
Originally presented at CMG 2000

© Copyright 2000 by Keynote Systems, Inc. and HyPerformix Inc. Page 1

E-COMMERCE RESPONSE TIME: A REFERENCE MODEL

Chris Loosley, Keynote Systems Inc.
Richard L. Gimarc and Amy C. Spellmann, HyPerformix Inc.

cloosley@keynote.com rgimarc@hyperformix.com amy@hyperformix.com

This paper presents a framework that describes all the components that make
up the response time of an e-commerce application. Understanding this
fundamental framework is the key to implementing responsive e-commerce
systems. The paper discusses examples of how e-commerce application
response times can be improved in three ways: by reducing the overall number
of components, by speeding up individual components, and by moving some
components off the synchronous response time path.

Introduction

The Internet is now a fact of business life for most
companies, whose customers and business partners
expect to be provided with a way to do business online.
People now expect to have access to Web-based
business functions that they can reach at any time,
from anywhere on the World Wide Web, using only a
browser. And with universal access rapidly becoming
the norm, it is a rare company that can afford to remain
on the sidelines.

As business moves to the Web, scores of older text-
based applications are being given more graphic Web
front ends, while newer “client/server” applications,
already possessed of graphic user interfaces, are being
re-written for the Web. At the same time, the Internet is
spawning an array of new technologies for producing,
distributing, and using rich computer media, and many
new business applications are being developed to
exploit these technologies.

The exponential growth in Internet traffic has
consistently kept pace with -- and sometimes threatens
to overwhelm -- an equally explosive growth in network
bandwidths. As a consequence, the vast shared
network of networks that is the Internet is still a
relatively slow and unpredictable vehicle for electronic
commerce [NIEL1998].

Designing for such an environment poses a challenge
for the application developer. Business transactions are
not confined to the work week, when participants
communicate from their offices using high-speed
Internet connections. Eventually, the same business
functions must be available from home in the evening
through a slow dial-up connection, and in the middle of
the day from a laptop with a wireless connection in an
airport lounge. In all these environments, users expect
the interface to be reasonably responsive, and will look

for alternative ways to conduct their business if it’s not.

A few years ago perhaps, when the Web was in its
infancy, and Web-based access to anything was a
novelty, people were more tolerant of the Internet’s
highly variable performance. But familiarity and
competition is continually raising the bar of
acceptability. Today, slow Web pages drive away
customers as surely as long checkout lines in the
supermarket. Even the often-quoted rule of thumb that
“customers click away after waiting 8 seconds”
[BICK1997] is probably too generous for many kinds of
interactions, especially in business-to-business
applications where the client is accustomed to high-
speed connections.

The result is that e-commerce application developers
must design with performance in mind, because users
regard an unresponsive site as “unusable” [NIEL2000].
Specifically, a developer must see clearly how
application design decisions will affect the response
time experiences of a range of typical users. However,
such insights require analysis, because a Web
application’s response time depends on a complex
interplay of software, hardware, and networking
technologies.

This paper presents a standard framework for that
analysis. By enumerating the components of response
time, and explaining the factors that determine the
duration of each component, the response-time
reference model provides the application designer with
more than a simple checklist or classification scheme. If
properly used, it can form the foundation of a
systematic design review process, exposing likely
performance problems, and revealing possibilities for
improving actual and perceived response times.

Originally presented at CMG 2000

© Copyright 2000 by Keynote Systems, Inc. and HyPerformix Inc. Page 2

Properties of a Reference Model

One might imagine that the requirements for a
reference model are fairly obvious. Clearly the primary
need is a useful classification of the topic of interest, or
“domain of discourse.” A reference model must supply
a systematic scheme for classifying a topic into
subtopics or components. It must clarify the boundaries
between those subtopics or components, and explain
how the parts combine to make up the whole.

Because more than one such decomposition is
possible, we must settle on two key properties of the
reference model: its purpose and its level:

• Purpose: A reference model does not exist in a
vacuum; it must provide a framework for some kind
of analysis relating to the domain of discourse. A
useful reference model will support and encourage
analysis, revealing design or tuning possibilities.

• Level: Any concept complex enough to justify a
reference model can probably be decomposed into
elements which can be further decomposed into
smaller elements; how granular should the model
be?

These issues are interrelated; neither can be resolved
without first defining a target user for the model. In this
case, the domain of discourse is the e-commerce
application; the target user is an application or systems
designer or developer, or a performance analyst
concerned with e-commerce application performance
management. Our hypothetical performance analyst is
primarily concerned with e-commerce application flow
and the components of application response time.

A Two-Dimensional Model

The choice of a hypothetical user determines our
approach. Other participants in e-commerce, even
though they may be concerned with aspects of
e-commerce performance, may find our model to be at

the wrong level. It may be too basic for a business
analyst, too general for a network engineer, too broad
for a database administrator, or too shallow for a
systems administrator. However, this model reveals the
various stages that combine to create the user's
experience, and breaks the overall response-time into
components that are amenable to different
optimizations.

Although system-level issues like device capacities and
utilizations do affect application response times, they
will not be the primary focus of our model. At its
simplest level, our reference model – depicted
graphically in Figure 1 -- can be visualized as a two-
dimensional matrix of cells, the horizontal dimension
being application flow and the vertical response-time
components.

Horizontal Dimension

In an e-commerce application, each business
transaction is implemented by means of a sequence of
Web pages. Without any further elaboration, this
observation provides us with a natural partitioning of
the horizontal dimension into Web pages, as shown in
Figure 1. For any particular e-commerce application,
there will be distinct classes of Web pages (such as
Home, Login, Catalog, Order), typically with different
performance characteristics. But all of that is
refinement; the basic model is simply a series of Web
pages. Later we illustrate this dimension of our model,
using an example of an e-commerce application to
show ways of reducing response times.

Vertical Dimension

To partition the vertical dimension, we must examine
the process by which a single Web page is served.
Partial descriptions of this process can be found in
previous CMG papers such as [JAMT1997] and
[LYNC1999]; for more detail see [SHUL1998] and the
World Wide Web Consortium site, www.w3.org.

