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Abstract

Database replication protocols based on a certification
approach are usually the best ones for achieving good per-
formance. The weak voting approach achieves a slightly
longer transaction completion time, but with a lower abor-
tion rate. So, both techniques can be considered as the best
ones for replication when performance is a must, and both
of them take advantage of the properties provided by atomic
broadcast. We propose a new database replication strategy
that shares many characteristics with such previous strate-
gies. It is also based on totally ordering the application of
writesets, using only an unordered reliable broadcast, in-
stead of an atomic broadcast. Additionally, the writesets of
transactions that are aborted in the final validation phase
are not broadcast in our strategy. Thus, this new approach
reduces the communication traffic and also achieves a good
transaction response time (even shorter than those previous
strategies in some system configurations).

1. Introduction

Database replication based on group communication
systems has been proposed as an efficient and resilient so-
lution for data replication. Protocols based on group com-
munication typically rely on a broadcast primitive called
atomic [10] or total order [6] broadcast. This primitive en-
sures that messages are delivered reliably and in the same
order on all replicas. This approach ensures consistency
and increases availability by relying on the communication
properties assured by the total order broadcast primitive.

This primitive simplifies greatly the development of
replication protocols: prevents the usage of an atomic com-
mitment protocol [4], avoid the occurrence of distributed
deadlock cycles and offer a constant interaction for com-
mitting a transaction. A comparison of database replica-

tion techniques based on total order broadcast is introduced
in [19]. From those presented there, the two foremost tech-
niques, in performance terms, are: certification-based [16]
and weak-voting [13] protocols.

Certification-based protocols keep at each replica an or-
dered log of already committed transactions. When a trans-
action requests its commit the writeset1 is multicast in a
message, using the total-order service. Messages are treated
by the replication protocol in the same order in which they
are delivered at the replicas. Each writeset is certified
against the information contained in the log, according to
some predefined rules that depend on the required isolation
level [8], in order to abort or commit the delivered transac-
tion. In the former case, the writeset is discarded (except for
its the delegate replica, where the transaction gets aborted)
and, in the latter case, the writeset will be applied and com-
mitted at the remote replicas while it will be straightly com-
mitted at its delegate replica.

The weak-voting protocols also send the writeset using
the total-order multicast upon the commit request of a trans-
action. When a writeset is delivered to a replica, it is atom-
ically applied so it may cause the abortion of other existing
local transactions. If an aborted transaction had already sent
its writeset the protocol would multicast an abort message
(using a weaker multicast delivery service [6]) to notify that
the transaction must be aborted at all the replicas. When the
writeset is delivered at its delegate replica and the transac-
tion remains active (i.e. no other previous delivered writeset
has rolled it back), the transaction will be committed and an
additional message will be multicast to commit the transac-
tion at the rest of the replicas [13].

From the previous descriptions, it should be clear that
certification-based protocols need just one total-order mes-
sage round per transaction whereas weak-voting ones need
an additional round. Thus, the first ones present a bet-

1Depending on the transaction isolation level, it may be needed the
readset, i.e. the set of objects read by the transaction
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ter behavior in terms of performance but higher abortion
rates [19], since transactions may stay too long in the log
(raising conflicts with new transactions being certificated)
until removed from it after having committed in all repli-
cas. Recently, Database Management Systems (DBMS) pro-
viding Snapshot Isolation (SI) [3] have become widely used,
since this isolation level allows that read-only transactions
are never blocked, using multi-version concurrency con-
trol. In this way, several certification-based protocols have
been proposed to achieve this isolation level in a repli-
cated setting [8, 14, 20, 15], whilst quite a few weak-voting
ones [11, 12].

As it is well-known, database replication ensures higher
availability and performance of accessed data. Hence, it
is important to study other alternatives to the already pre-
sented replication protocols; unfortunately, it is quite dif-
ficult to find an alternative to those based on the total-
order multicast. From our point of view, total-order based
replication protocols offer two key properties: they reliably
send the writeset to all replicas; and they provide the same
scheduling of transactions and hence all replicas reach the
same decision for each transaction submitted to the repli-
cated system.

