
60 December 2004/Vol. 47, No. 12 COMMUNICATIONS OF THE ACM

W
ithin the community
developing the Web ser-
vices architecture and

products, a disjointed message is
emerging. It points to a serious
problem for potential users, as

well as for platform vendors.
If they don’t address this con-

fusion now, we’re likely to see
a real clash between user expectations and platform
characteristics, as Web services systems begin to
roll out in the near future.

In language evocative of marketing campaigns for
distributed object middleware, Web services market-
ing materials assure us that Web services offer
unparalleled interoperability and comprehensive
standards for associated technologies (such as trans-
actions). Vendors routinely portray Web services as a
seamless interconnection layer that will propel com-
puter-to-computer commerce to a previously unat-
tainable level of interoperability and integration.

Technology developers responsible for building
the platforms are sending a different message. For
example, in a Nov. 2003 Weblog essay “Web Ser-
vices Are Not Distributed Objects,” Werner Vogels,
at the time a researcher in the Department of Com-
puter Science at Cornell University, argued that
Web services will work well for important classes of
applications but also cited significant limitations. As
he saw it, the architecture is so centered on docu-
ment exchange and at its core adopts such a restric-
tive computing model that it’s likely to be
inappropriate for many of the uses software engi-

neers might attempt when developing OO systems.
Missing functionality includes life cycle services,
dynamic object creation and garbage collection, state
management, dynamically created object references,
and a variety of reliability and transactional mecha-
nisms. Vogels, who now directs systems research at
Amazon.com, later published the essay in [1],
attracting significant attention.

Both perspectives can’t be correct. If Web services
are the Holy Grail of interoperability, they can’t also
be so fundamentally restrictive as to be unusable for
common OO programming tasks. After all, OO sys-
tems became popular precisely because they respond
to the basic needs of developers confronting tough
interoperability challenges.

It’s easy to see how this situation arose. Web ser-
vices are the most recent in a long series of OO
interoperability platforms, mixing ideas from the
Common Object Request Broker, Java 2 Platform,
Enterprise Edition (J2EE), and .NET, while stan-
dardizing around XML and other popular Web-
based document technologies. Developers using
middleware platforms can transform a program
object into a Web services object or access a remote
Web services object at the touch of a button.
Although the performance of these remote objects
leaves something to be desired, computers and net-
works have become astonishingly fast, and most
major application providers are planning to offer
Web services interfaces to their products. Even the
U.S. military is betting that “Enterprise Service”
architectures could be the key to building future
global information grids linking troops, planners,LI

SA
 H

A
N

EY

Viewpoint Kenneth P. Birman

Like It or Not, Web Services
Are Distributed Objects
Despite the push to adopt Web services as the universal OO architecture,
the Web services reliability model ignores many real-world issues routinely
encountered by users.

COMMUNICATIONS OF THE ACM December 2004/Vol. 47, No. 12 61

intelligence databases, and sensors in the field.
Meanwhile, manufacturers of a new wave of small
wireless sensors are standardizing around Web ser-
vices interfaces.

With such broad uptake already under way, it
comes as no surprise that the technology marketing
community views Web services as the promised land.

I
n contrast, the technology development commu-
nity emphasizes facts on the ground, and Vogels’
essay reflected the realities of an architecture

focused on document exchange being used to access
back-end servers. This core has been extended with
such mechanisms as remote procedure calls, asyn-
chronous messaging, transactions (in several flavors),
message queuing, roll-forward and rendezvous
options, and event-based notification. But the pri-
mary usage case remains that of a client sending doc-
uments to a back-end service in a client-server or
three-tier database architecture. The assumption per-
vading the architecture is that the application can
tolerate substantial delay before a response arrives,
and mechanisms capable of introducing delays are
scattered throughout the architecture. An even more
basic assumption is that Web services boil down to
moving documents around—whereas the most basic
assumption of a distributed object system is that the
world consists of programs and data, or active and
passive objects.

Vogels wrote that even with a variety of already
contemplated extensions, Web services are certain to
remain deeply mismatched with distributed object
computing. Nobody doubts that Web services can be

extended to address these uses, but it hasn’t hap-
pened yet and isn’t even on the horizon.

The dilemma underlying the debate over the true
nature of Web services is that the platforms one uses
to create Web services-compatible objects impose no
such restrictions. There is nothing in J2EE or .NET
warning a user that an intended use of the architec-
ture may be inappropriate. Indeed, much of the
excitement about the promise of the technology
reflects the realization that with Web services, inter-
operability really is easier. One can connect literally
anything to literally anything else, whether it means
client software talking to a back-end server or a
mobile Web application talking to an ad-hoc net-
work of wireless sensors. Developers have long strug-
gled with program-to-program interconnection and
integration, and it is natural to applaud a widely
adopted advance. Like it or not, Web services are
becoming a de-facto standard—for everything.

