

Abstract
This paper describes a novel approach for managing
service-centric communications networks called
distributed autonomic management (DAM). Current
approaches to network management employ the
client/server model, cooperative stationary agents,
and/or non-intelligent mobile agents. The DAM model
consists of communities of mobile and stationary
intelligent agents in collaboration. We discuss an
experiment with DAM and proceed to discuss
outstanding research issues. The DAM approach uses
the properties and characteristics of autonomic systems
in support of managing service-oriented
communications networks and protecting e-commerce
and business enterprises against cyber terrorism.

1. Introduction
Integrated service management is the discipline of
monitoring and controlling large networks that include
multiple network technologies, diverse computer
systems attached to the network, and services offered
by the network [1]. Centralized approaches using the
classic client/server paradigm have demonstrated an
inadequacy for effective management of such
networks. Research has been conducted on
decentralized approaches [2], but the solutions thus far
have suffered from: increased bandwidth consumption
as the network grows, inflexibility against evolving
networking technologies, a lack of self-management
with decreased manual intervention, and a lack of
dealing with security and cyber attacks. Further, we are
entering an era of service-centric networking [3], and
the traditional client/server paradigm seems to be
incongruous with this new style of networking.

It is against this background that a new approach and a
new paradigm are needed for managing and protecting
such large, service-oriented networks. In this paper we
present a new management paradigm called Distributed

Autonomic Management (DAM) where several
communities of stationary and mobile intelligent
agents, distributed hierarchically over the network,
collectively monitor and control the network
components and services with minimal human
intervention. Our goal is to provide a flexible balance
of autonomic control with the decentralization of
management over a network - a goal that has so far
been elusive in the integrated network management
field.

Our DAM approach is inspired by (i) the human body’s
immunization system, (ii) recent work on cognition,
and (iii) recent work on autonomic computing [4]. The
biological metaphor of the human body’s immune
system serves as the guiding principle for the approach.
For example, the purpose of a smallpox vaccination is
to train the body’s immunization agents to attack and
destroy artificial, non-threatening smallpox antibodies.
Subsequently, when an authentic smallpox agent enters
the body, then the body’s immunization agents
recognize the foreign agent, migrate towards it,
surround it, and destroy it. Such immunization agents
are wired to do so as a result of evolution. Figure 1
shows the difference in concept between the
client/server model and the DAM model. The figure is
for illustration purposes only; the number of
management clients and servers often run into the
hundreds in real-world applications. On the DAM
model, a community of management agents resides at a
home base and venture from the home base upon
demand to nodes in domains to perform their duties and
report back to home base. Alternatively, agents may
destroy themselves once their tasks are completed, or
may reside temporarily or permanently at nodes if
necessary, or they may migrate from node to node if
duty requires. Particular tasks will dictate the
appropriate dispersion and behavior of agents.

Distributed Autonomic Management: An Approach and Experiment
towards Managing Service-Centric Networks

Pradeep Ray1, N. Parameswaran1, Lundy Lewis2, and Gabriel Jakobson3

1University of New South Wales, Sydney, Australia

2Southern New Hampshire University, Manchester, New Hampshire, USA
3Altusys Corp., Princeton, New, Jersey, USA

978-1-4244-1672-1/08/$25.00 ©2008 IEEE.

Authorized licensed use limited to: Old Dominion University. Downloaded on March 19, 2009 at 09:44 from IEEE Xplore. Restrictions apply.

Figure 1. Client/server (top) and DAM (bottom)

In the remainder of the paper, Section 2 describes
related work that uses agents for integrated
management. Section 3 describes a lab experiment that
uncovered special problems in our approach and
offered insights into further research issues. Section 4
discusses community structure, task decomposition,
and agent cognition in the DAM approach. Section 5
offers a summary and outlook.

2. Related Work
Related progress on agent-based management has
included two primary approaches: the stationary
intelligent agent approach [5, 6] and the mobile agent
approach [7, 8]. These two approaches are related to
our DAM paradigm. The agent approach has induced
some interesting ideas towards (i) endowing traditional
simple network management protocol (SNMP) agents
that were essential in the client/server paradigm with
some form of intelligence and (ii) collaboration of
SNMP agents with mobile agents [9, 10]. These ideas
represent a natural reluctance to move away from the
traditional client/server approach.