If we go further in the same-scheduling property, we
may derive a replication protocol where a certification and a
weak-voting protocol converge: establishing a deterministic
and “a priori” known scheduling policy for all transactions
in the system. The ideal case for a certification-based proto-
col is when all delivered writesets coming from a replica are
known in advance to be successfully certified and hence the
use of the log with previous certified transactions does not
make any sense. Besides, notice that this is also the ideal
case for a weak-voting protocol. In this case, there would
be no need to multicast the additional message of the out-
come of the transaction, since all delivered writesets would
have been successfully “certified” and therefore they could
be committed straight away. Nevertheless, this ideal repli-
cation protocol must ensure that all transactions which need
to be aborted due to conflicts with remote ones be local, i.e.
executed at their respective delegate replicas. However, it is
not intuitive to set up in advance an appropriate scheduling
of transactions so that it does not penalize certain transac-
tions and at the same time maintains the property of non-
aborting writesets that have been multicast; this is closely
related to establish load balancing techniques [1].

In this paper, we propose a new approach through the de-
scription of a deterministic protocol. This protocol follows
at each replica the most straightforward scheduling policy:
at a given slot, only those writesets coming from a given
replica are allowed to commit; other conflicting local trans-
actions should be aborted to permit those writesets to com-
mit. Actually, this is a round-robin policy based on replica
identifiers which is unique and known by all the nodes of

the system (since all replicas may know the identifiers of
the other ones). In this deterministic protocol, a transaction
is firstly executed at its delegate replica and once it requests
for its commit, its updates are stored in a data structure and
it will be committed when the turn of its delegate replica
arrives (at its corresponding slot). Then, the replica will
multicast all writesets from transactions that requested their
commit since the last slot and they will be sequentially ap-
plied at the rest of replicas (after all writesets from the pre-
vious slot have been applied). Hence, it is easy to show that
all local conflicting transactions are aborted and only those
that survived will be multicast in their appropriate slot.

This generates a unique scheduling configuration of all
replicas, in which all writesets are applied in the same or-
der at all replicas. If we assume that the underlying DBMS
at each replica provides SI the deterministic protocol will
provide Generalized SI [8] (GSI). The atomicity and the
same order of applying transactions in the system have been
proved in [9] to be sufficient conditions for providing GSI.
We provide some discussion about this fact in this paper.

This new approach provides several advantages over
the previously presented techniques. Compared to the
certification-based protocols, our approach does not use a
certification log with the writesets of committed transac-
tions and therefore there is no need of using a garbage col-
lector to avoid its boundless growing. Compared to the
weak voting protocols, it avoids the second message round
to confirm the outcome of the transaction, since all multi-
cast writesets are going always to commit. For the same
reason, this approach reduces the network traffic and also
the resource consumption of the replicas. A replica will
never multicast writeset that finally aborts, avoiding its un-
necessary delivery through the network and processing at
the remote replicas.

We have simulated a scenario to compare this approach
with a typical distributed certification protocol and we have
verify that the abortion rate is reduced in many cases while
maintaining very similar response times. Finally, we pro-
vide some outlines about how to deal with fault-tolerance
issues, such as the failure of a replica and its subsequent
re-join to the system.

The rest of the paper is organized as follows. The system
model is presented in Section 2. The deterministic replica-
tion protocol is introduced in Section 3. A discussion of its
correctness is given in Section 4. Section 5 shows its perfor-
mance comparison against a certification-based replication
protocol. Fault-tolerance issues are covered in Section 6.
Finally, conclusions end the paper.

2. System Model

For our protocol proposal, we take advantage of the
capabilities provided by a middleware architecture called
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MADIS [15]. Users and applications submit transactions
to the system. The middleware forwards them to the re-
spectively nearest (local) replica for their execution, i.e. its
delegate replica; the way it is chosen is totally transparent
to the behavior of the protocol.

