
0018-9162/99/$10.00 © 1999 IEEE64 Computer

A
new electronic financial market is fast
emerging. Connected by high-speed net-
works, buyers and sellers are gathering in
virtual marketplaces and revolutionizing
the way business is conducted. The finan-

cial services industry, among the most innovative and
aggressive in its use of IT, has created an entirely new
online brokerage industry in just a few years. In 1996,
there were only 1.5 million online brokerage ac-
counts. That number was estimated to be 5.3 million
at the end of 1998, and today, these accounts are
responsible for 25 percent of all retail trades.1 Future
technological advances will introduce new trading
mechanisms and other new electronic markets.2

The principal functions of financial markets are to
bring buyers and sellers together and to provide a price
discovery mechanism for the assets being traded. In
this article, we describe our financial bundle trading
system (FBTS), a Web-based continuous electronic
market that traders can use to execute bundle orders.
With a bundle order, a trader can order a combination
of stocks or assets. We used a novel bundle trading
mechanism developed by the Center for Research in
Electronic Commerce at the University of Texas at
Austin, described in the sidebar “Automated Matching
Mechanism.” FBTS provides universal access to
traders on the Internet, allows interactive information
exchange between traders and market makers, and
executes trades using the automated matching mech-
anism. FBTS is in an experimental stage and is being
extensively used for research at the University of Texas
at Austin.

We developed FBTS using a distributed object model
based on Java RMI (remote method invocation), which
supports interactive communication between trading
applications and the market. This approach has sig-
nificant advantages over CGI (Common Gateway

Interface) scripts because it improves interactivity by
allowing continuous updates. We implemented con-
current trading processes and concurrency controls
using Java’s multithreading technique. We also imple-
mented asynchronous communication.

Because the financial sector has a sizable presence
in the IT market, these innovations and the subsequent
institutional changes will also, in turn, strongly
influence future IT development in areas such as dis-
tributed computing and Web-based application devel-
opment. We believe financial innovations such as the
FBTS and its supporting information technologies will
greatly impact the organization of financial markets.

BUNDLE TRADING
Today’s financial markets are built around auctions,

and there are several auction formats. The specialists
at the New York Stock Exchange, for example, are
human auctioneers who handle orders and execute
trades. Other exchanges are automated, including the
Toronto Stock Exchange’s CATS (Computer Assisted
Trading System) and Paris Bourse CAC (Cotation
Assistee en Continu).3

Whether automated or not, all these markets
execute trading asset by asset; none of them can
accommodate bundle orders. A bundle order is a com-
bination of stocks or other financial instruments (com-
modities, options, bonds, and so on). Large insti-
tutional investors, such as mutual funds, often need to
trade bundles in order to rebalance their portfolios.
For example, an index fund may have to maintain a
portfolio that matches the investment performance of
the Standard & Poor’s 500 Index. The fund manager
must rebalance the portfolio as the composition of the
S&P 500 Index changes. With current systems, fund
managers must do so by trading stocks in separate
markets using separate orders. This not only incurs

Re
se

ar
ch

 F
ea

tu
re

Rapid advances in IT and growing competition are causing fundamental
changes in the world’s financial services industry. This article describes an
electronic market that traders use to execute bundle orders. Because it is
based on distributed objects, it has significant advantages over systems
built with CGI scripts.

Research Feature

A Web-Based Financial
Trading System

Ming Fan
Jan Stallaert
Andrew B.
Whinston
University of
Texas at Austin

.

large transaction costs but also increases uncertainty
about the overall cost of the portfolio.

Our financial bundle trading system (FBTS) is an
automated, continuous auction market that executes
bundle orders to buy and sell. Bundle trading lets fund
managers pay more attention to overall cost, rather
than to the cost of individual stocks. Overall cost is
more important to the fund’s performance.

For example, suppose a trader wants to buy a port-
folio of the so-called “Dogs of the Dow,” the highest-
yielding stocks included in the Dow Jones Industrial
Average. Suppose the trader wants to buy 1,000 shares
each of AT&T, DuPont, Exxon, and GM; 600 shares
of J.P. Morgan; and 1,500 shares of International
Paper. Our trader wants to acquire the whole portfo-
lio for Dogs of the Dow in this proportion (that is, 2.5
times as many shares of International Paper as of J.P.
Morgan). So the relative asset weights in this portfo-
lio are 1,000, 1,000, 1,000, 600, and 1,500 (or 1, 1, 1,
0.6, and 1.5).