The bandwidth problem has been the primary focus of
agent-based research in the field [11, 12]. There has
been very little work on managing forwarding looking
network technologies, e-business management, or
detecting/preventing cyber terrorism [13, 14]. Thus far,
none of the problems have found satisfactory solutions.
Further, current related work examines tasks that are
fairly well-understood in the community, for example
the detection of faults and performance degradations of
distributed networks [6, 11]. Hard tasks such as the

management of forward-looking networking services,
e-business management, and detecting and preventing
denial-of-service attacks have received less attention
because the implicit paradigm does not allow clear
thinking about such problems. Nonetheless, these are
the sorts of problems that are of utmost importance in
the present day world, and new approaches that allow
thinking about them are crucial.

There is research on intrusion detection systems (IDSs)
that aims to detect and prevent denial-of-service attacks
[13, 15]. The research conceives of a network of
distributed, communicative, collaborative IDSs and
sensors layered over the Internet, called an Internet
Firewall. However, the approach depends on stationary
IDSs, and thus the decision of how to disperse IDSs
over the Internet to get maximal coverage and
protection is problematic. Our approach offers a
potential solution to this problem in that IDSs would be
designed as mobile cognitive agents who can disperse
themselves dynamically over the Internet as denial-of-
service attacks unfold.

3. An Experiment with the DAM Concept
A prototype version of a network management system
called NMbee was implemented at the University of
New South Wales [16]. It is based on the DAM concept
and was implemented in the Beegent Agent Framework
developed at Toshiba Corporation [17, 18]. Figure 2
shows the Beegent system architecture. The central
component of the system is the Agent Router (AR) who
creates, instructs, and destroys agents. The AR can
receive messages from two sources: the user and an
agent. Agents must consult the AR for storing or
retrieving data from the management and ontology
databases. Further, the system requires that an agent
wrapper reside on each managed node. Communication
is achieved via XML messages over the HTTP
protocol.

For the NMbee prototype system, three agent types
were designed and implemented in the Beegent
framework:
(1) A Monitoring Agent (MonBee) was allowed to
migrate to a single node and monitor an SNMP
parameter. This type of agent is good for monitoring
parameters on a node for a long period of time, as it
takes no network overhead and moves processing away
from the main server.
(2) A Segment Agent (SegBee) was assigned a segment
composed of one or more nodes to insure that the
segment satisfies a pre-defined state in the ontology
database. The agent migrates to nodes in the segment
and collects data to insure the state is satisfied. If the
goal is not met on any node, the agent informs the
Agent Router of the node where the failure occurred.

Authorized licensed use limited to: Old Dominion University. Downloaded on March 19, 2009 at 09:44 from IEEE Xplore. Restrictions apply.

(3) An Service Level Agreement (SLA) Agent
(SLAbee) works on top of SegBees. It is given a series
of nodes and an SLA defined in the ontology database
that must hold between users and network services.
SLAbees can migrate to any node in the SLA path and
request a parameter value from a SegBee.

Figure 2. Beegent system architecture

In order to evaluate the DAM concept, a series of
experiments were conducted over seven network types,
including a simple Ethernet network and a complicated
wireless/WAN connected network. Each experiment
was conducted twice over a 24 hour period, first with a
faultless network and then with a faulty network, and
each experiment compared a traditional client/server
management system with the NMbee system. The
parameters that were measured were (i) resource, CPU,
and RAM usage in all managed nodes and the server,
(ii) bandwidth usage of all nodes in the network, (iii)
bandwidth distribution, and (iv) speed of fault
detection. Detailed statistics are provided in [16]; here
we summarize the lessons gleaned from the
experiments. On smaller networks, the large footprints
of Beegent agents (15KB) and requisite agent wrappers
were comparatively resource intensive because (i) the
management traffic required by traditional network
management platforms is quite small and (ii) the
Beegent system wasn’t designed specifically for
network management. However, as the size of the
network grew, the traditional architecture tended to
induce a corresponding increase in network traffic and
deteriorate, whereas the NMbee system remained
stable. Finally, fault detection was faster with NMbee
because agents reside on nodes they are monitoring.
Thus, we are encouraged that a community of
collaborating agents based on the DAM paradigm
represents a viable approach and suggests research
problems whose solutions will contribute to the
management of service-centric networks.

