% unarchived, and assumed to be undiscovered,
at s1 and 96% at s2). However, 22.4% of the newly discovered
URI-Rs match one of the top 10 occurring URI-Rs, indicating
a high amount of overlap within RP ; mostly, these are ad
servers and data-services like Google Analytics.

In the future, we will work to incorporate PhantomJS into
a web crawler to measure the actual benefits and increased
archival coverage realized when crawling deferred represen-
tations. We will also work to develop an approach to solve
our current edge cases (Section 7), including a way to handle
applications like mapping applications using our automated
approach along with an approach using “canned interactions”.
Our goal is to understand how many executions of canned
interactions are necessary to uncover an acceptable threshold
of embedded resources (e.g., how many pans and zooms are
needed to get all Google Maps tiles for all of Norfolk, VA,
USA?). We will also investigate filling out forms similar to
Rosenthal et al. [40].

Our work presented in this paper provides measurements
for a well-known phenomenon as it occurs in a small sample
of URI-Rs, establishes an understanding of how much web
archives and crawlers are missing by not accurately crawling

JCDL2017, June 2017, Toronto, Ontario, Canada Justin F. Brunelle, Michele C. Weigle, and Michael L. Nelson

deferred representations, and presents a process for better
archiving descendants. We demonstrate that archiving de-
ferred representation is a less daunting task with regards to
crawl time than previously thought, with fewer levels of inter-
actions required to discover all descendants. The increased
frontier size and associated metadata will introduce storage
challenges with deferred representations requiring 5.12 times
more storage.

12 ACKNOWLEDGMENTS
This work was supported in part by NSF 1526700 and NEH
HK-50181. The author’s affiliation with The MITRE Corpo-
ration is provided for identification purposes only, and is not
intended to convey or imply MITRE’s concurrence with, or
support for, the positions, opinions or viewpoints expressed
by the author. Approved for Public Release; Distribution
Unlimited. Case Number 16-1039.

REFERENCES
[1] S. Ainsworth. Web Archiving in Popular Media. http://ws-dl.

blogspot.com/2016/09/web-archiving-in-popular-media.html,
2016.

[2] S. Ainsworth, A. Alsum, H. SalahEldeen, M. C. Weigle, and M. L.
Nelson. How much of the Web is archived? In Proceedings of
the JCDL 2011, pages 133–136, 2011.

[3] S. Ainsworth, M. L. Nelson, and H. Van de Sompel. A frame-
work for evaluation of composite memento temporal coherence.
Technical Report arXiv:1402.0928, arXiv, 2014.

[4] Archive.is. Archive.is. http://archive.is/, 2013.
[5] V. Banos and Y. Manolopoulos. A Quantitative Approach to Eval-

uate Website Archivability Using the CLEAR+ Method. IJDL,
17(2), pages 119–141, 2015.

[6] M. Ben Saad and S. Gançarski. Archiving the web using page
changes patterns: A case study. In Proceedings of the JCDL
2011, pages 113–122, 2011.

[7] A. Bright. Web evidence points to pro-Russia rebels in
downing of MH17. http://www.csmonitor.com/World/
Europe/2014/0717/Web-evidence-points-to-pro-Russia-rebels
-in-downing-of-MH17-video, 2014.

[8] J. F. Brunelle. Replaying the SOPA Protest. http://ws-dl.
blogspot.com/2013/11/2013-11-28-replaying-sopa-protest.html,
November 2013.

[9] J. F. Brunelle. Google and JavaScript. http://ws-dl.blogspot.
com/2014/06/2014-06-18-google-and-javascript.html, 2014.

[10] J. F. Brunelle. PhantomJS+VisualEvent or Selenium
for Web Archiving? http://ws-dl.blogspot.com/2015/06/
2015-06-26-phantomjsvisualevent-or.html, 2015.

[11] J. F. Brunelle. Scripts in a Frame: A Framework for Archiving
Deferred Representations PhD Dissertation, 2016.

[12] J. F. Brunelle, M. Kelly, H. SalahEldeen, M. C. Weigle, and M. L.
Nelson. Not All Mementos Are Created Equal: Measuring The
Impact Of Missing Resources. In Proceedings of JCDL 2014,
pages 321 – 330, 2014.

[13] J. F. Brunelle, M. Kelly, H. SalahEldeen, M. C. Weigle, and M. L.
Nelson. Not All Mementos Are Created Equal: Measuring The
Impact Of Missing Resources. IJDL, 16(3), pages 283–301, 2015.

[14] J. F. Brunelle, M. Kelly, M. C. Weigle, and M. L. Nelson. The
Impact of JavaScript on Archivability. IJDL, 17(2), pages 95–117,
2015.

[15] J. F. Brunelle and M. L. Nelson. Zombies in the archives. http:
//ws-dl.blogspot.com/2012/10/2012-10-10-zombies-in-archives.
html, 2012.

[16] J. F. Brunelle, M. C. Weigle, and M. L. Nelson. Archiving
Deferred Representations Using a Two-Tiered Crawling Approach.
In Proceedings of iPRES 2015, 2015.

