
Using Compatible Keys for Secure
Multicasting in E-Commerce

Indrakshi Ray Indrajit Ray
Department of Computer Science

Colorado State University
Email: {iray, indrajit}@cs.colostate.edu

Abstract

Consider an electronic commerce (e-commerce) environment where the consumers
subscribe to data objects; a server distributes these objects electronically which are then
retrieved by the consumer. We propose a protocol showing how the distribution of data
objects can be done in a secure and efficient manner. In our protocol, (1) consumers who
have subscribed for an object can get access to the object only during the period that their
subscription is valid, (2) persons who have not subscribed to an object do not get access to
the object, (3) increasing the number of consumers subscribing to an object does not dete-
riorate the quality of service, (4) multiple key distributions to each consumer is avoided,
(5) key management is simple – each consumer just remembers one key, (6) bandwidth
requirements are low, and (7) large processing overhead required for decryption is not
incurred by the consumer. The protocol is based on the theory of compatible keys which
we illustrate in this paper.

Contact Address: Dr. Indrakshi Ray
Department of Computer Science
Colorado State University
Fort Collins, CO 80523-1873
Phone: (970) 491-7986, Fax: (970) 491-2466
Email: iray@cs.colostate.edu

Using Compatible Keys for Secure Multicasting in
E-commerce

Abstract

Consider an electronic commerce (e-commerce) environment where the consumers
subscribe to data objects; a server distributes these objects electronically which are then
retrieved by the consumer. We propose a protocol showing how the distribution of data
objects can be done in a secure and efficient manner. In our protocol, (1) consumers who
have subscribed for an object can get access to the object only during the period that their
subscription is valid, (2) persons who have not subscribed to an object do not get access to
the object, (3) increasing the number of consumers subscribing to an object does not dete-
riorate the quality of service, (4) multiple key distributions to each consumer is avoided,
(5) key management is simple – each consumer just remembers one key, (6) bandwidth
requirements are low, and (7) large processing overhead required for decryption is not
incurred by the consumer. The protocol is based on the theory of compatible keys which
we illustrate in this paper.

1 Introduction

Consider an electronic commerce (e-commerce) environment where consumers
subscribe to data objects. Examples of such objects may be stock, weather, airline
information etc. These objects are electronically delivered to the consumers over
the Internet. The restrictions imposed on delivery are that (1) consumers who have
subscribed to an object should be able to access it, (2) no one other than the sub-
scribing consumers should have access to that object, and (3) the access should be
allowed only when the subscription is valid. These objectives can be met with a
simple solution: encrypt the data object with the consumer’s public key and trans-
mit this encrypted data. However, if many consumers subscribe to a data object,
then this data object will be encrypted multiple times and transmitted multiple
times – this solution is clearly inefficient wasting computation and bandwidth.
We explore the alternate solution of broadcasting the encrypted data and provid-
ing an access control mechanism by which only legitimate consumers can access
the data. Since the consumers subscribing to the data object vary with time, the
problem we are addressing is of secure multicasting in a dynamic environment.

Secure broadcasting/multicasting at the application level has received some
attention in the past few years [4, 7, 10, 11]. However, these fail to satisfy one
or more of the following requirements: (1) The protocol should be scalable; in-

1

creasing the number of subscribers to an object should not deteriorate the quality
of service. (2) Key management should be simple. Consumers should not have
to keep track of multiple keys. Ideally, each consumer should remember only one
key. Each server should not have to keep track of a large number of keys. (3)
Key distributions to the consumers should be kept at the minimum - ideally one
for each consumer. Key distribution to the consumers incurs a significant over-
head both in terms of bandwidth and time. Reducing key distribution will result
in a more efficient protocol. (4) Consumers should not incur significant process-
ing overhead for decryption. We propose a solution that satisfies all the above
mentioned requirements.

In our mechanism we have theconsumerswho subscribe to various data ob-
jects. Asubscriptionallows a consumer to access one or more data objects for
specific period(s) of time. A consumer cannot access the data object beyond the
specified period. A consumer is allowed to change or cancel his subscription at
any point of time. The consumer interacts with theserverwhen he wishes to
add/modify/cancel his subscription. The server has access to a large repository of
data objects. At each broadcast session, the server determines which objects must
be broadcast and who are the recipients of these objects. Based on this informa-
tion, the server generates the key required to encrypt each object. This encrypted
object is a part of the message that is broadcast by the server.