We assume a partially synchronous distributed system
where message propagation time is unknown but even-
tually bounded. The system is composed by N replicas
(R0, . . . , RN−1) and each one of them holds a complete copy
of a given database, i.e. full replication. An instance of the
deterministic protocol is running in each replica and runs on
top of a DBMS that provides SI.

A replica interacts with other replicas thanks to a Group
Communication System [6] (GCS) that provides a reliable
multicast communication service without any other order-
ing assumption rather than the reliable delivery of messages
despite failures. Besides, the GCS also provides a member-
ship service, which monitors the set of participating repli-
cas and provides them with consistent notifications in case
of failures, either real or suspected.

3. Deterministic Protocol

This Section explains the operation of the Determ-Rep
protocol executed by the middleware at a replica Rk (Fig-
ure 1), considering a fault-free environment. Details about
the failure and rejoin of a replica will be depicted in Sec-
tion 6.

All operations of a transaction T are submitted to the
middleware of its delegate replica (explicit abort operations
from clients are ignored for simplicity). At each replica,
the middleware keeps an array (towork) that determines the
same scheduling of transactions in the system. Here, for the
sake of understanding, it is assumed a round robin schedul-
ing based on replica identifiers. In other words, towork is in
charge of deciding which replica is allowed to send a mes-
sage, or which writesets have to be applied and in which
order. Each element of the array represents the actions that
have to be performed when their turn arrives and each one
is processed cyclically according to the work turn.

The middleware forwards all the operations but the com-
mit operation to the local database replica (step I of Fig-
ure 1). Each replica maintains a list (tocommit wslist) which
stores local transactions (T.replica = Rk) that have re-
quested their commit. Thus, when a transaction requests
its commit, the writeset is retrieved from the local database
replica (T.WS). If it is empty the transaction will be com-
mitted straight away, otherwise the transaction (together
with its writeset) will be stored in tocommit wslist.

In order to commit transactions that have requested it, the
replica has to multicast the stored writesets in a tocommit

message and then wait for the reception of this message
to finally commit the transactions (this is just for fault-

tolerance issues explained later in Section 6). Since our
protocol follows a round robin scheduling, the replica hast
to wait for its turn (work turn = Rk in step III), so as to
multicast all the writesets contained in tocommit wslist us-
ing a simple reliable service. When the turn of a replica ar-
rives and there are no transactions stored in tocommit wslist,
the replica will simply advance the turn to the next replica,
sending a next message to all the replicas.

Upon delivery of any of these messages (next and
tocommit) at each replica, they are stored in their cor-
responding positions in the towork array, according to the
site Rk which the message came from (step II). It is impor-
tant to note that, although these messages were sent since it
was its turn at its replica, all replicas run at different speed
and there can be replicas still handling previous positions of
their own towork. Messages from different sites may be de-
livered disordered (as we do not use total order), but this is
not a problem since they are processed one after another as
its turn arrives. Disordered messages are stored in their cor-
responding positions in the array and their processing will
wait for the deliver and processing of the previous ones.
This ensures that all the replicas process messages in the
same order and as a result all transactions are committed in
the same order in all of them.

Thus, the towork array is processed in a cyclical way.
At each turn, the protocol checks the corresponding posi-
tion of the array (towork[work turn]). If a next message is
stored, the protocol will simply remove it from the array and
change the turn to the following position (step IV) so as to
allow the next position to be processed. If it is a tocommit

message, we can distinguish between two cases (step V). If
the sender of the message is the replica itself, transactions
grouped in its writeset are local (already exist in the local
DBMS) and therefore the transactions will be straightfor-
wardly committed. In the other case, a remote transaction
has to be used to apply and commit the transaction.

