
1

G64FAI:
Foundations of Artificial Intelligence

Lecture 9: Expert Systems

Brian Logan
School of Computer Science

bsl@cs.nott.ac.uk

© Brian Logan 2008 G64FAI Lecture 9: Expert Systems 2

Outline of this lecture

• knowledge representation: facts & rules

• reasoning: forward chaining inference

• examples of expert systems: MYCIN & XCON

• implementing inference: rule matching and conflict resolution

• example: conflict resolution in CLIPS

• applying expert systems

• rule-based systems redux: business rules and the semantic web

2

© Brian Logan 2008 G64FAI Lecture 9: Expert Systems 3

Expert systems

• expert systems are one of the simplest applications of knowledge
representation and reasoning

• consists of a set of facts, a set of rules and an implementation of the
inference procedure

• support reasoning about a particular (narrow) domain in a tightly
controlled way

• wide range of applications including medical diagnosis, mini-
computer configuration, camera lens design, loan approvals, fault
diagnosis etc.—often as part of a larger system

• one of the first commercial applications of AI

© Brian Logan 2008 G64FAI Lecture 9: Expert Systems 4

Advantages of expert systems

• order or magnitude increases in the speed with which complex tasks
can be performed

• increased quality of decisions or solutions (or reduction in the number
of errors)

• reduction in cost and number of personnel required and/or reduced
training time (tasks are de-skilled)

• formalisation and retention of organisational or business knowledge

3

© Brian Logan 2008 G64FAI Lecture 9: Expert Systems 5

• in an expert system, knowledge is represented as facts and rules using a
simplified form of predicate calculus

• facts are ground (usually atomic) formulas, e.g., Man(Socrates), stored in
working memory

• some facts are generic, while others are specific to a particular problem
instance

• rules are universally quantified clauses—often with single negated literal
(definite clauses), e.g.,

• a rule C1 ^… ^ Cn→ A consists of one or more conditions C1 … Cn and a
single action A

• all variables appearing in C1 … Cn are assumed to be universally quantified

Facts & rules

¬p ∨ q ∨ r ≡ (q ∧ r)→ p

© Brian Logan 2008 G64FAI Lecture 9: Expert Systems 6

• usually forward chaining (modus ponens) with variable substitution

• for example, from the fact and the rule
we can derive that

using the substitution

• inference is sound but (typically) not complete

Man(socrates), ∀x (Man(x)→Mortal(x))

Mortal(socrates)

∀x (Man(x)→Mortal(x))

Inference

P (a), ∀x (P (x)→ Q(x))

Q(a)

Man(socrates)

θ = {x/socrates}

4

© Brian Logan 2008 G64FAI Lecture 9: Expert Systems 7

Rule syntax

• to simplify development, rules are often written in a simplified form of
English which omits the quantifiers

• for example, the rule (definite clause)

(PremiumCustomer(x) ^ LuxuryProduct(y) → Discount(x, y, 7.5%))

might be written

IF PremiumCustomer(x) AND LuxuryProduct(y) THEN Discount(x, y, 7.5%)

• sometimes referred to as ‘production rules’, ‘if-then rules’ or ‘condition
action rules’

∀x,∀y

© Brian Logan 2008 G64FAI Lecture 9: Expert Systems 8

Inference cycle

• at each cycle, the LHS of each rule (its antecedent) is matched against
the facts currently in working memory

• matching involves comparing each condition in the LHS of a rule in
turn with each fact in working memory to see if a unifying substitution
can be found which satisfies all the conditions

• rules where all the conditions can be matched (and all the variables
bound) are said to be applicable

• the set of applicable rule instances is called the conflict set

5

© Brian Logan 2008 G64FAI Lecture 9: Expert Systems 9

Inference cycle 2

• one (or more) members of the conflict set are ‘fired’ which performs
the action on the RHS of the rule, e.g.:

– adds a fact (or facts) to working memory

– deletes a fact (or facts) from working memory

– produces a side effect, e.g., prints some output

• cycle then repeats until one or more facts (representing a solution to
the problem) appear in working memory or until no more rules can be
fired

© Brian Logan 2008 G64FAI Lecture 9: Expert Systems 10

Example

• given the following facts and rules

F1 mother(Mary,Bob)
F2 mother(Mary,Alice)
F3 father(Bob,Chris)

R1 mother(x, z) ∧ parent(z, y)→ grandmother(x, y)
R2 mother(x, y)→ parent(x, y)
R3 father(x, y)→ parent(x, y)