The encryption is based on the theory of compatible keys described in Sec-
tion 3. Briefly, it is as follows. For each consumerCi that subscribes, the server
generates the key pair< Ki,Ki

−1 >. This key pair is mathematically related to all
existing key pairs< Kj ,Kj

−1 > belonging to consumersCjs. The consumerCi

receives the keyKi
−1 and uses it to decrypt any object that he has subscribed to.

To illustrate our encryption mechanism we give an example. Initially letC1 be
the only consumer who has subscribed to a data objectm. The server encrypts the
data objectm with the keyK1 (denoted by[m,K1]), and broadcasts this encrypted
object. C1 uses his decryption keyK1

−1 to retrievem. Thus, a consumer has to
store only one decryption key to retrieve the data objects he has subscribed to.
Also, note that multiple decryptions are not necessary to obtain the object.

Now suppose another consumerC3 subscribes to the data objectm. The server
prepares key pair< K3,K3

−1 > for C3 such thatK3 is compatible withK1. The
server now encrypts the data object with the keyK1×K3 (we define× operator
in Section 3), denoted by[m,K1×K3], and broadcasts it. The keyK1×K3 is such
that consumerC1 is able to obtainm by decrypting the broadcast message using
K1

−1 andC3 is able to obtainmby decrypting the broadcast message usingK3
−1.

Thus, when the number of consumers subscribing to a data object increases, the

2

only change necessary is the way in which the data is encrypted. The size of the
broadcast message is not changed. Thus, our protocol is scalable.

At some later time, the group of consumers subscribing tom changes: con-
sumerC3 no longer subscribes tom and consumersC2 andC4 have started sub-
scribing tom. The server as before generates key pairs< K2,K2

−1 > for C2 and
< K4,K4

−1 > for C4. To deliver the data, the server broadcasts the data objectm
encrypted with keyK1×K2×K4. From the encrypted object,[m,K1×K2×K4],
only consumersC1, C2 andC4 can retrievem. Note that, key distribution is not
necessary when the group (subscribing for a particular object) changes. Only the
consumers who have been added/deleted from the group are aware of the change
– the change is transparent to the existing consumers.

The rest of the paper is organized as follows. Section 2 describes some related
work in this area. Section 3 describes the theory of compatible keys on which our
protocol is based. Section 4 describes the detailed mechanism. Finally, section 5
concludes the paper.

2 Related Work

One of the earlier work in secure broadcasting is due to Gopal and Jaffe [10]. The
authors proposed a point-to-point approach to broadcasting. For each consumer,
the server makes an encryption of the data object, and broadcasts this. Suppose
there areN consumersC1, C2, . . ., CN having public keysP1, P2, . . ., PN respec-
tively. TheseN consumers subscribe to the data itemDi. Then the broadcast
message will consist of the concatenation of[Di ,P1], [Di ,P2], [Di ,P3], [Di ,P4], . . .
[Di,PN] where[Di ,Pj] refers to the encryption ofDi with the public keyPj . Thus,
the same message is encrypted multiple times and broadcast – not efficient.

Chiou and Chen [7] proposed a session key approach to broadcasting. In this
approach each broadcast is considered a session. The session keys are used for
one session and then discarded. Corresponding to each data itemDi there is
a pair of encryption/decryption keys (SessEncKeyi, SessDecKeyi). The server
encrypts the data itemDi with the SessEncKeyi and broadcasts it. The con-
sumers who subscribed for the data itemDi need theSessDecKeyi in order to
decrypt the data. For each consumerCj subscribing to the data itemDi , the
server encryptsSessDecKeyi with the public key of the consumerPj . The en-
crypted SessDecKeyi for all the consumers who have subscribed to data item
Di are concatenated together with the data itemDi and broadcast. In short, if
consumersC1, C2, . . ., CN subscribe to the data itemDi , the following message

3

will be broadcast: concatenation of[Di ,SessonEncKeyi], [SessionDecKeyi ,P1],
[SessionDecKeyi ,P2], . . ., [SessionDecKeyi ,PN]. Clearly, the length of the mes-
sage will depend on the number of consumers subscribing to the data item. Note
that a consumer who has subscribed to multiple data items will receive multiple
decryption keys for deciphering all these items. The consumer thus has to man-
age multiple keys. However, key management is somewhat simplified due to the
fact that session keys are used for one session only and are discarded after use.
Key distribution is a major problem with this approach: the session keys must be
distributed to all subscribers at every broadcast.