� ����������� ���������	�
�
� �����������
�
��������� � � � � �

��������������� � � � � �
������������ � � � � �

������������������ � � � � �
�������������� ���� � � � � �

������������ ���� � � � � �
��������������� � � � � �

!����"����������� � � � � �

Figure 1. The Basic Reference Model

Originally presented at CMG 2000

© Copyright 2000 by Keynote Systems, Inc. and HyPerformix Inc. Page 3

Level of Detail

We emphasize that the reason for partitioning overall
response time at this level of detail is to delineate its
major components, focusing attention and promoting
performance analysis and optimization. The model
highlights the largest components of response time,
and creates a natural framework for any design and
tuning work. Simply put, there are just two ways to
lower the response time of an e-commerce application:
make some cells of the matrix smaller, or remove some
cells altogether.

The model, however, is simply a framework for this
analysis. It does not supply all the information a
performance analyst needs, and does not in any way
preclude one from conducting more detailed analyses.
As we illustrate in our later example, when considering
how to make a particular cell smaller, it will sometimes
be useful to create submodels within one or more of the
individual cells of the matrix.

Response Time Stages

We now describe the page download process for a
fictitious Web site, www.byzz.com, breaking it into eight
distinct stages.

This analysis deliberately excludes two preliminary
stages. A user must first establish a physical
connection to the Internet. This can be done by
connecting through a private (corporate) network that's
connected directly to the Internet, or by dialing into an
access device (a modem) at a local Point of Presence
(POP) in a commercial Internet Service Provider's (ISP)
network. That access device is connected, through one
or more routers, to the Internet. Before or after
establishing an Internet connection, the user also starts
a Web browser. In our model, we assume that the
browser has been started and a connection
established.

In the model, Web page response time begins when a
user directs the Web browser to retrieve a page by
entering a URL (a uniform resource locator, or Web
address, like www.byzz.com/shop.html), or clicks on an
embedded link on a page.

A succession of eight stages follows. As the ensuing
paragraphs make plain, these eight stages are not
simply a convenient way to describe the subdivision of
overall Web-page response time into smaller
components; they are fundamentally distinct steps in
the production of a Web page. Each involves a distinct
domain, most depend for their performance on distinct
technologies, and each requires a distinct set of skills.
Figure 2 summarizes these differences.

This is an important insight. In the Preface to his book
on “Web Performance Tuning“ [KILL1998], Killelea lists
his audience as System Administrators, System
Architects, System Integrators, Web Application
Programmers, Web Content Developers, and
Webmasters. We could add Database Administrators,
Network Designers, and Network Engineers, and still
not cover all the people who play a part in determining
application performance at most large companies. To
ensure acceptable e-commerce performance,
companies must devise management processes that
integrate these diverse skills.

Typical Response Times

In the sections that follow, we describe each stage,
discuss the principal factors that determine the
response time of each, and give typical response-time
ranges. To illustrate the range of page sizes and
response times that are representative of leading
e-commerce sites, we use measurements of the
Keynote Business 40 (KB40) Index of 40 leading sites.
Each site is measured every 15 minutes from over 60
locations in 25 major US metropolitan areas
[KEYN2000].

Stage Domain knowledge ��������������#�$�����%��#����

���������	� ���
�����

�������������� ������������
��
��������������������������
������������ ���������� 	!� ���"������#

��
������������������ ���� 	"��� �����"����$� ����� �� �������� ����� �� ������"������ ����

���������%		!��"���������������"�"�"������������&���!��"���
�"����"�������!�"�� ����	"����������������������#
&�������	�����!"���"����
������������!�"�� '�"	(�����������������������������������
�"������������� �������������	��"�������!�����)���������
���������"������ #� "��+"����������������+"����������������#
&���

Figure 2. Knowledge Needed to Optimize Performance at each Stage

Originally presented at CMG 2000

© Copyright 2000 by Keynote Systems, Inc. and HyPerformix Inc. Page 4

Figure 3 summarizes 3.5 million individual data points
collected between September 3rd, 2000 (12:00AM)
through September 17th, 2000 (11:59PM). These
summary statistics are all based on the average times
(measured in seconds) and the average page sizes
(measured in bytes) for each of the KB40 sites. For
example, “Min” is minimum of the averages computed
for each of the 40 sites, not the minimum of all 3.5
million data points. For the six components of response
time, Figures 4a-4f show the frequency distributions of
average times for the 40 sites.

These measurements were obtained via direct high-
speed connection (T1 or faster), as is common in a
business environment. At these connection speeds,
response times are governed by the speed of the
Internet, whereas at slower speeds, the speed of the
connection itself is the limiting factor. In particular, for
users with slower dial-up connections, response times
will be substantially longer for the Base Page Download
and Content Download components, because these
involve downloading the most data.

Average Median Std Deviation Bottom 15% Top 15% Min Max % Variation

DNS Lookup 0.02 0.01 0.03 0.05 0.00 0.01 0.11 1000%

TCP Connection 0.10 0.09 0.04 0.13 0.08 0.05 0.26 420%

Redirection 0.32 0.27 0.16 0.44 0.17 0.16 0.61 281%

Server Processing 0.18 0.12 0.25 0.21 0.09 0.03 1.58 5167%

Base Page Download 0.51 0.44 0.32 0.78 0.22 0.01 1.50 14900%

Content Download 1.77 1.52 1.21 2.77 0.87 0.12 5.54 4517%

Total Download Time 2.64 2.27 1.49 4.02 1.56 0.62 7.72 1145%

Base Page Size (bytes) 26190.38 22782.50 15249.81 39195.95 13125.50 1005.00 77122.00 7574%

Content Size(bytes) 47891.53 39277.50 35583.31 81465.70 12240.50 6871.00 157204.00 2188%

Total Page Size(bytes) 74081.90 65275.00 43006.64 114201.25 35103.20 26672.00 220501.00 727%

Objects(bytes) 20 17 11 30 9 3 62 1967%

Figure 3. KB40 Summary Data

Figure 4. Component Response Time Distributions for the KB40

Originally presented at CMG 2000

© Copyright 2000 by Keynote Systems, Inc. and HyPerformix Inc. Page 5

DNS Lookup

First the browser software sends a message over the
physical connection to the local network or access
provider's Domain Name System (DNS) server. The
DNS is like a distributed telephone directory; it
translates the domain name in the target URL
(www.byzz.com) into the actual Internet Protocol (IP)
address of that destination -- a four-part number like
204.10.195.74.