In this case, special attention must be paid to local ex-
isting transactions since they may conflict with the remote
writeset application, avoiding it to progress. To partially
avoid this we stop the execution of write operations in the
system (see step I.2.a in Figure 1) when a remote write-
set is applied at a replica, i.e. turning the ws run variable
to true. However, this is not enough to ensure the writeset
application in the replica; the writeset can be involved in a
conflict with local transactions that already updated some
data items that intersect with the writeset.

This is ensured by a block detection mechanism, pre-
sented in [15], which aborts all local conflicting transactions
(VI) allowing the writeset application to be successfully ap-
plied. Besides, this mechanism prevents local transactions
that have requested their commit (T.precommit = true) from
being aborted by other local conflicting transactions, ensur-
ing their completion. Note also that the writeset application
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Initialization:
1. ws run := false
2. tocommit wslist := ∅
3. towork[i] := ∅ with i ∈ 0..N -1
4. work turn := 0

I. Upon operation request for T from local client
1. if SELECT then

a. execute operation at Rk and return to client
2. else if UPDATE, INSERT, DELETE then

a. if ws run = true then
- wait until ws run = false

b. execute operation at Rk and return to client
3. else if COMMIT then

a. T.WS := getWriteset(T) from local Rk

b. if T.WS = ∅ then
- commit T and return to client

c. else
- T.replica := Rk

- T.pre commit := true
- tocommit wslist := tocommit wslist · 〈T〉

II. Upon receiving message msg
/* 〈next, Rn〉 or 〈tocommit, Rn, seq txns〉 */

1. Store msg in towork[Rn ]

III. Upon replica’s turn /* work turn = Rk */
1. if tocommit wslist = ∅ then R multicast(〈next, Rk〉)
2. else R multicast(〈tocommit, Rk, tocommit wslist〉)

IV. Upon 〈next, Rn〉 in towork[work turn]
1. Remove 〈next, Rn〉 from towork[work turn]
2. work turn := (work turn+1) mod N

V. Upon 〈tocommit, Rn, seq txns〉 in towork[work turn]
1. while seq txns �= ∅ do

a. T′ := first in seq txns
b. if T′.replica = Rk then /* T′ is local */

- commit T′ and return to client
c. else /* T′ is remote */

- ws run := true
- apply T′.WS to local Rk

/* T′ may be reattempted */
- commit T′

2. Remove 〈tocommit, Rn, ∅〉 from towork[work turn]
3. work turn := (work turn+1) mod N
4. ws run := false

VI. Upon block detected between T1 and T2
/* T1.replica �= Rk */
/* T2.replica = Rk, i.e. local */

1. abort T2 and return to client
2. if T2.pre commit = true then

a. remove 〈T2〉 from tocommit wslist

Figure 1. Determ-Rep algorithm at replica Rk

may be involved in a deadlock situation that may result in
its abortion and hence it must be re-attempted until its suc-
cessful completion.

3.1. Protocol Optimizations

Several optimizations can be considered for this proto-
col. If we take a look on how writesets are applied at remote
replicas, there can be several alternatives. In Figure 1, we
have chosen to submit the writesets one by one into the local
database. However, they can be grouped in a single remote
transaction, reducing the system overhead and therefore in-
creasing the system performance.

Another important enhancement permits reducing the
time a replica must spend to multicast a message when its
turn arrives. Upon receiving a tocommit message, it is
possible to know in advance which local committing trans-
action (stored in tocommit wslist) are going to abort and
which not. Therefore, if it is the turn of the replica, it may
gather the transactions that are not going to abort and send
the corresponding message without waiting for the writeset
application in the local database replica. This optimization
has been considered when it comes to performing our tests.

Finally, we can also consider a scheme of transactions
based on conflict classes [5, 18] in order to increase the sys-
tem performance. A conflict class represents a partition of
the data and each application may partition the data depend-
ing on its requirements (e.g. there could be a class per ta-
ble). If these partitions are well chosen, increasing the pro-

tocol concurrency may be possible and hence the system
performance. When it comes to work with conflict classes,
it is possible to avoid blocking all transaction operations in
the local database in order to apply a remote writeset. In
this case, existing transactions belonging to the same con-
flict class of the writeset are aborted in order to guarantee
its successful application. However, it is only necessary
to block operations from transactions of the same conflict
class, while allowing the others to progress normally.