6

© Brian Logan 2008 G64FAI Lecture 9: Expert Systems 11

Example: inference cycle 1

WM = [mother(Mary, Bob), mother(Mary, Alice), father(Bob, Chris)]

R1 no match
R2 {x/Mary, y/Bob}, {x/Mary, y/Alice}
R3 {x/Bob, y/Chris}

Conflict set = [R2:{x/Mary, y/Bob}, R2:{x/Mary, y/Alice},
R3:{x/Bob, y/Chris}]

© Brian Logan 2008 G64FAI Lecture 9: Expert Systems 12

Example: inference cycle 2

WM = [mother(Mary, Bob), mother(Mary, Alice), father(Bob, Chris),
parent(Mary, Bob)]

R1 no match
R2 {x/Mary, y/Alice}
R3 {x/Bob, y/Chris}

Conflict set = [R2:{x/Mary, y/Alice}, R3:{x/Bob, y/Chris}]

7

© Brian Logan 2008 G64FAI Lecture 9: Expert Systems 13

Example: inference cycle 3

WM = [mother(Mary, Bob), mother(Mary, Alice), father(Bob, Chris),
parent(Mary, Bob), parent(Mary, Alice)]

R1 no match
R2 no match
R3 {x/Bob, y/Chris}

Conflict set = [R3:{x/Bob, y/Chris}]

© Brian Logan 2008 G64FAI Lecture 9: Expert Systems 14

Example: inference cycle 4

WM = [mother(Mary, Bob), mother(Mary, Alice), father(Bob, Chris),
parent(Mary, Bob), parent(Mary, Alice), parent(Bob, Chris)]

R1 {x/Mary, z/Bob, y/Chris}
R2 no match
R3 no match

Conflict set = [R1:{x/Mary, z/Bob, y/Chris}]

8

© Brian Logan 2008 G64FAI Lecture 9: Expert Systems 15

Example: inference cycle 5

WM = [mother(Mary, Bob), mother(Mary, Alice), father(Bob, Chris),
parent(Mary, Bob), parent(Mary, Alice), parent(Bob, Chris),
grandmother(Mary, Chris)]

R1 no match
R2 no match
R3 no match

Conflict set = []

© Brian Logan 2008 G64FAI Lecture 9: Expert Systems 16

Exercise: inference

• what happens if we add the fact

WM = [mother(Mary, Bob), mother(Mary, Alice), father(Bob, Chris),
parent(Mary, Bob), parent(Mary, Alice), parent(Bob, Chris),
grandmother(Mary, Chris)]

F1 mother(Mary,Bob)
F2 mother(Mary,Alice)
F3 father(Bob,Chris)
F4 mother(Alice,Dan)

R1 mother(x, z) ∧ parent(z, y)→ grandmother(x, y)
R2 mother(x, y)→ parent(x, y)
R3 father(x, y)→ parent(x, y)

9

© Brian Logan 2008 G64FAI Lecture 9: Expert Systems 17

Example: inference cycle 6

WM = [mother(Mary, Bob), mother(Mary, Alice), father(Bob, Chris),
parent(Mary, Bob), parent(Mary, Alice), parent(Bob, Chris),
grandmother(Mary, Chris)]

R1 no match
R2 {x/Alice, y/Dan}
R3 no match

Conflict set = [R2:{x/Alice, y/Dan}]

© Brian Logan 2008 G64FAI Lecture 9: Expert Systems 18

Example: inference cycle 7

WM = [mother(Mary, Bob), mother(Mary, Alice), father(Bob, Chris),
parent(Mary, Bob), parent(Mary, Alice), parent(Bob, Chris),
grandmother(Mary, Chris), parent(Alice, Dan)]

R1 {x/Mary, z/Alice, y/Dan}
R2 no match
R3 no match

Conflict set = [R1:{x/Mary, z/Alice, y/Dan}]

10

© Brian Logan 2008 G64FAI Lecture 9: Expert Systems 19

Example: inference cycle 8

WM = [mother(Mary, Bob), mother(Mary, Alice), father(Bob, Chris),
parent(Mary, Bob), parent(Mary, Alice), parent(Bob, Chris),
grandmother(Mary, Chris), parent(Alice, Dan),
grandmother(Mary, Dan)]

R1 no match
R2 no match
R3 no match

Conflict set = []

© Brian Logan 2008 G64FAI Lecture 9: Expert Systems 20

MYCIN

• developed in the 1970s, Stanford University (Shortliffe & Buchanan)

• diagnosis of bacterial infections

• based on interviews with experts on infectious diseases

• expert knowledge was reformulated as rules (mostly by system
developers)