The translation process relies on DNS directory entries
that are controlled by the domain owner, in this case,
the e-commerce site byzz.com. Directory entries have
associated time-to-live (TTL) values. If an entry expires
and a URL cannot be translated locally, the request is
routed to a higher level DNS server, and could
eventually be sent to the authoritative name server,
which is normally located at the e-commerce site.
Latency is introduced whenever a DNS request is not
satisfied from the first name server.

Figures 3 and 4a show that, for leading e-commerce
sites, average DNS times fall between 0.01 and 0.11
seconds. Values in Figure 3 are rounded; the fastest
sites achieve DNS Lookup times of 0.001 seconds.

Sophisticated Internet content distribution schemes are
built on the basic DNS mechanisms [POTT2000]. They
use frequently updated DNS entries with short TTL
values to distribute requests among a set of content
servers, dynamically redirecting the request to the most
appropriate server. The goal is usually either to use a
server that is relatively lightly loaded, or one that is
close to the requester’s location. However, some
content servers (like those devoted to advertisement
banners) may even maintain user profiles and use
databases that record which content items users have
previously received. In the more complex schemes, a
hierarchy of communicating directory servers may
handle each name request. The end result may indeed
be a faster content download time, but the name server
response times and the inevitable inter-server
communication times involved in these dynamic
schemes can lengthen the DNS Lookup time
component.

TCP Connection

Once the browser software knows the IP address of the
URL, it sends a TCP connection request to the
destination address (204.10.195.74 in this example).
This is analogous to dialing a telephone number on a
fax machine before sending a fax. Routers in the
Internet forward the connection request in a series of
hops to its ultimate destination. If the destination Web
server is willing to accept the connection (it is not down,
or overloaded at the time), it accepts it by sending a
response to the browser. The TCP Connection is now
complete, and a stream of data packets can flow in
both directions.

The combined time for a request and its corresponding

response is often referred to as round-trip time. On the
Internet, this name is especially apt. Unless the ISPs
serving the user and the e-commerce site are both
connected to the same Internet backbone provider, the
routes taken by requests and responses will normally
differ, and packets generally do take a round trip from
browser to Web server and back again.

Because a TCP connection request is handled by
communication software (the TCP stack), the response
is generated without invoking any application-level
processing on the Web server. Unless the server is
completely swamped with requests, this is normally a
very short interaction. As a result, the response time for
the TCP connection stage is a very good measure of
the minimum round-trip Internet latency for a browser-
server pair.

Outside the firewall, TCP connection times depend on
the locations of the browser and server (geographically,
and their Internet backbones), on the amount of
competing traffic on those backbones, and especially
on the routers at their peering point(s) – the locations at
which the backbone providers exchange traffic.
Normally, Internet traffic is heaviest in the middle of the
business day, and lightest after midnight. Most popular
e-commerce sites aim to minimize their reliance on a
single backbone by using multiple servers that are
hosted on more than one network.

Inside the firewall, for companies that host their own
Web sites (as opposed to using the services of an ISP
that specializes in Web hosting), TCP connect times
are also affected by the performance of the corporate
network where the server resides. Load balancing
devices that divide incoming requests among a network
of servers inevitably add some latency, as, of course,
will any congested router or switch on the path to the
target server.

Figures 3 and 4b show that, for leading e-commerce
sites, average TCP Connection times fall between 0.05
and 0.26 seconds.

Server Processing

The Web browser now uses the TCP connection to
send a request to the Web server for a particular Web
page. For example, it may ask for the page
"/home.html," a common situation. Or it may ask for a
more complex page, such as
"/company/products/sale/item6.html." The simple set of
request and reply commands used to identify the
requests and their possible replies – such as "get this
page," "data successfully retrieved," or "page not
found" – is known as the Hypertext Transfer Protocol,
or HTTP.

When requests arrive at a Web server that can satisfy
them (see “Redirection”, below), one of two scenarios
ensues. In the simplest case -- a static page -- the Web
server locates and sends a fixed HTML file that
corresponds to the requested page. In the more

Originally presented at CMG 2000

© Copyright 2000 by Keynote Systems, Inc. and HyPerformix Inc. Page 6

complex case -- a dynamic page -- the page to be sent
is generated by the Web server.

During the generation process, literally anything can
happen. The Web server may pass control to an
application server, which may in turn retrieve content
from a database server, or any other file server.
Managing the interconnections among all these servers
may involve a variety of middleware technologies, and
any amount of network traffic. Because of this
complexity, this is one stage in our model that may
merit another level of analysis, and perhaps a
submodel. We illustrate this in our later example.

It is difficult to generalize about server processing
times. The fastest Web servers can locate static Web
pages practically instantaneously, certainly in less than
0.1 seconds. For dynamic pages, because of the sheer
number of possibilities, a much wider range of
response times are possible. However, a time of
greater than 0.5 seconds for this stage would certainly
qualify as a potential target for tuning.

Figures 3 and 4d show that, for leading e-commerce
sites, average Server Processing times fall between
0.03 and 1.58 seconds.

Redirection

Sometimes, instead of sending the requested page, the
Web server will return a redirect command (HTTP 301
or 302) to the browser, instructing it to fetch a
replacement URL, which is not necessarily located on a
different server, but can be anywhere. This redirection
process can be repeated multiple times before the
browser finally contacts a server that will actually return
a Web page. Perhaps the most common use of
redirection in e-commerce is to route requests that will
involve e-commerce transactions to a separate secure
server, where the user may enter a user identifier,
password, or other “login” information.

This is not the only use of redirection, however. Sites
built using some high-level site generation tools use
redirection to implement a dynamic dispatching
mechanism that routes requests among the generated
pages. In the most flagrant examples of this technique,
three or four redirection steps can occur between
successive pages. Because it adds server time to
resolve the redirected request, and network
communication time as the redirect command travels
back to the browser and then on to the new target, this
use of redirection should ideally be kept to a minimum,
or avoided altogether. Equivalent function can be
implemented much more efficiently using server-side
scripts that do the job without looping back to the
browser.