As Table 1 shows, the trader first specifies the asset
weight for each stock and the bundle quantity. She
bases her recommended purchase prices on the previ-
ous closing prices and her own fundamental analysis.
She then places limit orders, judging the previous clos-
ing prices as fair market prices. A limit order specifies
that the stock will not be purchased if the price exceeds
the recommended purchase price.

The next day, DuPont, Exxon, and GM are all trad-
ing in ranges higher than the recommended purchase
price. Therefore the buy orders for these stocks can-
not be executed, and the fund manager fails to acquire
a balanced Dogs of the Dow portfolio.

Bundle trading could have prevented this. With
bundle trading, the fund manager could have speci-
fied a limit order price of $361 for the entire bundle.
The bundle’s limit price is simply the sum of each
stock’s recommended price and its asset weight. As
Table 1 shows, the maximum price for the weighted
bundle was $360.35, less than the limit order of $361.

April 1999 65

Automated Matching Mechanism
The FBTS employs a real-time order matching and execution system to

maximize the trade surplus per bundle match.
The bundle matching mechanism1 finds one-to-one, one-to-many, or

many-to-many matches between offers. This type of match requires inten-
sive computations and is too complicated to handle manually. Our fully
automated matching program finds the matches that maximize the market
surplus among the open orders subject to the condition that the total
amount bought of each asset cannot exceed the total amount sold.

For example, in

Subject to:

vector p is the limit price. A positive limit price signals a willingness to pay for
a trade; a negative limit price signals a willingness to sell. Vector x is the pro-
portion of the matched trade. Every element of x should be positive (constraint
(4)). The objective function is the goal of the match: to maximize the market
surplus. In the matrix B, which contains n vectors [b1, b2…bn], the element bij

is the bundle weight for asset i of order j.
Each vector represents the composition of a particular bundle. For exam-

ple, bj′ = [2, 1, 1] means that bundle j contains two shares of asset 1, and
one share of both assets 2 and 3. A positive number in the bundle vector
means “buy,” and a negative number means “sell.” A bundle does not
have to contain pure buy or sell orders; instead, it can contain mixed buy
and sell orders. Constraint (2) means that for a bundle to be matched, each
buy order in the bundle must be matched with a sell order of the same
asset from another bundle or bundles. For simplicity, we standardized the
matched trade to be a number less than or equal to one (constraint (3)).

Reference
1. M. Fan, J. Stallaert, and A.B. Whinston, “The Design and Development of a

Financial Cybermarket Based on a Bundle Trading Mechanism,” working
paper, Center for Research in Electronic Commerce, The University of Texas,
Austin, Texas, 1998.

b x i = , m

x

x j , n

ij

j

n

j

j

j=

n

j

=
∑

∑

≤

≤

≥ =

1

1

0 1

1

0 1

, ,

, ,

K

K

max p xj

j

j

=
∑

1

n

Table 1. Trading the “Dogs of the Dow.”

Asset Recommended Next day’s Next day’s Trade executed?
Stock weight purchase price trading range highest price (Yes/No)

AT&T +1 60 54-57 57 Y
DuPont +1 60 60.5-61 61 N
Exxon +1 68 68.5-71.25 71.25 N
GM +1 59 59.25-61 61 N
J.P. Morgan +0.6 90 88-91 91 Y
Int’l Paper +1.5 40 33-37 37 Y
Bundle price 361 360.35
Bundle quantity 1,000

(1)

(2)

(3)

(4)

.

66 Computer

The bundle order could have been executed easily and
a balanced portfolio obtained.

There are three potential types of market partici-
pants: market maker, dealer, and public trader. The
FBTS currently supports the market maker and pub-
lic trader. The market maker can access all market
information, while a public trader can view only the
market price, last traded volume, and current bid and
ask prices. Individual traders cannot access informa-
tion such as the prices and sizes of all open orders in
the limit order book, or the identities of other traders.
This prevents them from exploiting the private infor-
mation of other traders and influencing market prices.

Bundle trading has two main advantages:

• It lets traders submit just one order. Traders sub-
mit a single bundle order with a limit price
instead of several separate orders.

• It ensures a balanced portfolio. If the entire bun-
dle cannot be executed, no trade occurs. Therefore,
the trader always gets a balanced portfolio.

Bundle trading can also improve resource allocation
methods in other industries, even in those industries
that require centralized decision making or similar inef-
ficient mechanisms. For example, bundles could be
applied to the problems of airport runway allocation,
railroad access allocation, and natural-gas trading.