• discovered that knowledge acquisition is a non-trivial process—human
experts find it hard to state all the knowledge required to solve a problem

• approximately 500 rules

11

© Brian Logan 2008 G64FAI Lecture 9: Expert Systems 21

Example MYCIN rule
RULE035

PREMISE: ($ AND (SAME CNTXT GRAM GRAMNEG)
(SAME CNTXT MORPH ROD)
(SAME CNTXT AIR ANAEROBIC))

ACTION: (CONCLUDE CNTXT IDENTITY BACTEROIDES TALLY .6)

• which can be translated as:

IF:
the gram stain of the organism is gramneg, and
the morphology of the organism is rod, and
the aerobicity of the organism is anaerobic

THEN:
there is suggestive evidence (.6) that the identity of the organism is bacteroides

© Brian Logan 2008 G64FAI Lecture 9: Expert Systems 22

More MYCIN

• some facts and some conclusions of the rules (as above) are not absolutely
certain

• MYCIN uses numerical certainty factors between -1 and 1

• certainty factors of premises were combined with the tally in the rule (e.g.,
0.6) to give a certainty factor for the conclusions

• later it turned out that MYCIN’s recommendations would have been the same
if it used only 4 values for certainty factors

• MYCIN was never used in practice due to ethical and legal issues

• when tested on real cases, did as well or better than the members of the
Stanford medical school

12

© Brian Logan 2008 G64FAI Lecture 9: Expert Systems 23

XCON

• developed by McDermott at CMU (1978)

• system for configuring VAX (mini) computers—used by sales
personnel to select system components based on customer
requirements

• written using OPS5 (language for implementing production systems,
written in LISP)

• 2,500 rules

• used commercially—by 1986 had processed 80,000 orders and was
claimed to be saving DEC $25m pa.

© Brian Logan 2008 G64FAI Lecture 9: Expert Systems 24

Implementing inference

• an expert system shell defines a format for specifying facts and rules
and an implementation of the inference procedure

• with many rules and many facts, there are two main problems

– determining which inferences are possible at each cycle

– determining which of those inferences should actually be made

13

© Brian Logan 2008 G64FAI Lecture 9: Expert Systems 25

Example: rule matching

• given the following facts and rules

• how many matching attempts will there be?

• what is the size of the conflict set?

F1 son(Mary, Joe)
F2 son(Bill, Bob)
F3 son(Bob,Charles)
F4 daughter(Mary,Alice)

R1 son(x, y) ∧ son(y, z)→ grandparent(x, z)

© Brian Logan 2008 G64FAI Lecture 9: Expert Systems 26

Example: rule matching

• there are 16 matching attempts:

• F1 matches with the first condition of R1, {x/Mary, y/Joe}

• then an attempt is made to match the second condition of R1 son(Joe,
z) with each of F1, F2, F3 and F4 (all of which fail)

• we then backtrack and match F2 to the first condition of R1, {x/Bill,
y/Bob}

• then an attempt is made to match the second condition of R1 son(Bob,
z) with each of F1, F2, F3 and F4 (one of which succeeds, F3, with
z/Charles)

14

© Brian Logan 2008 G64FAI Lecture 9: Expert Systems 27

Example: rule matching

• we then backtrack and match F3 to the first condition of R1, {x/Bob,
y/Charles}

• then an attempt is made to match the second condition of R1
son(Charles, z) with each of F1, F2, F3 and F4 (all of which fail)

• we then backtrack and try to match F4 to the first condition of R1
(which fails)

• there is only one rule instance in the conflict set R1:{x/Bill, y/Bob,
z/Charles}

© Brian Logan 2008 G64FAI Lecture 9: Expert Systems 28

Rule matching

• rule firing is usually refractory, i.e., each rule instance fires at most once

• however each rule may match against many combinations of facts in WM—
potentially exponential in the number of facts

• for typical problems, the number of matches is much smaller, but still needs to
be recomputed at each cycle

• many systems use a Rete network to efficiently determine which rules match
the current contents of working memory

• based on the assumption that firing a single rule makes only a few changes to
WM, and that these changes typically only affect the applicability of a few
rules

15

© Brian Logan 2008 G64FAI Lecture 9: Expert Systems 29

Conflict resolution
• firing all the applicable rules can lead to an explosion of possible inferences at

later cycles

• most systems fire a single rule at each cycle, based on, e.g.:

– lexicographic order: rules are tried in the order they appear in the
program and the first matching rule is fired