In most cases, the redirection stage is not present, so
the time it takes is obviously zero. But when it occurs,
redirection can add anything from 0.1 seconds to a full
second to the average page download time. Figure 4c
shows that 32 of the 40 leading e-commerce sites (80

percent) have no redirection component, while Figure 3
shows that the non-zero times range from 0.16 to 0.61
seconds.

Base Page Download

The page requested by the browser is encoded in a
computer language known as Hypertext Markup
Language, or HTML. HTML contains both the text of
the page, and instructions for displaying that text. If the
page is constructed as an HTML frameset, the highest
level frames are fetched immediately following the Base
Page that contains the HTML FRAMESET command.

Because it typically involves transmitting kilobytes of
data from the server to the browser, this stage takes
longer than any of the previous stages. And because at
this stage of the process the browser is single
threaded, Base Page Download time does depend
directly on the size of the Base Page. Therefore
reducing Base Page size will usually cut overall
response time. This situation is a lot simpler than the
Content Download stage, discussed next.

Even so, file transmission time is not proportional to file
size. One obvious reason is that Internet throughput
depends on the level of congestion at any time. Another
complication is that Internet data packets vary widely in
size. Although servers use Maximum Transmission Unit
(MTU) settings such as 576 bytes and 1500 bytes for
transmitting data, protocols require many other packets
as small as 40 bytes.

TCP’s “slow-start” protocol also complicates matters.
This scheme operates by first sending -- depending on
the server configuration -- either one or two packets.
Then, provided packets sent continue to be received
successfully, the number of packets is doubled in each
subsequent transmission. The purpose of this protocol
is to avoid flooding the Internet with data packets that
would only have to be re-transmitted when congestion
occurs. But the consequence in the Web environment
is that – since most files are relatively small -- TCP is
usually operating at the slowest end of the slow-start
process. One benefit of persistent connections
(described below) is that they can lessen the impact of
the slow-start protocol.

Figures 3 and 4e show that, for leading e-commerce
sites, average Base Page Download times range from
0.01 to 1.5 seconds, with a strong peak between 0.2
and 0.4 seconds.

Content Download

Most modern Web pages comprise more than text
alone; they include a lot of graphics and sometimes
other pieces of content, such as applets (small
computer programs). These content elements are not
included in the HTML that comprises the Base Page.
Instead, the HTML contains instructions for finding
those items on the Web – i.e., it includes their URLs
(such as www.byzz.com/page5graphics/picture8.gif).

Originally presented at CMG 2000

© Copyright 2000 by Keynote Systems, Inc. and HyPerformix Inc. Page 7

The browser, following those instructions, then
downloads each required content element.

Broadly speaking, the time for this stage is a function of
the number of content elements to be downloaded and
their total size. However, Content Download is another
stage in our model that may merit a deeper analysis,
and perhaps a submodel. Retrieving each content
element involves many or all of the same stages that
were needed to download the Base Page. For example,
if the content is located on a different server, the
browser may need to invoke DNS again. In fact, the
DNS-based content distribution schemes we described
earlier (see the section on DNS Lookup) are rarely
used for the Base Page, usually coming into play only
when the browser requests the content elements.

But compared to retrieving the Base Page, the content
download process can be more efficient in two
significant ways. The first occurs when the server and
browser both use the HTTP 1.1 persistent connection
protocol, which is implemented by most current
releases of server and browser software. This protocol
allows the server to retain an open TCP connection
with the browser between successive browser
requests, so that the browser does not have to issue a
TCP connect for the second and subsequent
downloads from the server [NIEL1997].

Persistent connections are something of a double-
edged sword however. Although they do reduce
download times, they require the server to set aside
sockets for inactive TCP connections, which eat up
server memory [COHE1999]. As a result, servers have

a maximum concurrent connections setting, and a
timeout setting for inactive connections. Ultimately, a
large pool of concurrent TCP connections may
consume memory that could have been used for other
server functions like content caching, slowing other
service times. The overall result could even be a net
loss in performance.

For this reason, some heavily used sites like search
engines sites do not enable persistent connections,
even though they are running Web server software that
supports HTTP 1.1. Another reason why some widely
used sites set up their servers to use HTTP 1.0 is to
reduce or eliminate the need for the special browser
detection logic and redirection that is needed to deal
with older browsers that cannot handle HTTP 1.1.

The second principal difference in the way browsers
download content elements is that they can use more
than one parallel thread. Popular browsers download
two (Internet Explorer) or up to six (Netscape) content
elements concurrently [WANG1998]; once any thread
completes a download, it is reassigned to another. This
process is plainly visible in Figure 5, which illustrates a
trace of the download process for a page comprising 21
content elements, using four concurrent threads. (In
this case, the “browser” is actually a Keynote Systems
measurement agent, which mimics a browser’s
behavior and times the outcome). Consider also the
consequence of a download that takes longer than the
average time: one thread will be kept busy, leaving just
three to work on the remaining content elements.

Figure 5. Page Download Trace

Originally presented at CMG 2000

© Copyright 2000 by Keynote Systems, Inc. and HyPerformix Inc. Page 8

To sum up, although Content Download time tends to
increase with the number and size of the content
elements, in practice the relationship is a complex one.
By using content distribution schemes, large sites can
outperform smaller ones hosted from a single location.
Figures 3 and 4f show that, for leading e-commerce
sites, average Content Download times range up to 5.5
seconds, with a strong peak between 1 and 2 seconds.

Page Rendering

The browser usually displays the graphics as it receives
them. However, some combinations of HTML
commands can delay the display of parts of a page, or,
in an extreme case, the entire page. One common case
occurs when an HTML TABLE has been used to lay out
a page, a fairly common alternative to using HTML
frames. If a single TABLE is used to organize the entire
page, then the browser cannot render the page until the
size of each table cell is known. And if one or more
cells contains a graphic (HTML IMG) element whose
size in pixels was not specified (using HEIGHT and
WIDTH tags), then the browser does not know the size
of the image until after it has been downloaded. In this
situation, the browser can either delay the rendering
process until the element has been downloaded and its
size established, or render the page partially and re-
render it after the missing information shows up.
Browsers vary in their willingness to draw and re-draw
a single page, but neither result is particularly desirable.