4. Specifics of the DAM Approach
The DAM approach is akin to the way in which
business enterprises evolve and manage themselves
[14, 19, 20]. The basic building block is a community.
A community C is composed of one stationary agent
SA and set of k mobile agents MAj, 0 ≤ j ≤ k. Both SA
and MAj are cognitive agents. For example in Figure 3
we show a management structure comprising six
communities, C1,...,C6, managing three domains. Each
domain has been assigned a community Ci, 1 ≤ i ≤ 3, to
look after the management tasks. C4 is the manager of
C1 and C2, which in turn have C6 as their manager.

Figure 3. Hierarchy of communities in DAM

Information in the management structure flows from
bottom to top and from top to bottom. Information from
the bottom typically involves data collection,
inferences thereof, and results of actions taken for the
tasks that were assigned previously from the top.
Similarly, information from the top involves tasks that
need to be carried out in response to the information
that was received from the bottom. For both SAs and
MAs, service management knowledge would be
represented explicitly as beliefs, goals, plans, and meta-
level reasoning rules stored in their internal data
structures [21]. An SA in any community achieves
management tasks from its superior and decomposes it
into several subtasks, and accordingly assigns them to
its sub-SAs. Further, the SA may send the MAs from
its community to network nodes to collect and process
data and return the results. A larger network is thus
managed by several communities which are distributed
over the network and organized hierarchically.

Fundamental to this management structure is a task
representation as shown in Figure 4. It shows how a
task G delegated to a stationary agent SA is
decomposed and assigned to its children nodes and its
mobile agents. Bold lines denote tasks stored in an
SA’s memory, thin lines denote tasks stored in an
MA’s memory. This structure helps monitor the
achievement of the task as the subtasks are carried out
by the lower level nodes and the MAs.

Authorized licensed use limited to: Old Dominion University. Downloaded on March 19, 2009 at 09:44 from IEEE Xplore. Restrictions apply.

Figure 4. Sample task structure in DAM

In this example, the SA decomposes G into subtasks G1

and G2 (G2 isn’t shown in the Figure) by applying the
group decomposition operator σ1 where the subtasks are
examined once again by the group. The SA further
decomposes G1 into G11 and G12 applying σ2. It then
decomposes G11, using γ1, into GC4, GC5, and GMA,
which are subtasks for the children agents C4, C5 and
the MA. The SA then delegates the subtasks GC4, GC5,
and GMA to the children C4, C5, and MA, respectively.
Each one of these agents further decompose these tasks
and ultimately derive executable actions by invoking
procedures stored in its memory. Figure 5 shows the
hierarchy of decomposition operators used by the
agents by partially ordering them according to their
level of abstraction. For example, σ1 is more abstract
than σ2.

Figure 5. Operator hierarchy, partially ordered

An agent’s memory and cognitive architecture is based
on the traditional belief-desire-intention (BDI)
architecture [22], augmented with learning algorithms
found in case-based reasoning. Figure 6 shows the
basic structure of an agent’s cognitive functions, where
a case library is synonymous with a memory [23]. The
cognition of an agent works as follows: The input to the
agent is a particular task and a library of former
episodes or methods of performing the task. When the
agent is triggered or assigned a task, similar cases are
retrieved in order to find the best way to perform the
task. Importantly, similar cases that aren’t perfectly on

target may suggest a general procedure for performing
the task, albeit with some tweaking. Such tweaking is
the function of the adaptation module. In the execute
phase, the agent attempts to achieve the tasks in the
order specified in the task structure, applies further
decomposition if necessary, and determines the results.
It additionally records the results (good or bad) in the
original case. The modified input case, then, is
organized into the case library for future reference and
future problem solving. Thus, the cognitive agent’s
problem solving ability is expected to become
increasingly fine-tuned over time and exhibit some
degree of adaptability in unforeseen situations.
Importantly, in our approach, there are interesting
alternatives regarding the way the MAs are assigned
tasks by an SA agent:
1. An agent may be fitted with a general plan at home
base and sent to a remote node to perform a task.
2. An agent residing at a node, already fitted with a
general plan, may be sent plan parameters from a
superior at home base.
3. An agent residing at a node may be sent a case to
expand its knowledge.
4. Agents may share knowledge by sharing cases or by
sharing adaptation procedures.