Rather than broadcast session keys at every session, an alternate approach us-
ing group keys is proposed by Ingemarsson et al. [11]. All consumers subscribing
to a particular data item form a group. Associated with each group there is a group
key. This group key is broadcast and used until some consumer leaves the group.
If a consumer leaves the group, a new group key must be generated and distributed
to the existing group members. The data item is encrypted with the group key and
broadcasted. If this is a new group key, then it is securely transmitted (by en-
crypting it with the public key of each group member) to all the members of the
group. The different encryptions of the group key are concatenated with the en-
crypted data item and then broadcast. For the case where the consumersC1, C2,
. . ., CN have subscribed to a data itemDi , the following encryptions are concate-
nated and then broadcasted:[Di ,Gx], [Gx,P1], [Gx,P2], . . ., [Gx,PN] whereGx is
the group key with whichDi is encrypted,Pj is the public key of consumerCj ,
and[a,b] denotesa encrypted with keyb. Note that a consumer who subscribes
to multiple items, will have to manage multiple group keys. Since group keys are
used multiple times, managing and storing multiple group keys is non-trivial. Key
distribution is less expensive than the session key approach – it is necessary only
when a consumer leaves the group. In all the above approaches, the size of the
data that is broadcast increases as the number of consumer increases.

Celik and Datta [4] improve upon the group key approach. The time contin-
uum is divided into discrete epochs. Clients can subscribe to data items for one or
more epochs. The actual duration of an epoch is based on subscription patterns.
Consumers are assigned to the same group if they subscribe to the same data items
and their subscription expires at the same epoch. This obviates the need for redis-
tributing new keys to existing group members when consumers leave the group.
A group key is given to the consumer when he subscribes for one or more items.
Thus, when the data item is being broadcast there is no need to send the group key.
The length of the broadcast is therefore independent of the number of consumers.
Now if the consumer subscribes for all data items together, he has to manage only

4

one group key. But in real world, it is possible that a consumer subscribes to one
data item, and later on decides to subscribe to a second item, and so on. In such
a scenario the consumer may have to manage multiple group keys. The server
may also have to manage a large number of keys. Suppose the time continuum
is divided into H epochs. Then for any one item there can H! possible subscrip-
tion patterns. Suppose there are a total ofd items from which the consumers can
choose. Number of ways consumers can choose subsets ofd items is(2d − 1).
So the maximum number of groups isH! ∗ (2d −1). Thus, in the worst case, the
server has to keep track of a very large number of keys. Moreover, the authors
do not address what happens if a consumer decides to terminate his subscription
before the end date – this scenario might arise in a real world situation. In such a
case it appears that the proposed scheme will not work.

Other works in secure multicasting include the problem of key distribution
[1, 8, 12, 16] and digital signatures [2, 3, 5, 6] among the participants in a group.
But most of these work do not address dynamic groups.

3 Theory of Compatible Keys

Before presenting our protocol we establish the theory of compatible keys on
which the protocol is based.

Definition 1 The set ofmessagesM is the set of non negative integersm that are
less than an upper boundN, i.e.

M = {m|0≤ m< N} (1)

Definition 2 Given an integera and a positive integerN, the following relation-
ship holds,

a = qN+ r where0≤ r < N and q= ba/Nc (2)

wherebxc denotes the largest integer less than equal tox. The valueq is referred
to as thequotientandr is referred to as theremainder. The remainderr , denoted
a modN, is also referred to as theleast positive residueof a modN.

Definition 3 For positive integersa, b andN, we saya is equivalentto b, modulo
N, denoted bya≡ b modn, if a modn = b modn.

Definition 4 For positive integersa, x, n andn > 1, if gcd(a,n) = 1 anda.x≡
1 modn, thenx is referred to as themultiplicative inverse of a modulo n.

5

Definition 5 Two integersa, b are said to berelatively primeif their only common
divisor is 1, that is, gcd(a,b) = 1.

Definition 6 The integersn1,n2,. . .,nk are said to bepairwise relatively prime, if
gcd(ni ,nj) = 1 for i 6= j.

Definition 7 The Euler’s totient functionφ(N) is defined as the number of inte-
gers that are less thanN and relatively prime toN. Below we give some properties
of totient functions that we need in this paper.