The solution, of course, is for site developers to ensure
that HEIGHT and WIDTH parameters are supplied for
all imbedded graphics. A reason for not doing so is that
the size is unknown when the HTML code is being
developed. A variety of images may be possible at this
page location; perhaps they will even be substituted
dynamically by a script. In this situation, the browser
dynamically re-sizes the image to the HEIGHT and
WIDTH parameters supplied, regardless of its actual
dimensions, which can result in images being displayed

with a distorted aspect ratio. To solve this problem, site
designers can either enforce standard image sizes, or
maintain dimensional metadata with stored images, and
generate the matching HTML parameters whenever an
image is used.

One page design technique that reduces rendering time
is to reuse content elements in different pages of a site.
For most users, when a Web page contains a content
element that the browser has already encountered, the
element is not downloaded a second time, it is retrieved
from the browser cache instead. A browser’s
willingness to use its cache in this way is controlled by
a browser setting that site developers do not control.
However, most users do have their browsers set to use
caching, at least during the current session.
Recognizing this, the most efficient e-commerce sites
are designed to exploit this browser feature by reusing
common graphic elements whenever possible.

User Interaction

Once the browser has displayed the page, the user
must absorb enough of the content to proceed. The
time required for this stage depends a lot on the
context: the user may need to enter data into an HTML
form, or simply click one of several links that will take
them to the next page of the transaction. But whatever
the interaction, a well-designed page can certainly help
to minimize this component of overall transaction time
and improve the user’s perception of the application’s
usability and responsiveness.

[HANS1999] discusses how the “Think Time” that
proponents of Software Performance Engineering
(SPE) typically ignore as an uninteresting (and
unmodeled) delay actually turns out to be easily the
largest component of overall application response time.
The paper shows how Human Factors Engineering
(HFE) methods can be combined successfully with
SPE, to provide new and more effective ways to
improve the users’ perceptions of performance.

��&��� '��(�����%��������������� ������������#���

�"��"������ �������	"������������	�"�����������!� �����"������	"����
�������� �	�����	�����	"��������"�����	�������
�����"��� �������	"�����,�������������������!� ������������������!� �����
#
&�� �� 	!�+��"����	�� �,��#
&���������������	"��������������� ��
#

�� &"���"���	��������������������������������������"����������

��� �	�����	������-���	��� �������������������"����������
��� �(���������������������(�	-�������"���������������	�������	������
���������������� &��� �,����������������������������!"�����������"�� ���������!"���

Figure 6. E-commerce Functional Layers

Reducing Response Time: A Summary

Originally presented at CMG 2000

© Copyright 2000 by Keynote Systems, Inc. and HyPerformix Inc. Page 9

We have enumerated eight stages of an e-commerce
transaction, noting the principal performance issues,
and suggesting some techniques for reducing the
response times of each. Our choice of a hypothetical
user of our model determined this approach. However,
another way to approach the question of tuning
possibilities would have been to work systematically
through the technology layers that underlie an
e-commerce application. These are shown in Figure 6,
which summarizes the principal methods of reducing
overall response times through tuning actions that can
be taken at each layer.

Figure 7 shows the relationship between these
functional layers, the suggested tuning techniques, and
the eight response-time components of our reference
model. A blank cell means that the tuning action has no
effect. The figure is a guide only; some tuning benefits
will depend on factors that are beyond the scope of this
discussion, and cannot be represented in a simple
table. For example, whether or not the DNS component
is affected will depend on whether a DNS lookup is
needed for any page or content element.

Each non-blank cell of the table contains a code. The
character indicates the effect of the tuning action. An

 “E” indicates that a tuning action will eliminate that
response time stage, while an “S” indicates that a
tuning action will shorten that response time stage. The
subscript indicates the scope of the result produced by
the tuning action. A “1” indicates that the action affects
a single Web page of an e-commerce transaction, a “2”
indicates that the action may affect more than one of
the pages, and an “*” indicates that all pages will be
affected.

Mathematically, eliminating any cell of the response-
time matrix is merely a special case of reducing its
contribution to overall response time. However, in
practice there is a qualitative difference between the
types of tuning actions involved, and for this reason we
prefer to emphasize the idea that there are two distinct
classes of tuning options. In particular, in the quest for
more responsive applications in the relatively slow
environment of the Internet, an important design
principle is “Whenever feasible, take work off the
synchronous response-time path”. Gimarc and
Spellmann observe that “The E-commerce vendor must
understand and balance the synchronous and
asynchronous transaction components in order to
satisfy the customer's service expectations”
[GIMA1999]. A later example illustrates this point.

��&��� �������������� �

�
��������

���������������

������������

������������������

�����������
��� ����

���������
��� ����

���������������

!
����"�����������

�������	"��������� .�� .�� .�� .�� .�� .�� .�� .��
�"��"������
��	�"�����������!� ����� � � � � � ��� � �

�������� �	�����	�	"��������"����� � � � ��� � � � �
�����������"!!�	"�����,�� � � � � ��� ��� ��� ���
����������������!� �������������
�������!� ��������(���"�	"���

� � � � � ��� � �
�����"���

�������� "����" �/�0� .�� � � � � ��� � �
#
&��)	�� �,��#
&������� � � � � ��� � ��� �
#

�� &"���"���	���������������������� � .�� � � ��� ��� � �

��� �	�����	������-���	��� ��� � �
� �
� � �
� �
� � �
��� �(���������������������(�	-�������

"����������������
� �
� �
� � �
� �
� � �

���������������� &��� �,���������!"��������"���
�����������

� �
� �
� � �
� �
� � �

Figure 7. E-commerce Tuning Actions and Their Benefits

Originally presented at CMG 2000

© Copyright 2000 by Keynote Systems, Inc. and HyPerformix Inc. Page 10

Finally, we point out that Figure 7 follows the basic
definition of our reference model. In particular, any DNS
Lookup, Redirection, or TCP Connection times
associated with downloading page content elements
are included within the Content Download component,
and not in the other columns, which relate to the Base
Page component.