5. Summary and Outlook
The classic client/server approach to integrated network
management has become problematic for several
reasons: (i) the managed nodes underlying an
information system (e.g. transmission devices,
computer systems, software applications, and
communications media) are becoming increasingly
complex, and thus the added volume of data resulting
from client/server communication cuts into the payload
of the network significantly, (ii) deploying multiple
managers-of-managers (MOMs) is a logical patch,
overly complex, and does not scale, and (iii) the
client/server model doesn’t lend itself to concepts by
which to study hard tasks such as service management,
detection and prevention of denial-of-service attacks
and self-healing. Research done so far to address these
problems by using either intelligent agents or mobile
agents has suffered from three drawbacks:
1. The intelligent agents are presented in isolation as a
substitute for traditional network management
software, and do not address the problems relating to
dynamic network configurations, task delegation, self-
management, and proactive cooperation.
2. The mobile agents invariably consist of mobile code
that will migrate to remote nodes and perform limited
remote computations. However, it is not possible to
reprogram them remotely, nor do they have the
expertise to cooperate and do not exhibit cognitive
abilities.

Authorized licensed use limited to: Old Dominion University. Downloaded on March 19, 2009 at 09:44 from IEEE Xplore. Restrictions apply.

3. The problem solving procedures and methods are
hard coded in the agents (for example, as rules or as
methods in the object oriented paradigm).
Consequently, they exhibit inflexible behavior and lack
the capabilities of learning and awareness of their
situations, particularly when the environment changes
unpredictably, and they do not address issues
encountered in new and forward-looking service
technologies such as wireless networks, mobile
networks, ad hoc networks, and active/programmable
networks.

The concept in our DAM approach is that of a society
of cognitive agents, some stationary and some mobile,
who have specialized expertise and collaborate to
achieve overall management of the network. The
properties we wish to explore are adaptable knowledge
representation with flexible cooperation, light weight
mobile agents, scalability, and situational awareness.
The following are outstanding questions in the DAM
approach to service management to be explored in our
further trials:

• The Service Model: How can SAs and MAs update

the model of the network and services relevant to
their problems at hand?

• Task Assignment: When creating a new agent,
how do we identify the tasks for the agent?

• Community Management: When communities are
added, deleted, or reorganized, how is the task
representation tree re-structured?

• Community Cooperation Strategies: How will
multiple communities interact? How will
community-to-community cooperation occur?

• Agent Cooperation Strategies: How will the SAs
and MAs interact? How will peer-to-peer
cooperation occur?

• Awareness: What are the meta-level reasoning
issues while agents carry out assigned tasks (e.g.
an agent’s awareness of his sibling agents)?

• E-business and cyber terrorism: How can agents
collaborate to protect networks and information
systems from denial-of-service attacks?

• Agent Formalization: How do we formalize the
concept of agent cognition, including the structure
of a case and the roles of beliefs, attitudes, and
intentions?

• Community Formalization: How do we formalize
the concept of an agent community, including the
categories and roles of agents, the skills of agents,
collaboration and communication requirements,
and mobility requirements?

• Implementation medium: Do COTS systems exist
for further exploration, e.g. British Telecom’s Zeus
Agent Building Tooldit is a candidate [24,25].

• Evaluation: How do we conduct performance
evaluations, including measurements of
community dynamics, cooperation, scalability,
load balancing, adaptability, and learning?

Figure 6. An agent’s cognitive functions

Authorized licensed use limited to: Old Dominion University. Downloaded on March 19, 2009 at 09:44 from IEEE Xplore. Restrictions apply.

References
[1] Lewis, L. Managing Business and Service
Networks. Kluwer Academic/Plenum Publishers. 2002.

[2] Glitho, R and T Magedanz (editors). IEEE Network
Magazine Special Issue on Applicability of Mobile
Agents to Telecommunications. May/June 2002, Vol.
16, No. 3.

[3] IBM Services Sciences, Management and
Engineering, http://www.research.ibm.com/ssme.