4. Correctness Discussion

In this Section we outline the discussion about the cor-
rectness of our replication protocol. In the following, we
assume that we are under a failure-free environment. First
of all, we have to show that every writeset submitted to a
database will be eventually committed.

Theorem 1. Given a transaction Ti ∈ T , whose delegate
replica is Rk with k ∈ N , then its associated multicast write-
set (Ti.WS) will be eventually committed.

Proof. We have to distinguish whether it is executed at Rk

or at a remote one Rj with j �= k. In the first case, it will be
committed as soon as the reliable message is delivered (see
Figure 1, step V) since it already acquired all items it has to
update. While in Rj , its associated tocommit message has
to be delivered and scheduled (i.e. the turn in Rj reaches
the position of the message in towork, which corresponds
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Figure 2. Transaction completion time with 0% RO.

with its delegated replica). At that moment, it is submitted
to the database ( at the same time none local transactions
are allowed to write anymore nor any other remote writeset
is scheduled) and thanks to the block detection mechanism
between transactions all possible local conflicting transac-
tions will be eventually rolled back and, since no new write
operations are allowed but the ones issued by Ti, the Ti.WS
will be applied and committed.

In the following we proof the atomicity of transactions;
informally, if a transaction is committed at a given replica,
it will be eventually committed at all replicas.

Theorem 2 (Atomicity of transactions). If a
〈tocommit, Rn, seq txns〉 is processed and committed
at a replica Rk with k ∈ N , then it will be eventually
processed and committed at all replicas.

Proof. This proof can be split into several parts. Let us de-
note as Rk′ with k′ ∈ N ∧ k �= k′ the replica to analyze.
Reception of 〈tocommit, Rn, seq txns〉 at Rk′ . The mes-
sage will be received since it has been received by Rk due
to the fact that it was multicast by its associated delegate
replica (in this case Rn) using the reliable channels between
replicas.
The 〈tocommit, Rn, seq txns〉 message reaches its turn in
towork at Rk′ (i.e. work turn = Rn). First of all, it is worth
noting that replica Rk′ may run slower (if it is faster, it
will be the other way round, exchanging replica identifiers)
and its respective work turn may be different and hence Rk

may have already processed some items. Let us denote as
n the position of the message 〈tocommit, Rn, seq txns〉 in
towork at Rk′ . Thus, we must ensure that the distance be-
tween n and work turn is decreased and hence the message
will be processed (i.e. writesets contained in seq txns will

be applied and committed). If we consider that the current
position (work turn) of towork is a next message, it will
be removed from towork and the turn will advance to the
next position; hence, the distance shortened. Otherwise, it
is a tocommit message and its associated writesets will be
eventually committed, by Theorem 1, and they will be re-
moved from towork and the turn will advance to the next
position; hence, the distance again decreased. Therefore,
the turn will eventually reach the position of the message in
the towork array.
The 〈tocommit, Rn, seq txns〉 is processed at Rk′ . This is
easily shown by Theorem 1. Once the turn reaches the po-
sition of the message, the writesets will be successfully ap-
plied in the database.

The atomicity of transaction does not ensure that all
transactions are committed in the same order. If we en-
sure that all transactions are committed in the same order
at all replicas then it will be satisfied a sufficient condition
for generating GSI histories [9].

Theorem 3 (Same commit order at all replicas). All termi-
nated transactions should follow the same commit order in
all replicas.

