The PageRank Citation Ranking: Bringing Order to the Web

by

Lawrence Page, Sergey Brin, Rajeev Motwani, Terry Winograd

presented by

Martin Klein, Santosh Vuppala
{mklein, svuppala}@cs.odu.edu

ODU, Norfolk, 01/31/2007
Outline

• Background
• PageRank
• Implementation
• PageRank’s Convergence
• Searching and other Applications
• Discussion
Background - Authors

- Larry Page (~Rank)
 - BS in CE from UMich, MS from Stanford

- Sergey Brin
 - BS in Math&CS from UMD, MS from Stanford

- Google Inc. in 09/98 (google.com - 09/97)

figures from: http://www.google.com/corporate/execs.html
Background - Authors

- Rajeev Motwani
 - Ph.D 1988, CS, UC Berkeley
 - Professor at Stanford U

- Terry Winograd
 - Ph.D. 1970, M.I.T, Applied Mathematics
 - Professor at Stanford U

Background - Paper

• Stanford WebBase project (1996 - 1999)
 http://dbpubs.stanford.edu:8091/diglib/

• funded by NSF through DLII
 http://www.dli2.nsf.gov/dlione/

“The Initiative's focus is to dramatically advance the means to collect, store, and organize information in digital forms, and make it available for searching, retrieval, and processing via communication networks -- all in user-friendly ways.” quote from the DLII website
Background - Paper

• it is a technical report! (working paper) (Stanford Digital Libraries SIDL-WP-1999-0120)

• from the paper: web size = 150M web pages

• 2005: Google claims to index more than 8B pages (http://blog.searchenginewatch.com/blog/041111-084221)

• 11.5B overall (http://www.cs.uiowa.edu/~asignori/web-size/)
“The average web page quality experienced by a user is higher than the quality of the average web page. This is because the simplicity of creating and publishing web pages results in a large fraction of low quality web pages that users are unlikely to read.”

- Differentiate Pages
- Relative Importance
- Ranking/Search
PageRank - Basics

- based on link structure of the web
- pages = nodes && links = edges
- forward links = outedges
- backlinks = inedges
- A and B are Backlinks of C

figure taken from the paper
- a link from page A to page B is a vote from A to B
- highly linked pages are more “important” than pages with few links
- backlinks from high PR-pages count more than links from low PR-pages
- combination of PR and text-matching techniques result in highly relevant search results
PageRank - Definition

- u is a web page
- $F_u = \text{set of pages } u \text{ points to}$
- $B_u = \text{set of pages pointing to } u$
- $c = \text{normalization factor}$
- $N_u = |F_u|$

$$R(u) = c \sum_{v \in B_u} \frac{R(v)}{N_v}$$
PageRank - Example

\[R(u) = c \sum_{v \in B_u} \frac{R(v)}{N_v} \]
PageRank - Iteration Example

\[PR(A) = 1 - d + d \left(\frac{PR(B)}{L(B)} + \frac{PR(C)}{L(C)} + \frac{PR(D)}{L(D)} + \cdots \right) \]

Iteration 1
PR = 1 for all nodes

d=0.85

Iteration 2
PR(A)=1.85
PR(B)=1.7225
PR(C)=4.036
PR(D)=0.15

Iteration 3
PR(A)=1.8653
PR(B)=1.735
PR(C)=3.3377
PR(D)=0.15

Iteration 4
PR(A)=1.568
PR(B)=1.4828
PR(C)=2.8706
PR(D)=0.15

Iteration 10
PR(A)=1.024
PR(B)=1.0204
PR(C)=2.057
PR(D)=0.15

PageRank - Definition

What if two pages only link to each other and some page points to one of them?

- this loop/trap is called rank sink
- based on random surfer model
- E - probability that a user visits a page

$$R'(u) = c \sum_{v \in B_u} \frac{R'(v)}{N_v} + cE(u)$$
Convergence of PageRank Computation

- PR computation converges very quickly
- scales very well
Implementation

• built a crawling and indexing system

• repository size: 24M web pages (over 75M unique URLs)

• web crawler keeps index of links

• computing PR of entire repository takes ~5h

• issues: volume(!!!), incorrect HTML, dynamics of the web, page exclusion (robots.txt)
title search and full text search (Google)

ex.: title search

16M pages

returns pages where title contains all query words
Search - The Common Case

- page with high usage
- PR handles CC queries well
- CC for “wolverine” - U Michigan software system
- else: wiki page, imdb, etc

“It is important to note that the goal of finding a site that contains a great deal of information about wolverines is a very different task than finding the common case wolverine site.”

quote taken from the paper
• **E vector** - distribution of web pages a random surfer jumps to

• Usually E is uniform over all web pages (democratic)

• Apply E just for one web page results in high PR value for relevant pages regarding the applied page

• E.g. apply E for web page of faculty from cs@odu results in high PR for CS related pages
Other Uses of PageRank

- estimating web traffic - compare web page access from proxy vs PR

- PR as backlink predictor

 - efficient web crawling - better docs first

 - PR outperforms citation counts b/c number of citation count is not known in advance

- the PR proxy - annotate links with PR value

- PR is applied to the binary directed network model which is one of the methods used to model the co-authorship networks in relevance to digital libraries
Unwanted Uses of PageRank

• bmw.de banned from google in early 2006 due to its doorway page
 ~ is a page stuffed full of keywords that the site feels a need to be optimized for
 blog: http://blog.outer-court.com/archive/2006-02-04-n60.html

• “If an SEO creates deceptive or misleading content on your behalf, such as doorway pages or ’throwaway’ domains, your site could be removed entirely from Google’s index.” unknown at Google

• google's webmaster helpcenter:
 http://www.google.com/support/webmasters/bin/answer.py?answer=35291
Unwanted Uses of PageRank

• “Google Bomb”
 http://searchengineland.com/070125-230048.php

• create lots of links to one certain destination

• label all of them with the same remarkable terms

• query Google for those terms and you will get the linked page

Miserable Failure
Discussion

Question 1:
PageRank is not optimal! How can it be improved? What can be changed?

Question 2:
Do you think, not publishing the PR value (Google Toolbar) would make it difference in the quest for obtaining a high PR value?

Question 3:
Considering the responsibility Google as a Search Engine has (as a prime source of information), should PageRank plus Google’s additional “Ranking-VooDoo” not be more transparent to the public?
Put some color on. iPod shuffle
http://dir.yahoo.com/Computers_and_Internet/Hardware/Notebook_Computers/Product_Information_and_Reviews/Apple/
websites:
http://www.google.com/corporate/execs.html
http://www.google.com/corporate/index.html
http://www.iprcom.com/papers/pagerank/
http://www.webworkshop.net/pagerank.html
http://en.wikipedia.org/wiki/PageRank

and many more papers....
PR Computation

\[PR(A) = 1 - d + d \left(\frac{PR(B)}{L(B)} + \frac{PR(C)}{L(C)} + \frac{PR(D)}{L(D)} + \cdots \right) \]

\[PR(A) = \frac{1 - d}{N} + d \left(\frac{PR(B)}{L(B)} + \frac{PR(C)}{L(C)} + \frac{PR(D)}{L(D)} + \cdots \right). \]

where \(N = \) number of documents in the collection
Precision and Recall

Precision: \[\frac{A}{A+C} \times 100\% \]

Recall: \[\frac{A}{A+B} \times 100\% \]

http://www.hsl.creighton.edu/hsl/Searching/Recall-Precision.html