1. φ(N) = N−1 if N is prime.

2. φ(N) = φ(N1)φ(N2) . . .φ(Nk) if N = N1N2 . . .Nk andN1,N2,. . .,Nk are pair-
wise relatively prime.

Theorem 1 Euler’s theorem states that for every a and N that are relatively
prime,

aφ(N) ≡ 1 modN

Proof: We omit the proof of Euler’s theorem and refer the interested reader to any
book on number theory [14] or cryptography [15].

Corollary 1 If 0< m< N and N= N1N2 . . .Nk and N1,N2,. . .,Nk are primes, then
mxφ(N)+1 ≡ m modN where x is an integer.

Definition 8 A key K is defined to be the ordered pair< e,N >, whereN is a
product of distinct primes,N ≥ M and e is relatively prime toφ(N); e is the
exponentandN is thebaseof the keyK.

Definition 9 Theencryptionof a messagemwith the keyK = < e,N >, denoted
as [m,K], is defined as

[m,< e,N >] = me mod N (3)

Definition 10 The inverseof a keyK =< e,N >, denoted byK−1, is an ordered
pair< d,N >, satisfyinged≡ 1 mod φ(N).

Theorem 2 For any message m.
[
[m,K] ,K−1] =

[[
m,K−1] ,K

]
= m (4)

where K=< e,N > and K−1 =< d,N >.

6

Proof: We first show that [
[m,K] ,K−1] = m

L.H.S. =
[
[m,K] ,K−1

]
=

[
me modN,K−1

]
(Def. 9)

= (me modN)d modN (Defs. 9, 10)
= med modN (laws of modular arithmetic)
= m(xφ(N)+1) modN (Defs. 2, 10,ed= xφ(N)+1, x is an integer)
= m modN (Corollary 1)
= m (since we assumem< N; see Def. 1)
= R.H.S.

By symmetry
[[

m,K−1
]
,K

]
= m.

Corollary 2 An encryption,[m,K], is one-to-oneif it satisfies the relation[
[m,K] ,K−1] =

[[
m,K−1] ,K

]
= m

Definition 11 Two keysK1 =< e1,N1 > andK2 =< e2,N2 > are said to becom-
patible if e1 = e2 andN1 andN2 are relatively prime.

Definition 12 If two keysK1 =< e,N1 > andK2 =< e,N2 > are compatible, then
theproductkey,K1×K2, is defined as< e,N1N2 >.

Lemma 1 For positive integers a, N1 and N2,

(a mod N1N2) ≡ a mod N1

Proof: Let a = N1N2x + N1y + z, wherex, y andz are integers.

L.H.S. = (a mod N1N2) mod N1

=
(

N1N2x+N1y+z−
⌊

N1N2x+N1y+z
N1N2

⌋
×N1N2

)
mod N1

= (N1y+z) mod N1

= z

R.H.S. = (a mod N1)
= (N1N2x+N1y+z) mod N1

= z

Hence the proof.

7

Theorem 3 For any two messages m andm̂, such that m, m̂ < N1, N2,

[m,K1×K2] ≡ [m̂,K1] mod N1 if and only if m= m̂ (5)

[m,K1×K2] ≡ [m̂,K2] mod N2 if and only if m= m̂ (6)

where K1 is the key< e,N1 >, K2 is the key< e,N2 > and K1×K2 is the product
key< e,N1N2 >.

Proof: The proof for (6) is the same as that for (5). We just consider the proof for
(5).
[If part] Givenm= m̂, we have to prove that[m,K1×K2]≡ [m̂,K1] mod N1, that
is,

[m,K1×K2] mod N1 = [m̂,K1] mod N1

L.H.S. = [m,K1×K2] mod N1

= (me mod N1N2) mod N1 (Defs. 9, 12)
= me mod N1 (substitutingme for a in lemma 1)

R.H.S. = [m̂e mod N1] mod N1

= m̂e mod N1 (idempotency of mod operation)
= me mod N1 (since m= m̂, given)

[Only If part] Given[m,K1×K2] ≡ [m̂,K1] mod N1, we have to provem = m̂

[m,K1×K2] ≡ [m̂,K1] mod N1

or [m,K1×K2] mod N1 = [m̂,K1] mod N1 (Def. 3)
or (me mod N1N2) = (m̂e mod N1) (Defs. 9, 12)
or me mod N1 = (m̂e mod N1) mod N1 (lemma 1)
or [m,< e,N1 >] = [m̂,< e,N1 >] (Def. 9)
or m = m̂ (encryption is one-to-one)

The more general case for the above theorem is as follows.