Proof. Due to Theorems 1 and 2 we know that a transaction
committed at a replica will be committed at all replicas. It
is easy to show that they will be applied in the same order
thanks to the way towork is built. When different next or
tocommit messages are delivered they are inserted at their
appropriate towork slots. Writesets are extracted and ap-
plied in the cyclical order they are located in towork and they
are committed in the same order they are applied. Hence, it
is ensured that all replicas commit the same set of transac-
tions in the same order.
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5. Experimental Results

We have compared our deterministic protocol with a
certification-based protocol [15]. The simulation parame-
ters have been summarized in Table 5. As this table shows,
we have chosen a slow local network. This provides the
worst results for our deterministic protocol since it depends
a lot on the network delays. In practice, the combination
of a reliable broadcast and a turn-based sending privilege
can be considered as a way of implementing a total-order
broadcast, as already discussed above.

Parameter Values Parameter Values

Replicas 2 to 20 Min trans. length 100 ms
Global TPS load 30, 100, 300 WS application time 30 ms
Database size 10000 items Connections 6/replica
Item size 200 bytes Message delay 3 ms
Mean WS size 15 items Trans. per test 40000
Mean RS size 15 items Read-only trans 0%, 80%

Table 1. Simulation parameters.

The number of transactions used in each experiment has
ensured that the standard deviation is below 3% of the plot-
ted mean values in all figures being presented in this Sec-
tion. Each transaction consists of an update and a reading
sentence. For read-only transactions, the update has been
replaced by another reading sentence. Each operation in-
volves 15 items on average. The minimal transaction length
is set to 100 ms, adding an inter-sentence delay that ensures
that the transaction time is at least 100 ms. Note also that
the global loads shown in Table 5 refer to the transaction
arrival rate.

In our tests, we have used 6 connections per node, check-
ing the protocols behavior in a LAN environment and using
a worst case load consisting only in read-write transactions
and another with 80% of read-only transactions (the com-
mon case in many real applications). Besides the transac-
tion completion time, we also analyze their abortion rate in
both cases.

Figures 2.a and 2.b show the results in the worst case,
i.e. when no read-only transactions are included in the sim-
ulated load. Completion times for committed transactions
are the same when the system consists of less than 10 repli-
cas. Bigger systems generate slightly longer times in the
deterministic approach. On the other hand, the certification
strategy is able to abort transactions earlier, although the
differences are only significant with the highest simulated
load (300 TPS). Response times for other tested loads fol-
low the same trend, i.e. there are no significant differences
between both protocols.

The abortion rates for both kinds of loads are sum-
marized in Figure 3. Comparing both protocols, with an
update-only load (Figure 3.a and 3.b), the deterministic one
provides the best results for light and medium loads (30, 100

TPS), always at least 20% better than the certification-based
protocol and in some cases more than 50% better. However,
in the heaviest load case (300 TPS) things are not so clear.
The deterministic protocol has its maximum value when 6
replicas are used, whilst the certification-based protocol has
its maximum with 10 replicas. Due to this, the deterministic
protocol is better than the certification-based one when the
system has more than 8 replicas.

Finally, Figures 3.c and 3.d show the abortion rates when
80% of the transactions are read-only. In general, the results
show similar trends to the previous case, i.e. with light and
medium loads the deterministic protocol is much better than
the certification-based one. With the heaviest load no clear
winner can be identified, as it already occurred before, but
now the curves follow different trends.

6. Fault Tolerance Issues

We have not covered until now any issue about the failure
of a replica, what is something likely to happen in a repli-
cated database system. It is interesting to give a dynamic na-
ture of the composition of replicas in the system (a partially
synchronous one). Thus, replicas may fail, re-join or new
replicas may come to satisfy some performance needs. We
suppose that the failure and recovery of a replica follows the
crash-recovery with partial amnesia failure model [7]. Note
that once a transaction has been committed, the underlying
DBMS guarantees its persistence, but on-going ones are lost
when a replica fails. This provides a partial amnesia effect.