– recency: facts in WM are tagged with the inference cycle at which they
were derived—rules that matched more recent facts are preferred

– specificity: prefer more specific rules, i.e., rules with more conditions or
more complex conditions

– weighting: rules are assigned weights or importance values by the system
developer—more important rules are preferred

© Brian Logan 2008 G64FAI Lecture 9: Expert Systems 30

Conflict resolution in CLIPS
• in CLIPS each rule has a salience reflecting its importance in problem solving

• new rule instances are placed above all rule instances of lower salience and
below all rules of higher salience

• if rule instances have equal salience, ties are broken by the conflict resolution
strategy

• CLIPS supports a variety of conflict resolution strategies including depth,
breadth, simplicity, complexity, lex, mea, and random

• default strategy, depth, gives preference to new rule instances; breadth places
older rule instances higher

• once the conflict set has been computed, CLIPS fires the highest ranking rule
instance in the conflict set

16

© Brian Logan 2008 G64FAI Lecture 9: Expert Systems 31

Effects of conflict resolution strategy

• consider a CLIPS reasoner with the following set of rules using the
depth conflict resolution strategy:

R1: tiger(x) → large-carnivore(x)
R2: large-carnivore(x) → dangerous(x)

R1 has greater salience than R2

• If the agent’s working memory contains the following facts:

WM = [tiger(tigger), tiger(sherekhan)]

• then at the next cycle the agent would derive

WM = [tiger(tigger), tiger(sherekhan), large-carnivore(tigger)]

© Brian Logan 2008 G64FAI Lecture 9: Expert Systems 32

Effects of conflict resolution strategy
• instances of R1 have greater salience than instances of R2, so on the following cycle the

agent will derive

WM = [tiger(tigger), tiger(sherekhan), large-carnivore(tigger), large-
carnivore(sherekhan)]

• both large-carnivore(tigger), and large-carnivore(sherekhan) match R2, but large-
carnivore(sherekhan) will be preferred since it is a more recent instance of R2 than
large-carnivore(tigger)

• on the following cycle the agent therefore derives

WM = [tiger(tigger), tiger(sherekhan), large-carnivore(tigger), large-
carnivore(sherekhan), dangerous(sherekhan)]

• finally the agent derives

WM = [tiger(tigger), tiger(sherekhan), large-carnivore(tigger), large-
carnivore(sherekhan), dangerous(sherekhan), dangerous(tigger)]

17

© Brian Logan 2008 G64FAI Lecture 9: Expert Systems 33

Example: travel advice
• imagine that we want to give advice about travel destinations

• far destinations are Chile or Kenya

• far destinations are international

• far destinations are expensive

• in Kenya, yellow fever vaccination is strongly recommended, and there is a
risk of malaria when staying in lodges

• accommodation in Kenya is in lodges and in Chile is in hotels

• when there is a risk of malaria, mosquito nets are recommended

Far → Chile ∨Kenya

Far → Int

Far → Exp

Kenya→ Y ellowFever Logde ∧Kenya→Malaria

Kenya→ Lodge Chile→ Hotel

Malaria→ Nets

© Brian Logan 2008 G64FAI Lecture 9: Expert Systems 34

Example: travel advice clauses

• Clauses

• Prove that

• and that

(1) ¬Far ∨Chile ∨Kenya
(2) ¬Far ∨ Int
(3) ¬Far ∨Exp
(4) ¬Kenya ∨ Y ellowFever
(5) ¬Lodge ∨ ¬Kenya ∨Malaria
(6) ¬Kenya ∨ Lodge
(7) ¬Chile ∨Hotel
(8) ¬Malaria ∨Nets

Far and ¬Hotel entails Kenya

Far and ¬Hotel entails Nets

18

© Brian Logan 2008 G64FAI Lecture 9: Expert Systems 35

Example: travel advice clauses

• Clauses

• Premises

• Goal (11) ¬Kenya

(9) Far
(10) ¬Hotel

(1) ¬Far ∨ Chile ∨Kenya
(2) ¬Far ∨ Int
(3) ¬Far ∨Exp
(4) ¬Kenya ∨ Y ellowFever
(5) ¬Lodge ∨ ¬Kenya ∨Malaria
(6) ¬Kenya ∨ Lodge
(7) ¬Chile ∨Hotel
(8) ¬Malaria ∨Nets