[m,K1×K2 . . .Kp] ≡ [m̂,K1] mod N1 if and only if m= m̂ (7)

[m,K1×K2 . . .Kp] ≡ [m̂,K1] mod N2 if and only if m= m̂ (8)

...

[m,K1×K2 . . .Kp] ≡ [m̂,K1] mod Np if and only if m= m̂ (9)

whereK1 =< e,N1 >, K2 =< e,N2 >, etc. andK1×K2 . . .Kp is the product key
< e,N1N2 . . . ,Np >.

8

4 The Detailed Mechanism

Our protocol proceeds in phases. First a consumer registers with the server. This
is followed by subscription when a consumer subscribes to one or more objects.
During each broadcast transmission, the server checks which data objects must be
transmitted. The server then appropriately encrypts the data objects, concatenates
these encrypted data objects into one message and broadcasts it. The consumer
tunes in at the subscription times and listens to the broadcast message. The con-
sumer then decrypts the broadcast message to obtain the data object(s) to which
he has subscribed.

Registration

A consumer must register with the server before he can subscribe for a data object.
This registration is done only once for every consumer. The following steps are
performed during registration.

1. The consumerCi authenticates himself with the information server.

2. The server performs a table lookup to ensure that the consumerCi is not
already registered.

3. If the consumer is not already registered, the server generates a pair of en-
cryption/decryption keys,(Ki ,K

−1
i), for the consumerCi using algorithm 1

given below.

4. The server records the encryption keyKi in the table of registered users.

5. The server sends the decryption keyK−1
i to the consumerCi . This de-

cryption key is encrypted with the public keyKpubi and the encrypted key
([K−1

i ,Kpubi]) is then transmitted.

Algorithm 1 Encryption and Decryption Key Generation for CustomerCi

Input:
(i) K – List of encryption keys that have already been assigned to existing con-
sumers,
(ii) e – a large exponent chosen by the server which is common to all the con-
sumers.
Output:
(i) < Ki,K

−1
i > – Encryption KeyKi /Decryption KeyK−1

i for consumerCi .

9

ProcedureGenerateCustomerKeys(K ,e)
begin

f actors:= 1
for eachKj =< e,Nj > in K do

f actors:= f actors∗Nj

choose anNi that is relatively prime tof actors
Ki :=< e,Ni >

K−1
i :=< di,Ni > (whereedi ≡ 1 modφ(Ni) as given in Definition 10)

end

Subscription

In this phase, the customer actually subscribes to one or more data objects. Billing
the consumer (which is beyond the scope of this paper) can also be done at this
stage. The following steps are performed at the subscription phase.

1. For each data object the consumerCi sends the server, the data object iden-
tification Dj and the period of subscription(Ti jk ,Ti jl).

2. The server maintains a listL j for each data objectDj . Corresponding to
each consumerCk who has subscribed to the data itemDj there is a record
Rk j in the list L j . When a consumerCi subscribes to a data objectDj for
the first time, the server inserts a new recordRi j =<Ci ,Dj ,Ki ,(Ti jk ,Ti jl) >.
(Algorithm 2 describes how this is done). When a consumerCi changes his
subscription about the data objectDj , the existing recordRi j is modified (as
shown in Algorithm 3).

Algorithm 2 Insert ConsumerCi ’s Subscription
Input:
(i) Ci – the identity of the consumer.
(ii) D – the set of data objects that the consumer is subscribing to.
(iii) T – the set of time intervals describing the period of subscription for each
data object inD.
(iv) L – A set of lists corresponding to the data objects inD.
Output:
(i) L – The set of updated lists. Each listL j will be updated by inserting the record
Ri j .

ProcedureInsertConsumerSubscription ((Ci ,D,T,L))

10

begin
for each data objectDj in D

get< Ti jp,Ti jq > from the setT
if there is no recordRi j in list L j

insert recordRi j =< Ci ,Ki ,(Ti jp ,Ti jq) > in L j

end

In our protocol the consumer has the flexibility of modifying or canceling his
subscription at any time. This algorithm is given below.