An Example: Keynote’s Web Broker
Trading Index

To demonstrate the reference model, a well-known
Internet benchmarking application – the Keynote Web
Broker Trading Index (“KBTI”) -- will be used. This
weekly index represents the typical response times and
success rates for executing a standard stock-order
transaction on about 20 leading online brokerage sites
(such as DLJ Direct, Fidelity, E-Trade, and Charles
Schwab). These sites are measured every 15 minutes
between 9 a.m. and 4 p.m. (EST) during market trading
days via T-1 lines from 10 major US metropolitan areas
[KEYN2000].

The Sample KBTI Transaction

The standard Keynote broker transaction begins by
entering the Web site through its home page and
logging into the trading area. The transaction then
obtains a stock quote, creates an order to buy stock,
and logs out before confirming the order. Each
transaction is created through a standard trading
account set up by Keynote Systems. Demonstration
accounts or other non-standard accounts are not used
for these measurements. This multi-page KBTI
transaction will be used to illustrate the Reference
Model.

In practice, online brokerage sites may use a wide
variety of servers and require anything from 6 to 10
Web pages to implement a brokerage transaction like
the KBTI. For this example, we assume that the KBTI
transaction is implemented using the following server
environment:

�� Public Web Server provides entry to the Web site
through the site’s home page

�� Secure Web Server performs login processing and
other secure actions

�� Application Server contains the business
application logic

�� Quote Server is a stand-alone machine that
provides stock quotes on demand

�� Backend Mainframe contains the site’s permanent
customer records and core trading application
software

We also assume that the KBTI application flow involves
the following six-page sequence of Web pages:

1. Home Page: The browser requests the home
page. The Public Web Server services this
request. After the home page is displayed, the
browser client then selects the link for logging into
the system.

2. Login Page: This page allows the user to enter
their id and password and log into the system. The
Login Page request is sent to the Public Web
Server where a redirect is performed to the Secure
Web Server. At the completion of this page
request the user has a form where they can enter
the information required to log into the system.
The user enters their identification and presses the
“log in” button to log into the system.

3. MyAccount Page: After performing the required
authentication and authorization, the system
returns the MyAccount page. This is the Base
Page for performing activities from the user’s
brokerage account.

4. Get Quote Page: From the MyAccount page, the
user submits a request for a stock quote. Quote
information is returned to the browser.

5. Place Order Page: The client then places an order
to buy a stock, specifying quantity, price, etc. A
confirmation page is returned to the browser so
that the user can confirm the buy order.

6. Logout Page: Instead of confirming the buy order,
the user cancels the order by pressing the “log out”
button. This terminates the KBTI transaction,
returning the user to the Login Page.

This implementation is purely fictional, but similar to
many real-world implementations. The intent here is to
provide a realistic application that can be used to
illustrate the utility of the Reference Model for
describing and evaluating performance. Figure 8
describes the sample KBTI application in terms of the
Reference Model.

The “greyed out” cells in the matrix denote response
time components that will appear as zero in the sample
model. The following implementation notes apply to
Figure 8:

1. The Login Page is displayed using a redirect
command from the Public to the Secure Web
Server. It is assumed that the browser cache has
saved a copy of the Public Web Server’s IP
address.

2. The model assumes that the browser is using a
persistent connection to the Web servers. Thus,
TCP Connection only appears for the first
connection made to each Web server.

3. After the browser is redirected to the Secure Web

Originally presented at CMG 2000

© Copyright 2000 by Keynote Systems, Inc. and HyPerformix Inc. Page 11

Server on the Login Page, it will use its locally
cached IP address for future communication with
the Secure Web Server.

4. TCP Connection between the browser and Secure
Web Server is performed as part of the Login
Page’s Redirection.

For simplicity, the Page Rendering and User Interaction
stages are not included in our example. In practice,
these components of response time could be added if
estimates or measurements are available. See, for
example, [HANS1999].

�)�#��
�����

������
�����

'&*�������
�����

+���,�����
�����

� ����-�����
�����

�������
�����

�
��
�������

������	�
���!�������
�������

������	�
���!�������
��������

������	�
�����������
��������

������	�
�����������
��������

������	�
�����������
��������

������	�
�����������
��������

����
�����������

�����������
���!�������
�������

�����������
���!�������
��������

�����������
�����������
��������

�����������
�����������
��������

�����������
�����������
��������

�����������
�����������
��������

������������ ����� ���������
+�� ����!���
����������
�����������

����� ����� ����� �����

�������
�����������

1���(�#� ��
�"���

1���(��������
�������"���

���+�� �!�����)��"���������
2�����

�����	�"�
����������
������

�"���!�������
"���!����++�

����������
���� ����

�����#� ��
�"���

�����������
�"���

�����
&�%�������
�"���

�����'���
3������"���

������!"���
)������"���

������������
�"���

��������
���� ����

45�)�6����� 7�)�6����� 7�)�6����� 5�)�6����� 8�)�6����� 4�)�6����

Figure 8. Sample Implementation of the KBTI Application

 Home Login MyAccount Get Quote Place Order Logout

DNS Lookup 0.06 - - - - -

TCP Connection 0.15 - - - - -

Redirection - 0.19 - - - -

Server Processing 0.11 0.72 2.20 0.51 4.92 0.30

Base Page Download 1.30 1.54 1.30 1.06 0.89 0.82

Content Download 3.20 1.08 0.82 0.39 1.09 1.35

Page Total 4.82 3.53 4.32 1.96 6.90 2.47

KBTI Total 24.00

Figure 9a. KBTI Baseline Values

Originally presented at CMG 2000

© Copyright 2000 by Keynote Systems, Inc. and HyPerformix Inc. Page 12

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0
R

es
p

o
n

se
 T

im
e

(s
ec

)

H
om

e

Lo
gi

n

M
yA

cc
ou

nt

G
et

 Q
uo

te

P
la

ce
O

rd
er

Lo
go

ut

Baseline: Page-Level Response Time

DNS Lookup

TCP Connection

Redirection

Server Processing

Base Page Download

Content Download

Figure 9b. Plot of KBTI Baseline Values

Baseline Performance

Figures 9a and 9b show the baseline values for the
Reference Model components.

The total response time of 24 seconds is rather large
compared to the (real-world) KBTI average of 13.72
seconds reported for the Index on September 18,
2000.