That’s not all. Operators of Web-based direct
sales systems are turning to the Web services archi-
tecture as a means of enlarging their markets. For
example, Amazon.com has developed a Web-access
library whereby third-party application developers
access Amazon’s datacenters through diverse end-
user applications. An application could thus order
supplies directly from Amazon.com and query
Amazon’s fulfillment system to track order status or
billing data. The vendor and the application devel-
oper both benefit. Amazon.com increases its client
base, while the developer avoids having to duplicate
an enormous technology investment. Over time,
Web services components will play a critical role in

62 December 2004/Vol. 47, No. 12 COMMUNICATIONS OF THE ACM

large numbers of end-user systems.
To a substantial degree, this is why Web services

may become as ubiquitous as the Internet itself, pen-
etrating into everything—the payroll system in your
company, the order-fulfillment system at
Amazon.com, the computers running your doctor’s
office and the local pharmacy, the on-board system
in your car for finding the quickest route home from
work, the software controlling the traffic lights, and
NASA’s next generation of Mars rovers.

The challenge for us as technology developers and
leaders is to make these systems work reliably. Com-
puter-to-computer outages of the sort that plague
human users of Web browsers don’t cause much
trouble. But with Web services, outages could dis-
rupt a computer-to-computer pathway buried deep
within a critical application on which an enterprise
depends in ways it may not even know about.

Lacking a good reliability (and availability) story,
Web services platform developers seem to be suggest-
ing that these uses aren’t what the architecture is
intended to support. Not many years ago, the major
client-server architectures faltered over precisely the
same type of situation. Client-server technologies in
the 1980s were widely viewed as a silver bullet that
would slay evil mainframe architectures. Enterprises
fell over themselves in a technology gold rush, only
to discover that the technology had been oversold.
Even today, the total cost of ownership for client-
server systems remains excessively high; for example,
the number of system administrators remains
roughly proportional to the size of the deployment.

T
he curious thing is that we know how to solve
these technical problems. We know how to
implement management tools and fault-toler-

ance mechanisms, replicate data and functionality,
and achieve high availability. We’ve had decades of
experience with large-scale system monitoring and
control and are beginning to understand how to
build solutions capable of spanning the entire Inter-
net. Peer-to-peer file sharing spawned a new genera-
tion of technologies based on distributed hash tables

and epidemic communication protocols. They offer
remarkably stable, scalable tools for dealing with
enormous numbers of components scattered across a
network. And we’re quickly learning how to secure
these technologies, so disrupting them would be far
more difficult than was the case for previous genera-
tions of networked platforms.

Not all we’ve learned is positive, however; each
technology involves successes and failures. Used
naively, any of the mechanisms I’ve cited here could
fail. Used appropriately, they could take the Web ser-
vices architecture to a new level of stability, reliabil-
ity, and trustworthiness. Moreover, doing so could
greatly enlarge the Web services market.

Are Web services distributed objects? Without a
doubt. The marketing people promoting Web ser-
vices have been listening to their customers, and the
customers need, want, and expect distributed
objects. But Vogels is right, too; Web services, as
conceived today, won’t yield the trustworthy plat-
form those customers need and expect. Today’s Web
services platforms can’t support distributed objects.

It’s time for Web services developers and vendors
to come to grips with the needs of their customer
base. One can justify solutions that make 90% of the
customer base happy but leave 10% dissatisfied.
Indeed, a solution that tries to do better would prob-
ably be overreaching. But you can’t get there if you
close your eyes to the way the great majority of cus-
tomers are likely to use the technology. The Web ser-
vices community must ask itself whether it has the
wisdom to tackle the tough issues before a tsunami
of dissatisfied users demands it.

Reference
1. Vogels, W. Web services are not distributed objects. IEEE Internet Com-

put. 7, 6 (Nov.–Dec. 2003), 59–66; weblogs.cs.cornell.edu/AllThings-
Distributed/archives/000343.html.

Kenneth P. Birman (ken@cs.cornell.edu) is a professor in the
Department of Computer Science at Cornell University, Ithaca, NY.

© 2004 ACM 0001-0782/04/1200 $5.00

c

Vogels wrote that even with all the contemplated extensions,
Web services are certain to remain deeply mismatched with
distributed object computing.