© Brian Logan 2008 G64FAI Lecture 9: Expert Systems 36

Example: travel expert system

(R1a) Far(x) ∧ ¬Accommodation(x, lodge)→ Destination(x, chile)
(R1b) Far(x) ∧ ¬Accommodation(x, hotel)→ Destination(x, kenya)
(R2) Far(x)→ Int(x)
(R3) Far(x)→ Exp(x)
(R4) Destination(x, kenya)→ Risk(x, yellowFever)
(R5) Accommodation(x, lodge) ∧Destination(x, kenya)→

Risk(x,malaria)
(R6) Destination(x, kenya)→ Accommodation(x, lodge)
(R7) Destination(x, chile)→ Accommodation(x, hotel)
(R8) Risk(x,malaria)→ Advised(x, nets)

• we can reformulate the travel advice problem as a set of rules and facts

• note that the reformulation has changed the problem—without information
about Accommodation, we can’t say anything about the Destination

19

© Brian Logan 2008 G64FAI Lecture 9: Expert Systems 37

Example: travel expert system

• given the facts

• we can derive first

• and then on subsequent inference cycles

(F1) Far(johnsHoliday)
(F2) ¬Accommodation(johnsHoliday, hotel)

(F3) Destination(johnsHoliday, kenya)

(F4) Int(johnsHoliday),
(F5) Exp(johnsHoliday),
(F6) Risk(johnsHoliday, yellowFever),
(F7) Accommodation(johnsHoliday, lodge),
(F8) Risk(johnsHoliday,malaria),
(F9) Advised(johnsHoliday, nets)

© Brian Logan 2008 G64FAI Lecture 9: Expert Systems 38

Comparison with theorem proving

• unlike resolution theorem proving, we don’t need to know the clause
(fact) we want to derive in advance

• inference is data-driven, chaining forward from statements about the
problem

• if the rules are not carefully chosen, this can result in the derivation of
a large number of irrelevant facts

• some things are hard to represent or reason about using definite
clauses, e.g.

– disjunctions—“Chile or Kenya”

– negations—hard to infer from negative information “I don’t want
to stay in a hotel”

20

© Brian Logan 2008 G64FAI Lecture 9: Expert Systems 39

Problem characteristics

• for the successful development of an expert system, the problem
should

• be solvable by a human in 3-180 minutes

• be primarily cognitive, requiring analysis and synthesis

• be well defined and confined to a narrow domain

• not involve a great deal of common sense reasoning

• task knowledge and case studies which are reasonably complete must
be available

© Brian Logan 2008 G64FAI Lecture 9: Expert Systems 40

Application areas

• assistants to human operators

– generating candidate solutions to difficult design, synthesis or
analysis problems

– to evaluate candidate solutions (produced by humans)

• autonomous decision making components of complex systems

• monitoring the implementation and execution of designs, plans and
schedules

21

© Brian Logan 2008 G64FAI Lecture 9: Expert Systems 41

Business rules

• a business rule is a statement that defines or constrains some aspect of
a business

• aim is to separate dynamically changing business procedures, policies
and logic from the application source code

• rules are declarative and can be easily modified in response to
business needs by non-programmers

• e.g., on-line retail or rental business (see
http://www.businessrulesgroup.org/egsbrg.shtml)

• rules are executed by a rule engine

© Brian Logan 2008 G64FAI Lecture 9: Expert Systems 42

Java Rule Engine API

• Java Rule Engine API (JSR-94) is a lightweight programming
interface that defines a standard API for acquiring and using a rule
engine

• aims to “to reduce the cost associated with incorporating business
logic within applications and … the need to reduce the cost associated
with implementing platform-level business logic tools and services”

• see javax.rules and javax.rules.admin packages

22

© Brian Logan 2008 G64FAI Lecture 9: Expert Systems 43

JESS

• Jess is an expert system shell—a rule engine to which users add their
own facts and rules

• written in Java

• uses Rete for efficient incremental rule matching

• reference implementation of the Java Rule Engine API

© Brian Logan 2008 G64FAI Lecture 9: Expert Systems 44

JESS syntax

• facts are specified as a predicate followed by a list of slots

(person (name "Bob Smith") (age 34) (gender Male))

• rules can be specified in a LISP-like Jess rule language (or XML):

(defrule young-persons-discount

(person (name ?name) {age < 21})

=>
(assert (eligible-for-discount (name ?n)))

• LHS is a pattern (if a person is less than 21 years old) and RHS is an action
(function call which can add or delete facts or produce output)

23

© Brian Logan 2008 G64FAI Lecture 9: Expert Systems 45

The next lecture

Reasoning about actions

Suggested reading:

• Russell & Norvig (2003), chapter 11, section 11.1, 11.2, 11.3 and 11.5