[4] Horn, P. Autonomic Computing: IBM’s Perspective
on Information Technology. IBM white paper at
ibm.com/research/autonomic.

[5] Magedanz, T., “Intelligent Agents for
Telecommunications”, Special Issue: Intelligent Agents
for Telecommunications Management, Journal of
Network and Systems Management, Vol 8 No.3, 2000.

[6] Cheikhrouhou, M., P. Conti, J. Labetoulle, and K.
Marcus. Intelligent Agents for Network Management: a
Fault Detection Experiment. In 6th International
Symposium on Integrated Network Management,
Boston, 1999.

[7] Magedanz, T., and R. Glitho, “Mobile Agent-Based
Network and Service Management”, Special Issue:
Mobile Agent Based Network Management, Journal of
Network and Systems Management, Vol 7 No. 3, 1999.

[8] Satoh, I. A Framework for Building Reusable
Mobile Agents for Network Management. IEEE/IFIP
Network Operations and Management Symposium.
Florence, Itally, 2002.

[9] Zaph, M., K. Herrmann, and K. Geihs.
Decentralized SNMP Management with Mobile
Agents. In 6th International Symposium on Integrated
Network Management, Boston, 1999.

[10] Pagurek, B., Y. Wang, and T. White. Integration
of Mobile agents with SNMP: Why and How.
IEEE/IEFT Network Operations and Management
Symposium. Hawaii, 2000.

[11] Bohoris, C., G Pavlou, H. Cruickshank. Using
Mobile Agents for Network Performance Management.
IEEE/IEFT Network Operations and Management
Symposium. Hawaii, 2000.

[12] Tripathi, A., T. Ahmed, S. Pathak, M. Carney, and
P. Dokas. Paradigms for Mobile Agent Based Active
Monitoring of Network Systems. IEEE/IFIP Network
Operations and Management Symposium. Florence,
Italy, 2002.

[13] Chank, R. Defending Against Flooding-Based
Distributed Denial-of-Service Attacks: A Tutorial.
IEEE Communications Magazine. October 2002.

[14] Ray, P. Integrated Management from an E-
Business Perspective: Concepts, Architectures, and
Methodologies. Kluwer Academic/Plenum Publishers,
January 2003.

[15] Gibson, S. Distributed Reflection Denial of
Service: Description and Analysis of a Potent,
Increasingly Prevalent, and Worrisome Internet
Attack.” February 2002. grc.com/dos/drdos.htm

[16] Stephan, R. and Hoo, A., An Agent-Based
Network Management System, UNSW Thesis directed
by Dr. Pradeep Ray, School of Computer Science and
Engineering, UNSW, Sydney, 2002.

[17] Toshiba Corporation, Beegent Multi-Agent
Framework, www2.toshiba.co.jp/beegent/index.htm

[18] T. Kawamura, T. Hasegawa, A. Ohsuga and S.
Honiden, "Bee-gent: Bonding and Encapsulation
Enhancement Agent Framework for Development of
Distributed Systems", Proceedings of the Sixth Asia
Pacific Software Engineering Conference, 1999.

[19] Flatin, J. P. M., S. Znaty, and J. P. Hubaux “A
Survey of Distributed Network and Systems
Management Paradigms”, Swiss Federal Institute of
Technology, Lausanne, Switzerland, 1998.

[20] Ray, P. Cooperative Management of Enterprise
Networks. Kluwer Academic/Plenum Publishers. 2000.

[21] Wooldridge, M. An Introduction to MultiAgent
Systems. John Wiley and Sons, 2002.

[22] Wooldridge, M., Reasoning about Rational
Agents: MIT Press, 2000.

[23] Lewis, L. Managing Computer Networks: A Case-
Based Reasoning Approach. Artech House. 1995.

[24] Nwana, H., D. Ndumu, L. Lee, and J. Collis.
“ZEUS: A Tool-Kit for Building Distributed Multi-
Agent Systems” in Applied Artificial Intelligence
Journal, Vol 13 (1), 1999.

[25] British Telecom Intelligent Agenat Research.
http://more.btexact.com/projects/agents/zeus/

Authorized licensed use limited to: Old Dominion University. Downloaded on March 19, 2009 at 09:44 from IEEE Xplore. Restrictions apply.