These issues are handled by the GCS thanks to a mem-
bership service [6]. This service provides the notion of
view [6], which is the set of current connected and active
nodes. The view concept can be considered as a synchro-
nization point for the replicated setting: each time a replica
crashes or joins the system a view change event is fired,
which provides a report of the number of connected mem-
bers. This event is totally ordered for all replicas which
install this new view and it also ensures that replicas con-
tained in the former and in the new views deliver the same
set of messages; hence the notion of view synchrony [6].
In replicated databases it is important to work under the pri-
mary component assumption [6], i.e. a replica may continue
processing transactions provided that there are more than a
half replicas connected; otherwise, it is usually forced to
shutdown until it becomes part of the primary partition.

Related to this is the notion of uniform and same view
delivery [6]: if a message is delivered by a replica (faulty or
not), it will be eventually delivered to all replicas that install
the next view in the former view. All these features let us
know which writesets have been applied between failures
or joins of nodes and, thus, define what to do in these cases.
This will be outlined in the following, keeping in mind the
protocol shown in Figure 1.
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Figure 3. Abortion rates.

6.1. Replica Failure and Recovery Process

As said before, the failure of a replica Rj involves firing
a view change event. Hence, all nodes will install the new
view with the excluded replica. The most straightforward
solution is that each alive replica Rk to silently discard the
position of towork associated to Rj .

However, we should be more careful about missed write-
sets by the faulty replica Rj until the view change reports its
failure. This is not a very difficult task thanks to the round
robin nature of our protocol. Each replica has an auxiliary
queue where delivered messages are stored. This queue will
be pruned each time a new round is started, i.e. when its turn
arrives. Hence, when a replica crashes it is only necessary
to store the content of this queue. This information will be
transferred when it rejoins the system again.

After a replica has crashed, it will eventually rejoin the
system firing a view change event. This recovering replica
has to apply the possible missed writesets on the view it
crashed and the writesets while it was down. Thanks to the

strong virtual synchrony, there is at least one replica that
completely contains all the system state. Hence, there is a
process to choose a recoverer replica among all alive nodes;
this is an orthogonal process and we will not discuss it here,
hence assume that there exists a recoverer replica.

Upon firing the view change event, like in the previ-
ous case, we need to rebuild the towork queue including
the recovering replica position. The recoverer will wait
for its turn to send the missed information to the recover-
ing replica. Meanwhile, the recovering will send next mes-
sages until it finishes applying the missed updates and keep
on discarding messages coming from other available repli-
cas. It is worth noting that the set of missed updates can be
inferred quite easily, it is only needed to store the transac-
tion identifier of the last committed transaction before the
recovering replica crashed.

Thanks to some metadata tables present in some com-
mercial DBMS, such as PostgreSQL, it is possible to infer
the set of registers updated since that transaction and to
transfer their current state. Concurrently to this, every alive
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replica will store all writesets delivered that will be com-
pacted [17] in an additional queue called pending WS. Once
the recovering is done applying missed updates, it will send
a pending message. The delivery of this message to the next
replica in towork will send the compacted writesets stored in
pending WS to the recovering and, thus, finish the recovery.

As it may be seen, we have followed a two phase re-
covery process very similar to the one described in [2]: the
first phase consists in transferring the missed updates while
the replica was crashed; and, the second one transfers the
missed updates of the current view while the recovery pro-
cess took place. This last phase serves while establishing a
synchronization point with the rest of replicas to consider
the recovering replica as alive.

7. Conclusions

Our deterministic database replication protocol proposal
is able to inherit the best characteristics of both certification-
based and weak-voting approaches. Thus, like a weak-
voting protocol, it is able to validate transactions without
logging history of previously delivered writesets, and like
a certification-based protocol, it is able to validate transac-
tions using only a single round of messages per transaction.
Moreover, such a single round can be shared by a group of
transactions already served at the same delegate replica.

The correctness of this new strategy has been justified.
Additionally, its performance has been analyzed through
simulation, providing a transaction completion time quite
similar to that of a certification-based approach (the best
one according to previous analysis [19]) in some configura-
tions, and with a lower abortion rate.

Finally, a recovery strategy for this new kind of repli-
cation protocols has also been discussed. It can be easily
matched with the regular tasks of this replication proposal.
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