SYSTEM ARCHITECTURE
The FBTS consists of two primary applications: the

Exchange and the TradeApplet. Figure 1 illustrates the
FBTS system components and communication model.

FBTS views all applications as objects that are uniquely
identified and accessed throughout the network.

The Exchange
The Exchange is the market application. It manages

and coordinates the trading activities across different
computing platforms. It contains

• Three servers: a Web server, a database server,
and a naming and directory server. The last pro-
vides unique object identifications throughout the
entire system.

• A limit-order table: This Java hash table stores all
open orders. Information about orders that have
been filled or canceled is saved in the trade his-
tory database before it is deleted from this table.

• An order routing and notification system: This
system monitors the limit order table and noti-
fies traders of their activities.

• Automated bundle matching program: This pro-
gram matches orders in real time and calculates
transaction prices and trading quantities.

This architecture is both scalable and transparent.
FBTS is scalable because its design allows for the dis-
tribution of different services (represented by objects)
among different computers. This not only means that
more computers can be added to the system as the
number of users increases, but it also means that ser-
vices themselves can be distributed. The order rout-
ing system, the limit-order table, and the matching
program are all currently located on an RS/6000 mul-
tiprocessor workstation. But the limit order table and

Web
browser

Java
applet

Database
server

Automated
bundle matching

program

Market
administrator

applet

TradeApplet

Remote method invocation
(RMI)

RMI callback

Order routing
and notification

Limit
order table

Naming and
directory service

Web
server

Exchange

Figure 1. FBTS archi-
tecture.

.

the matching program could operate from different
workstations. This distributed object architecture
ensures that the application need not change as the
scale changes, providing location and access trans-
parency throughout the system.

FBTS is transparent because the TradeApplet client,
described next, does not need to know exactly which
machine holds the limit order table. The naming and
directory service presents a coherent bundle market
to the traders and hides the internal configuration of
the system. Objects located on different computers
can call the methods from other objects consistently.

The TradeApplet
The TradeApplet (the client application) is accessed

via a Web browser. Traders simply log in and conduct
trades. FBTS contains order error-checking function-
ality, based on its own trading rules, so it catches invalid
orders before they reach the Exchange. This helps to
reduce server workload and minimize network traffic.

As Figure 2 shows, TradeApplet presents six win-
dows.

• Asset Status. The trader’s current holdings.
“Reserved” lists the number of shares for the
trader’s sell order that are not yet filled; “Open Buy”
shows the number of shares in the open order; “Net
Open” is the difference between the two.

• Message Board. The text of messages sent from
the Exchange are displayed here.

• New Order. Where traders submit new orders.
Traders are not required to submit bundle orders.
To enter a bundle order, the trader enters the pro-

portions (weights) for the bundle. If he wants to
sell an asset, he checks the “Sell?” check box. He
also enters the bundle quantity and limit price. The
Pay and Receive buttons identify whether the val-
uation of the bundle is net cash outflow or inflow.

• Outstanding Order. The current open orders for
the trader, including information such as date and
time of the order, limit price, last traded price (it
shows 0 if the order is not traded), bundle quan-
tity, open quantity, and total transaction amount.

• Order History. The orders that have been either
entered or canceled. If the trader wants to find
more information about a past order, he can select
the order and click the History details button.

• Price Information. Information such as the last
traded price and the best bid and ask prices.

We used Swing components to develop the
TradeApplet. (Swing is the visual component kit in
the Java Foundation Classes that facilitates rapid GUI
development.) Developing with Java and Swing
allowed us to present a standardized yet flexible inter-
face. Unlike a typical Web page, traders can open mul-
tiple windows and minimize or close windows.

CORBA AND JAVA RMI
Using Java RMI, along with the Common Object

Request Broker Architecture (CORBA), also allowed
us to develop FBTS as a truly interactive application.

CORBA is a distributed object technology stan-
dard4 that allows objects to communicate indepen-
dently of the specific platforms and techniques used
to implement them. In CORBA, objects are defined

April 1999 67

Figure 2. General
layout of the Trade-
Applet, which
contains six
windows.

.

68 Computer

as a set of interfaces declared in Interface Definition
Language (IDL). The implementation of the object is
independent of the interface and hidden from other
objects. The Object Request Broker (ORB) guaran-
tees portability and interoperability of objects over a
network of heterogeneous systems.