[17] M. E. Dincturk, G.-V. Jourdan, G. V. Bochmann, and I. V. Onut.
A Model-Based Approach for Crawling Rich Internet Applications.
ACM Transactions on the Web, 8(3):19:1–19:39, July 2014.

[18] D. A. Fahrenthold. SOPA protests shut down
Web sites. http://www.washingtonpost.com/politics/

sopa-protests-to-shut-down-web-sites/2012/01/17/
gIQA4WYl6P_story.html, January 2012.

[19] G. Gray and S. Martin. Choosing a sustainable web archiving
method: A comparison of capture quality. D-Lib Magazine, 19(5),
May 2013.

[20] IIPC. Minutes of the WARC revision workshop. http:
//iipc.github.io/warc-specifications/specifications/warc-format/
meetings/2015-05-01-IIPC-GA-WARC-Meeting-Minutes/, 2015.

[21] IIPC. Proposal for Standardizing the Recording Rendered Tar-
gets. http://nlevitt.github.io/warc-specifications/specifications/
warc-rendered-targets/recording-screenshots.html, 2015.

[22] Internet Archive. Brozzler. https://github.com/internetarchive/
brozzler, 2017.

[23] P. Jack. Extractorhtml extract-javascript. https://webarchive.jira.
com/wiki/display/Heritrix/ExtractorHTML+extract-javascript,
2014.

[24] M. Kelly, J. F. Brunelle, M. C. Weigle, and M. L. Nelson. On the
Change in Archivability of Websites Over Time. In Proceedings
of TPDL 2013, pages 35–47, 2013.

[25] I. Kreymer. Browsertrix: Browser-Based On-Demand Web Archiv-
ing Automation. https://github.com/ikreymer/browsertrix, 2015.

[26] I. Kreymer. Webrecorder.io. https://webrecorder.io/, 2015.
[27] A. LaFrance. Raiders of the Lost Web. http://www.theatlantic.

com/technology/archive/2015/10/raiders-of-the-lost-web/
409210/, 2015.

[28] J. Lepore. The Cobweb: Can the Internet be Archived? The
New Yorker, January 26, 2015.

[29] S. Merity. July 2015 Crawl Archive Available. http://blog.
commoncrawl.org/2015/08/july-2015-crawl-archive-available/,
2015.

[30] A. Mesbah, E. Bozdag, and A. van Deursen. Crawling Ajax by
inferring user interface state changes. In Proceedings of ICWE
2008, pages 122 –134, 2008.

[31] A. Mesbah and A. van Deursen. Invariant-based automatic testing
of Ajax user interfaces. In Proceedings of CSMR 2009, pages
210–220, 2009.

[32] A. Mesbah, A. van Deursen, and S. Lenselink. Crawling Ajax-
Based Web Applications Through Dynamic Analysis of User
Interface State Changes. ACM Transactions on the Web, 6(1):3:1–
3:30, Mar. 2012.

[33] G. Mohr, M. Kimpton, M. Stack, and I. Ranitovic. Introduction
to Heritrix, an archival quality web crawler. In Proceedings of
IWAW 2004, 2004.

[34] K. C. Negulescu. Web Archiving @ the Internet Archive. Presen-
tation at the 2010 Digital Preservation Partners Meeting, 2010.

[35] NetPreserve.org. IIPC Future of the Web Workshop – Introduc-
tion & Overview, 2012.

[36] PhantomJS. http://phantomjs.org/, 2013.
[37] N. Potter. Wikipedia Blackout: Websites Wikipedia,

Reddit, Others Go Dark Wednesday to Protest
SOPA, PIPA. http://abcnews.go.com/Technology/
wikipedia-blackout-websites-wikipedia-reddit-dark-wednesday-
protest/story?id=15373251, January 2012.

[38] S. Reed. Introduction to Umbra. https://webarchive.jira.com/
wiki/display/ARIH/Introduction+to+Umbra, 2014.

[39] D. S. H. Rosenthal. Talk on Harvesting the Fu-
ture Web at IIPC2013. http://blog.dshr.org/2013/04/
talk-on-harvesting-future-web-at.html, 2013.

[40] D. S. H. Rosenthal, D. L. Vargas, T. A. Lipkis, and C. T. Griffin.
Enhancing the LOCKSS Digital Preservation Technology. D-Lib
Magazine, 21(9/10), September/October 2015.

[41] K. Sigurðsson. Incremental crawling with Heritrix. In Proceedings
of IWAW 2005, 2005.

[42] P. Singer, D. Helic, A. Hotho, and M. Strohmaier. HypTrails:
A Bayesian Approach for Comparing Hypotheses About Human
Trails on the Web. In Proceedings of WWW 2015, pages 1003–
1013, 2015.

[43] Technical Committee ISO/TC 46. The WARC File Format
(ISO 28500). http://bibnum.bnf.fr/warc/WARC_ISO_28500_
version1_latestdraft.pdf, 2008.