By examining the components identified by the
Reference Model, the following areas of optimization
are worth further investigation:

1. The Content Download component of the Home
Page accounts for approximately 66% of the
page’s response time (over 3 seconds). The
Reference Model defines this component as the
time required to download the page’s content; e.g.,
graphic objects. This component may be improved
by reducing the amount of content to be
downloaded per page and by moving static content
closer to the requesting browser (content
distribution).

2. The Base Page Download component is a
significant factor in all page response times (29%
of the overall KBTI response time). This is the time
required to send the Base Page from the Web
server back to the browser. Potential improvement
may come from relocating the Web servers closer
to the requesting browser.

3. The Place Order page is the single largest
contributor to the KBTI response time. Within that
page, Server Processing accounts for almost 5
seconds. It may be possible to partition Server
Processing into separate synchronous and

asynchronous parts (where the asynchronous part
would not contribute to browser response time).

In the next section, these three alternatives will be
explored in more detail.

Simulation Model of the Index

To evaluate the different optimizations identified in the
previous section, a simulation model of the KBTI
transaction was constructed -- see Figure 10. The
model includes representations of the hardware,
software, and network components that comprise this
sample KBTI implementation. The round “arrow
bubbles” connected to each server represent the
application software services provided by that server.

The model provides a means to evaluate the
component times of the Reference Model. In addition,
the model enables individual Reference Model
components to be represented in varying degrees of
detail. For example, the Reference Model includes a
Server Processing component. In the simulation
model, this single component can be expanded to
represent the discrete steps that comprise Server
Processing. For example, the Server Processing steps
for the Place Order Page include the following:

1. The Secure Web Server sends a request message
to the Application Server over the switched
Ethernet.

2. The Application Server performs initial processing
on receipt of the message to determine other
services required.

Originally presented at CMG 2000

© Copyright 2000 by Keynote Systems, Inc. and HyPerformix Inc. Page 13

3. The Application Server then sends a request to the
Quote Server to get the current stock price.

4. The Quote Server queries its database to
determine the current price and returns its reply to
the Application Server.

5. The Application Server continues processing and
prepares a request for the Backend Mainframe.

6. The Application Server sends the order request to
the Backend Mainframe.

7. The Backend Mainframe processes the order and
returns a reply to the Application Server.

8. The Application Server completes order processing
and sends its response back to the Secure Web
Server (which will then send an order confirmation
back to the browser).

The ability to represent the application at varying levels
of detail enables performance analysis to be focused.
Response time components that are small (e.g., DNS
Lookup and TCP Connection) can safely be viewed
from a high level. Larger components such as Server
Processing warrant a more detailed representation.
The issues being addressed by the performance
analyst determine the level of detail and refinement to
be included in the model.

Figure 10. Simulation Model of the KBTI

Originally presented at CMG 2000

© Copyright 2000 by Keynote Systems, Inc. and HyPerformix Inc. Page 14

Model Evaluation

The model was used to evaluate four key changes to
the application implementation:

1. Reduce the number of objects on the Home Page
to improve the page’s Content Download
component.

2. Distribute static content to decrease network and
Content Download time.

3. Use asynchronous processing to improve the
Server Processing for the Place Order Page.

4. Relocate Web servers to decrease Base Page and
Content Download.

Finally, we looked at the cumulative effects of these
changes.

1. Reduce Home Page Graphic Content

The Content Download component of the Home Page
accounts for approximately 66% of the page’s 4.82
second response time. A fairly simple optimization is to
reduce the graphic content on this page. In this
example there are 12 graphic objects on the Home
Page. The model will be reevaluated after deleting the
last 6 objects of varying sizes totaling 25Kb.

The Home Page results are shown in Figure 11. The
Home Page response time decreased by 43%. This
represents a 9% reduction in the KBTI response time.

 12-Object
Home Page

6-Object
Home Page

DNS Lookup 0.06 0.06

TCP Connection 0.15 0.15

Redirection - -

Server Processing 0.11 0.11

Base Page Download 1.30 1.30

Content Download 3.20 1.12

Page Total 4.82 2.74

KBTI Total 24.00 21.90

Figure 11. Revision to the KBTI Home Page

2. Content Distribution

Content distribution is becoming a popular method of
reducing the download time of static Web page content.
 The general idea is to move static content closer to the
requesting users. By doing so, the Content Download
time for the pages containing distributed content will be
reduced. In this example, the static content on the
Home Page (10 objects totaling 26Kb) is moved to a
content server closer to the requesting browser.

Figure 12 shows the Home Page results from this
experiment compared to the baseline. Distributing static
content resulted in approximately the same savings as
redesigning the Home Page by eliminating 6 objects.
Moving static content closer to the end user’s browser
reduced the Content Download component.

 Baseline
Home Page

Distributed
Content

Home Page

DNS Lookup 0.06 0.06

TCP Connection 0.15 0.15

Redirection - -

Server Processing 0.11 0.11

Base Page Download 1.30 1.30

Content Download 3.20 1.07

Page Total 4.82 2.70

KBTI Total 24.00 21.85

Figure 12. Distributing the KBTI Content

3. Asynchronous Processing

Server Processing in the Place Order Page is the single
largest component in our model of the KBTI
transaction. In fact, the 4.9 seconds is larger than the
response time for any of the other 5 pages. As Gimarc
and Spellmann point out, “the introduction of
asynchronous components in the E-commerce
transaction requires recasting transaction boundaries in
order to maintain the integrity of the customer's order.”
[GIMA1999] This requires the steps for the Place
Order Page to be divided such that “… the state
information maintained by the system and application
for the transaction satisfies the application's business
rules and requirements, and integrity constraints.”

In this example we will modify the Application Server
software so that as soon as it has saved a persistent
copy of the order, it will send a confirmation back to the
client’s browser. The work required to perform the
time-consuming order processing will be executed in
parallel, or asynchronously. This parallel processing
will be performed in the background while the client
receives a faster response confirming that the order will
be placed as requested.

Originally presented at CMG 2000

© Copyright 2000 by Keynote Systems, Inc. and HyPerformix Inc. Page 15

The results of this change are shown in Figure 13.
Partitioning the Place Order Page into synchronous and
asynchronous components resulted in a 19% reduction
in the KBTI response time and a 66% reduction of the
page-level response time.