RMI is a Java-based framework for distributed
object applications that makes it easier to develop dis-
tributed objects if (like the FBTS) the applications are
developed in a pure Java environment. (In our opin-
ion, a Java development environment is well suited
for dynamic and interactive distributed applications.)
We implemented the Exchange as an RMI remote
object server and the TradeApplet as a Java applet.

The TradeApplet locates the Exchange through the
naming service and sends it information. Because we
implemented RMI callbacks, the Exchange can pass
information back to the TradeApplet. The TradeApplet
can pull information from the market and the Exchange
can push information to the TradeApplet.

Despite the differences in implementation, Java
RMI and CORBA offer similar functionality. Dis-
tributed object technologies like Java and CORBA
have three important advantages over applications
that are based solely on HTTP and CGI.

• They do not require reloading or resubmitting. If
CGI scripts had been used, traders would have to
reload the Web page or resubmit their requests to
get the real-time market information. Obviously
this kind of delay would dramatically degrade the
effectiveness of a financial application.

• They support efficient information transmission.
The Java/CORBA model passes the values of vari-
ables among different applications. In contrast,
CGI programs must recreate a Web page and send
the entire HTML file back to the browser every

time the server responds to a request.
• They are easier to develop and maintain. To

upgrade FBTS, we can make a change at the indi-
vidual object level instead of at the system level.
As long as the interfaces among the objects
remain constant, we can change the implemen-
tations of those objects as needed.

CONCURRENT PROCESSING
AND SYNCHRONIZATION

FBTS uses both synchronous and asynchronous
remote method calls. Figure 3 illustrates the differ-
ences between synchronous and asynchronous pro-
cessing of a cancel order, for example.

Synchronization choices are crucial in the case of
systems that support concurrent processing. In FBTS,
traders can invoke three processes:

1. Submit a new order.
2. Cancel an open order.
3. Query the details of an executed or partially exe-

cuted order.

And the Exchange can execute three processes
simultaneously:

1. Route all open orders in the limit-order table to
the matching program.

2. Match orders and calculate market clearing prices
and trade volume.

3. Notify traders of order execution and market
information.

So therefore traders can submit new orders while
the Exchange routes open orders to the matching
program, which conducts matches in real time. If a
match is found, the order execution system updates

Cancel

Receive

Cancel

Receive

Receive

Processing

Reply

Receive

Processing

Reply

Receive

Send cancel
order request

Receive
Save in the queue
Receive
Save in the queue
Processing
Reply

Traders Exchange

Synchronous processing

Traders Exchange

Asynchronous processing

Figure 3. Synchronous
versus asynchronous
communication.

.

the limit-order table and notifies corresponding
traders.

These multiple processes use Java threads to execute
concurrently. A new thread is invoked every time a
trader sends a request to the Exchange. Threads require
fewer system resources than computations. In a multi-
processor workstation, multiple threads can operate
simultaneously to take advantage of different proces-
sors. In a single processor machine, multiple threads
can run in an interleaved manner so that different tasks
run simultaneously. Thus the Exchange can concur-
rently perform intensive computations for order match-
ing and at the same time support interactive access.

However, multiple threads are not protected; more
than one thread can access the same data item. The
most common way to implement concurrency control
is to use exclusive locks. By locking the data, the appli-
cation is in effect serializing access to the data. For
example, when a trader submits an order, a new
thread is launched at the Exchange. The thread oper-
ation has three parts:

1. Assign the current OrderID to the new order.
2. Increment the OrderID.
3. Add the order to the limit-order table.

Now suppose two traders submit orders and the
resulting threads interrupt each other:

1. Trader A starts to submit an order. Thread A exe-
cutes part 1 of the submit order.

2. Trader B starts to submit an order. Thread B inter-
rupts Thread A. Thread B executes part 1 of the
submit order.

3. Thread A interrupts Thread B. Thread A executes
parts 2 and 3 of the submit order.

4. Thread B finishes parts 2 and 3 of the submit order.

This scenario causes the two orders sent by traders A
and B to have the same OrderID.

We can solve this problem by adding the synchro-
nized keyword to the SubmitOrder() method. This
keyword serves as a mutually exclusive lock for the
method, allowing only one thread to call the method.
Upon completion of the method, the thread automat-
ically releases the lock. Locks are useful if the portion
of the data that must be serialized remains as small as
possible. If unnecessary locks are applied, program
performance becomes less efficient.