[44] B. Tofel. ‘Wayback’ for Accessing Web Archives. In Proceedings
of IWAW 2007, 2007.

[45] H. Van de Sompel, M. L. Nelson, R. Sanderson, L. L. Balakireva,
S. Ainsworth, and H. Shankar. Memento: Time Travel for the
Web. Technical Report arXiv:0911.1112, Los Alamos National
Laboratory, 2009.

http://ws-dl.blogspot.com/2016/09/web-archiving-in-popular-media.html
http://ws-dl.blogspot.com/2016/09/web-archiving-in-popular-media.html
http://archive.is/
http://www.csmonitor.com/World/Europe/2014/0717/Web-evidence-points-to-pro-Russia-rebels
http://www.csmonitor.com/World/Europe/2014/0717/Web-evidence-points-to-pro-Russia-rebels
-in-downing-of-MH17-video
http://ws-dl.blogspot.com/2013/11/2013-11-28-replaying-sopa-protest.html
http://ws-dl.blogspot.com/2013/11/2013-11-28-replaying-sopa-protest.html
http://ws-dl.blogspot.com/2014/06/2014-06-18-google-and-javascript.html
http://ws-dl.blogspot.com/2014/06/2014-06-18-google-and-javascript.html
http://ws-dl.blogspot.com/2015/06/2015-06-26-phantomjsvisualevent-or.html
http://ws-dl.blogspot.com/2015/06/2015-06-26-phantomjsvisualevent-or.html
http://ws-dl.blogspot.com/2012/10/2012-10-10-zombies-in-archives.html
http://ws-dl.blogspot.com/2012/10/2012-10-10-zombies-in-archives.html
http://ws-dl.blogspot.com/2012/10/2012-10-10-zombies-in-archives.html
http://www.washingtonpost.com/politics/sopa-protests-to-shut-down-web-sites/2012/01/17/gIQA4WYl6P_story.html
http://www.washingtonpost.com/politics/sopa-protests-to-shut-down-web-sites/2012/01/17/gIQA4WYl6P_story.html
http://www.washingtonpost.com/politics/sopa-protests-to-shut-down-web-sites/2012/01/17/gIQA4WYl6P_story.html
http://iipc.github.io/warc-specifications/specifications/warc-format/meetings/2015-05-01-IIPC-GA-WARC-Meeting-Minutes/
http://iipc.github.io/warc-specifications/specifications/warc-format/meetings/2015-05-01-IIPC-GA-WARC-Meeting-Minutes/
http://iipc.github.io/warc-specifications/specifications/warc-format/meetings/2015-05-01-IIPC-GA-WARC-Meeting-Minutes/
http://nlevitt.github.io/warc-specifications/specifications/warc-rendered-targets/recording-screenshots.html
http://nlevitt.github.io/warc-specifications/specifications/warc-rendered-targets/recording-screenshots.html
https://github.com/internetarchive/brozzler
https://github.com/internetarchive/brozzler
https://webarchive.jira.com/wiki/display/Heritrix/ExtractorHTML+extract-javascript
https://webarchive.jira.com/wiki/display/Heritrix/ExtractorHTML+extract-javascript
https://github.com/ikreymer/browsertrix
https://webrecorder.io/
http://www.theatlantic.com/technology/archive/2015/10/raiders-of-the-lost-web/409210/
http://www.theatlantic.com/technology/archive/2015/10/raiders-of-the-lost-web/409210/
http://www.theatlantic.com/technology/archive/2015/10/raiders-of-the-lost-web/409210/
http://blog.commoncrawl.org/2015/08/july-2015-crawl-archive-available/
http://blog.commoncrawl.org/2015/08/july-2015-crawl-archive-available/
http://phantomjs.org/
http://abcnews.go.com/Technology/wikipedia-blackout-websites-wikipedia-reddit-dark-wednesday-
http://abcnews.go.com/Technology/wikipedia-blackout-websites-wikipedia-reddit-dark-wednesday-
protest/story?id=15373251
https://webarchive.jira.com/wiki/display/ARIH/Introduction+to+Umbra
https://webarchive.jira.com/wiki/display/ARIH/Introduction+to+Umbra
http://blog.dshr.org/2013/04/talk-on-harvesting-future-web-at.html
http://blog.dshr.org/2013/04/talk-on-harvesting-future-web-at.html
http://bibnum.bnf.fr/warc/WARC_ISO_28500_version1_latestdraft.pdf
http://bibnum.bnf.fr/warc/WARC_ISO_28500_version1_latestdraft.pdf

	Abstract
	1 Introduction
	2 Contributions
	3 Related Work
	4 Descendant Model
	5 State Equivalency
	6 Approach
	7 Edge Cases
	8 Descendant States
	8.1 Dataset Differences
	8.2 Traversing Paths
	8.3 Impact on Crawl Time

	9 Archival Coverage
	10 Storing Descendants
	11 Conclusions
	12 Acknowledgments
	References