Algorithm 3 Modify ConsumerCi ’s Subscription
Input:
(i) Ci – the identity of the consumer.
(ii) D – the set of data objects that the consumer is subscribing to.
(iii) T – the set of time intervals describing the period of subscription for each
data object.
(iv) L – A set of lists corresponding to the data objects inD.
Output:
(i) L – The set of updated lists. Each listL j will be updated by modifying the
recordRi j .

ProcedureModifyConsumerSubscription ((Ci ,D,T,L))
begin
for each data objectDj in D

get< Ti jp,Ti jq > from the setT
if there is recordRi j in list L j

delete existing recordRi j

insert recordRi j =< Ci ,Ki ,(Ti jp ,Ti jq) > in L j

end

Data Encryption and Broadcast

At each broadcast timet, the following activities are performed.

1. The server finds out the list of data objects that must be transmitted at this
time.

11

2. For each of these objects, the server is responsible for generating the appro-
priate encryption key using the algorithm 4.

3. The data objects are encrypted with the correct key.

4. Each encrypted data object corresponds to a data block of the broadcast
message.

5. The broadcast index block is created and prepended to the message. For
each data item that is being broadcast, a pointer to the data block for that
item is given in the broadcast index block. The structure of the broadcast
message is given in figure 1.

6. The broadcast message is transmitted.

Algorithm 4 Broadcast Encryption Keys Generation
Input:
(i) D – the set of data objects,
(ii) L – the set of lists corresponding to all the objects.
(iii) t – The broadcast timet.
Output:
(i) The set of keys used to encrypt the data objects.

ProcedureBroadcastEncryptionKeyGeneration(D,L ,t))
begin

for each data objectDj ∈ D do
f actorj := 1

for each listL j in L
for each recordRi j in L j do

if t is within the interval(Ti jk ,Ti jl) then
f actorj = f actorj ∗Ni (Ni is the modulus of KeyKi)

if (f actorj 6= 1) then
KeyDj :=< e, f actorj >

elseno key to generate for dataDj .
end

12

Encrypted Data
Object Dj

Encrypted Data
Object Di

........ Encrypted Data
Object Dn

Broadcast
Index

D
n,

 o
ff

se
t

D
j,

of
fs

et

D
i,

of
fs

et

...
...

.
...

...
.

...
...

.

Figure 1: Structure of the Broadcast Message

Receipt of the Data Objects

In order to retrieve the data object during the subscription interval, the consumer
does the following.

1. The consumerCi tunes in and listens to the broadcast message.

2. The consumer reads the broadcast index to find out which data block(s)
contain the data object(s), the consumer is interested in.

3. The consumer then gets the encrypted data object(s) from the respective
data block(s).

4. To decrypt each data object, the consumerCi uses his decryption keyK−1
i .

(Theorems 2 and 3 ensure that this is possible).

4.1 Optimizations

The server may choose to do certain optimizations to improve the performance.
For example, each data objectDj has a listL j that records the details of the con-
sumers who have subscribed to this object. Rather than maintain a single list, the
server can partition the list based on subscription times. During each broadcast
time, the appropriate partition will be traversed.

The server can also perform certain optimizations to reduce the size of the
broadcast. The size of the broadcast message depends on the number of data
objects that are being transmitted (it is independent of the number of subscribers
subscribing to that data object in that time interval). Often, it may happen that two
or more data objects are being encrypted with the same key (this may happen, if

13

the same set of consumers have subscribed to the same data objects). In such a
case, these data objects can be concatenated and their result encrypted – this way
the consumer does not have to perform multiple decryptions for the set of objects.

4.2 Security of Our Scheme

Our scheme is based on the RSA cryptosystem. Its security is based on the dif-
ficulty of factoring large prime numbers. We do need to mention that the low
exponent attack on the RSA cryptosystem [13] does not arise in our case. The
low exponent attack occurs in the following way: suppose the same messagem is
encrypted with different keys sharing the same exponent. Let the exponente= 3
and the different keys areK1 =< e,N1 >, K2 =< e,N2 >, K3 =< e,N3 >, etc. By
using the Chinese Remainder Theorem [14] an attacker can getme. Now if he can
guessecorrectly, then by extracting theeth root ofme, he can obtainm.

Note that in our mechanism, the same data is not encrypted multiple times
with different keys and retransmitted. In fact, the data is encrypted once using one
key. Thus, having multiple copies of the same data encrypted with different keys
does not arise in our case. We also choose a very large exponent as an additional
precaution.