For example, if a trader cancels an order right after
it was routed to the matching program, it is immedi-
ately deleted from the limit-order table. The match-
ing program may then find a match and make a trade,
only to find that the order has been deleted. To solve
this problem, we could lock the limit-order table while
matching is conducted, but this approach would freeze

the limit-order table constantly. Instead, we used asyn-
chronous processing.

In a synchronous remote call, object A sends a mes-
sage to object B and waits for feedback. Thus, the
sending and receiving processes synchronize with
every message. To continue, object A has to wait for
feedback from object B. Object B has to respond
instantaneously to object A’s request as well as to other
remote calls. Otherwise, object A and other objects
will be delayed while waiting for replies.

With asynchronous communication, the server can
schedule its operations more efficiently because it does
not have to reply to each order immediately.
Meanwhile, the client application does not have to
wait for an immediate reply in order to conduct the
next task. We use asynchronous communication for
cancel orders because we do not want the trade process
to wait for the replies of the cancel process. Normally,
an order cannot be canceled immediately if matching
is processing. Using asynchronous communication, the
cancel requests are stored in a queue at the Exchange
side. After submitting the cancel requests, the client
application can proceed without waiting for the
replies. The Exchange side empties the cancel queue
each time before it restarts the matching program.
Figure 4 shows the algorithm of the cancel process.

A s the field of computerized market mechanisms
is more recognized as part of electronic com-
merce, the traditional issues of authentication,

secure and efficient communication, as well as the
rigorous implementation of secure order entry from
unauthorized users will have to be seriously addressed.
Further research will show how multiple markets
trading overlapping assets will be integrated, and

April 1999 69

// The routing & notification thread
{

Infinite Loop
{

while (the cancel queue is not empty)
{

select the front cancel order from the cancel queue;
delete the order from the limit order table;
remove the cancel order from the cancel queue;
notify the trader;

}

route the orders in the limit order table to the matching
program;

if (matches are found)
{

if (matched order IDs are in cancel queue)
// It means that the trader(s) sent cancel orders after the orders
// have been routed for matching. Cancel order comes too
// late!
{

delete these order IDs in the cancel queue;
notify the traders that cancel comes too late;

}
update price & quantity information & notify the traders;

}
}

}

Figure 4. Pseudocode
for asynchronous
communications for
order cancellation.

.

how the arbitrage opportunities can be eliminated.
The emerging stream will lead to profound changes
in the financial industry where traditional exchanges
such as the New York Stock Exchange will eventu-
ally evolve into a computerized trading system that
incorporates these richer ways of trading assets. ❖

Acknowledgment
The authors gratefully acknowledge the support of

the IBM Institute for Advanced Commerce.

References
1. P. Dwyer, “The 21st Century Stock Market,” Business

Week, Aug. 10, 1998.
2. S. Choi, D. Stahl, and A.B. Whinston, The Economics

of Electronic Commerce, Macmillan Technical Publish-
ing, Indianapolis, Ind., 1997.

3. I. Domowitz, “The Mechanics of Automated Trade Exe-
cution Systems,” J. Financial Intermediation, Vol. 1,
1990, pp. 167-194.

4. J. Siegel, CORBA: Fundamentals and Programming,
Object Management Group, John Wiley & Sons, New
York, 1996.

Ming Fan is a PhD candidate in the Department of
Management Science and Information Systems at the
Graduate School of Business, University of Texas at
Austin. His research interests include technologies for
financial markets, supply chain management, and
large-scale distributed system development based on
economic principles. Contact him at mfan@uts.
cc.utexas.edu.

Jan Stallaert is an assistant professor in the Graduate
School of Business, University of Texas at Austin. His
research interests are large-scale system optimization,
financial engineering, and supply chain management.
He received a PhD in management from the Anderson
School of Management at UCLA. Contact him at
stallaert@mail.utexas.edu.

Andrew B. Whinston is the Hugh Cullen Chair Pro-
fessor in information systems, computer science, and
economics at the University of Texas at Austin and is
is the director of the Center for Research in Electronic
Commerce. His research spans various realms of elec-
tronic commerce, its emerging technologies, and its
impact on business protocols and processes. Contact
him at abw@uts.cc.utexas.edu.

O
N

L
I
N

E NOW
Cyber IT Pro features

full text of the premier issue
profiles

video clips
Y2K resources

hot links to IT sites
news

tools
opinion and feedback

online subscription
contributors’ guide

media kit

http://computer.org/itpro

.