 Baseline

Place Order

Page

Asynch

Place Order

Page

DNS Lookup - -

TCP Connection - -

Redirection - -

Server Processing 4.92 0.36

Base Page Download 0.89 0.89

Content Download 1.09 1.09

Page Total 6.90 2.34

KBTI Total 24.00 19.41

Figure 13. Asynchronous Processing for the KBTI
Order Page

4. Web Server Relocation

In our final experiment we will study the effect of
relocating the Web servers closer to the requesting
browser. This requires setting up a widely distributed
network of servers, located at ISPs in major hub cities.
In terms of our model, we will be moving the Public and

Secure Web Servers closer to the “Local_ISP”. The
intent of this move is to reduce the amount of time
required to transmit the Base Page and content to the
client browser. Within the hub city areas, the Web
servers will be located nearer to the client browsers and
therefore provide faster downloads due to decreased
network latency.

However, there is a second-order effect that must be
considered, namely the communication that occurs
between the Web servers and the other backend
servers. Relocation will increase the network latencies
between these servers. A balance must be struck
between these two effects to determine the right
combination.

Figure 14 gives the results from relocating the two Web
servers. These results assume that the client browser is
located near the hub city ISP.

Web server relocation reduced overall KBTI response
time from 24.0 seconds down to 16.6 (a 31%
reduction). Note, however, that certain times increased
due to the physical separation of the Web servers from
the backend servers. Server Process time for the
Place Order Page increased from 4.92 seconds to 7.08
seconds.

Cumulative Changes

In the final experiment, we apply the two relocation
changes (static content and Web servers) and add the
asynchronous step to the Place Order Page. The
results are shown in Figure 15; we’ve reduced the KBTI
transaction response time by 50%, from 24 seconds
down to 12 seconds.

 Home Login MyAccount Get Quote Place Order Logout

DNS Lookup 0.06 - - - - -

TCP Connection 0.03 - - - - -

Redirection - 0.04 - - - -

Server Processing 0.03 0.52 2.74 1.05 7.08 1.41

Base Page Download 0.32 0.38 0.32 0.26 0.22 0.20

Content Download 0.80 0.26 0.20 0.09 0.27 0.33

Page Total 1.24 1.20 3.26 1.40 7.57 1.94

KBTI Total 16.61

Figure 14. Distributing the KBTI Web Servers

Originally presented at CMG 2000

© Copyright 2000 by Keynote Systems, Inc. and HyPerformix Inc. Page 16

 Home Login MyAccount Get Quote Place Order Logout

DNS Lookup 0.06 - - - - -

TCP Connection 0.03 - - - - -

Redirection - 0.04 - - - -

Server Processing 0.03 0.52 2.74 1.05 2.51 1.41

Base Page Download 0.32 0.38 0.32 0.26 0.22 0.20

Content Download 0.80 0.26 0.20 0.09 0.27 0.33

Page Total 1.24 1.20 3.26 1.40 3.00 1.94

KBTI Total 12.04

Figure 15. Cumulative Effects of Tuning Changes

Conclusion

We have described a simple reference model for
e-commerce application response time. The model
delineates the components of response time, and
creates a natural framework for design and tuning work.
For each component of the model, we explained the
factors determining response time, and discussed the
typical response times observed for leading
e-commerce Web sites in September, 2000. Using an
example, we showed how this conceptual reference
model can be implemented as simulation model,
allowing an analyst to explore the consequences of
design choices on the response-time of an e-commerce
transaction.

Acknowledgements

We would like to thank Ben Rushlo, Eric Siegel, Geoff
Woolhouse, and Jing Zhi of Keynote Professional
Services for their invaluable assistance with the
research for this paper.

References

References of the form CMGCD id indicate a paper
number on the CMG 25th Anniversary Conference
Edition CD, published in 1999. When using the CD, the
id field can be used to locate the paper quickly.

[BICK1997] Peter Bickford, “Worth the Wait?,”
Netscape/View Source Magazine 10/97 (1997)

[COHE1999] E. Cohen, H. Kaplan, and J. D. Oldham,
“Managing TCP Connections under Persistent HTTP,”
Computer Networks. 31:1709--1723 (1999)

[GIMA1999] Richard L. Gimarc and Amy C. Spellmann,
“Redefining Response Time in an Asynchronous
World,” Proc. CMG’99 International Conference, Reno
(1999). CMGCD 99INT445.

[HANS1999] Craig D. Hanson and Pat V. Crain, “User
and Computer Performance Optimization - A New

Model for Efficiency,” Proc. CMG’99 International
Conference, Reno (1999). CMGCD 99INT436.

[JAMT1997] Sudha Jamthe and Subhash Agrawal,
“Performance Issues of Designing a High Performance
Intranet,” Proc. CMG’97 International Conference,
Orlando (1997). CMGCD 97INT633.

[KEYN2000] For details of the sites in Keynote
Performance Indexes and the measurement locations
used, see http://www.keynote.com/

[KILL1998] Patrick Killelea, “Web Performance Tuning,”
O’Reilly (1998)

[LYNC1999] Jacqueline A. Lynch, “Designing High
Performance Web Pages,” Proc. CMG’99 International
Conference, Reno (1999). CMGCD 99INT332.

[NIEL1997] Henrik F. Nielsen, “Network Performance
Effects of HTTP/1.1, CSS1, and PNG,”
http://www.w3.org/Protocols/HTTP/Performance/Pipelin
e.html (1997)

[NIEL1998] Jakob Nielsen, “Nielsen's Law of Internet
Bandwidth”, http://www.useit.com/alertbox/980405.html
(1998).

[NIEL2000] Jakob Nielsen, “Designing Web Usability:
The Practice of Simplicity,” New Riders, p42 (2000).

[POTT2000] Kevin Potts, “Exploiting the New Internet
Capacity Management Technologies,” Proc. CMG2000
International Conference, Orlando (2000).

[SHUL1998] Rus Shuler, “How Does the Internet
Work?,” http://rus1.home.mindspring.com/whitepapers/
internet_whitepaper.html (1998)

[WANG1998] Zhe Wang and Pei Cao, “Persistent
Connection Behavior of Popular Browsers,”
http://www.cs.wisc.edu/~cao/papers/persistent-
connection.html (1998)