5 Conclusion and Future Work

In this work we proposed a new protocol for secure multicasting. Our protocol
is scalable - the length of the broadcast message is independent of the number of
consumers subscribing to a data object. Key management is simple: each con-
sumer has to remember one key only; the number of keys the server has to store
equals the number of consumers. Our protocol does not require key distribution
for every session or during group changes. If the group of consumers subscribing
to an object changes, the existing group members are not aware of this change.

A lot of work remains to be done. First, we plan to formally specify and ana-
lyze the protocol using a software specification and verification tool such as FDR
[9]. This may reveal some undetected flaws that need to be resolved. Next we plan
to do a simulation that will allow us to compare the performance of this protocol
with existing ones. Finally, we plan to implement the protocol. Implementation
will reveal the actual shortcomings of the protocol, if any.

14

References

[1] M. V. D. Burmester and Y. Desmedt. A Secure and Efficient Conference
Key Distribution System . In A. D. Santis, editor,Advances in Cryptology –
EUROCRYPT ’94, volume 950 ofLecture Notes in Computer Science, pages
275–286. Springer-Verlag, 1995.

[2] J. L. Camenisch. Efficient and Generalized Group Signatures. In W. Fumy,
editor,Advances in Cryptology – EUROCRYPT ’97, volume 1233 ofLecture
Notes in Computer Science, pages 465–479. Springer-Verlag, 1997.

[3] J. L. Camenisch and M. Stadler. Efficient Group Signature Schemes for
Large Groups. InAdvances in Cryptology – CRYPTO ’97, volume 1294 of
Lecture Notes in Computer Science, pages 410–424. Springer-Verlag, 1997.

[4] A. Celik and A. Datta. A Scalable Approach for Subscription-Based In-
formation Commerce . InProceedings of the 2nd International Workshop
on Advanced Issues of E-Commerce and Web-Based Information Systems,
Milpitas, CA, June 2000.

[5] D. Chaum and E. V. Heyst. Group Signatures . In D. W. Davies, editor,
Advances in Cryptology – EUROCRYPT ’91, volume 547 ofLecture Notes
in Computer Science, pages 257–265. Springer-Verlag, 1991.

[6] L. Chen and T. P. Pederson. Group Signatures. In A. D. Santis, editor,
Advances in Cryptology – EUROCRYPT ’94, volume 950 ofLecture Notes
in Computer Science, pages 171–181. Springer-Verlag, 1995.

[7] G. Chiou and W. Chen. Secure Broadcasting Using The Secure Lock.IEEE
Transactions on Software Engineering, 15(8), August 1989.

[8] A. Fiat and M. Naor. Broadcast Encryption . In D. R. Stinson, editor,Ad-
vances in Cryptology – CRYPTO ’93, volume 773 ofLecture Notes in Com-
puter Science, pages 480–491. Springer-Verlag, 1994.

[9] Formal Systems (Europe) Ltd.Failure Divergence Refinement - FDR2 User
Manual, version 2.64 edition, August 1999.

[10] I. S. Gopal and J. M. Jaffe. Point-to-Multipoint Communication Over Broad-
cast Links.IEEE Transactions on Communications, 32(9):1034–1044, 1984.

15

[11] I. Ingemarsson, D. T. Tang, and C. K. Wong. A Conference Key Distri-
bution System.IEEE Transactions on Information Theory, 28(5):714–720,
September 1982.

[12] M. Just and S. Vaudenay. Authenticated Multi-Party Key Agreement. In
Advances in Cryptology – ASIACRYPT ’96, Lecture Notes in Computer Sci-
ence, pages 36–49. Springer-Verlag, 1996.

[13] B. Kaliski and M. Robshaw. The Secure Use of RSA.CryptoBytes, 1(3):7–
13, 1995.

[14] I. Niven and H. S. Zuckerman.An Introduction to the Theory of Numbers.
John Wiley and Sons, 4th edition, 1980.

[15] W. Stallings.Cryptography and Network Security: Principles and Practice.
Prentice-Hall, 2nd edition, 1999.

[16] M. Steiner, G. Tsudik, and M. Waidner. Diffie-Hellman Key Distribution
Extended to Group Communication. InProceedings of the 3rd ACM Confer-
ence on Computer and Communications Security, pages 31–37, New Delhi,
India, March 1996.

16

