
Extracting User Profiles from Large Scale Data

Michal Shmueli-Scheuer, Haggai Roitman, David Carmel, Yosi Mass, David
Konopnicki

IBM Research, Haifa
{shmueli,haggai,carmel,yosimass,davidko}@il.ibm.com

ABSTRACT
In this work we present the details of a large scale user pro-
filing framework that we developed here in IBM on top of
Apache Hadoop. We address the problem of extracting and
maintaining a very large number of user profiles from large
scale data. We first describe an efficient user profiling frame-
work with high user profiling quality guarantees. We then
describe a scalable implementation of the proposed frame-
work in Apache Hadoop and discuss its challenges.

Categories and Subject Descriptors: H.3.4 [Systems
and Software]: User Profiles

General Terms: Algorithms, Design, Experimentation,
Performance

Keywords: User profile, Large scale, Hadoop

1. INTRODUCTION
In this work we present the details of a large scale user

profiling framework that we developed here in IBM on top of
Apache Hadoop. We address the problem of extracting and
maintaining a very large number of user profiles extracted
from large scale data.

In this context, a user profile is often used to classify a
given user into predefined user segments (e.g., by demo-
graphics or tastes) or to capture the online behavior of the
user including the user’s private interests and preferences.

A user profile can be explicitly defined by the user her-
self, e.g., during the user’s registration to some service. User
profiling is usually defined as the process of implicitly learn-
ing a user profile from data associated with the user. Data
sources for user profiling include among others the user’s
browsing sessions, the user’s own generated content (e.g., the
user’s blog), the user’s social interactions with friends in the
user’s social network (e.g., the user’s discussions with oth-
ers), click-through data extracted from search logs, or even
other user profiles using collaborative filtering techniques.

User profiles may evolve over time due to possible changes

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MDAC’10 ,April 26, 2010 Raleigh, NC, USA
Copyright 2010 ACM 978-1-60558-991-6/10/04 ...$10.00.

Figure 1: General setting illustration

in user interests and tastes, and our aim in this work is to
develop a scalable user profiling solution that captures such
evolution and maintains qualitative user profiles.

User profiles are commonly used for purposes of person-
alization. For example, a user profile can be used for per-
sonalized search by reranking search results according to the
query issuer’s identity. User profiles are also utilized in vari-
ous personalized recommendation services. For example, the
popular social music service Last.fm utilizes user profiles for
personalized music recommendations. As another example,
different online stores such as Amazon and Shopping.com

utilize user profiles for personalized product recommenda-
tions to potential online shoppers. Recently, in the context
of online advertising campaigns, user profiles are also utilized
by various behavioral targeting solutions for improving the
click through rate (CTR) of disseminated ads.

In this work, we assume a general content management
setting, which is further illustrated in Figure 1, where a
content provider is responsible to serve multiple users that
submit various requests for web documents, e.g., users that
visit the content provider’s website or update blogs managed
by the content provider’s blogging service. The provider’s
server logs each request in the system log and records all
users interactions with their documents of interest. The
provider’s user profiling module consumes the system log
data during scheduled time periods and is responsible to
maintain user profiles over time. User profiles can be used by
the content provider for targeted services to users (e.g., ad-
vertisements, recommendations) or to provide personalized
services (e.g., personalization of a user’s search results).

We propose a scalable user profiling framework that is
based on concepts of feature selection, where user profiles

are represented by the textual content consumed or pro-
duced by different users and our aim is to weigh user pro-
file terms according to their capability of representing the
user’s interests. For that purpose, we propose an efficient
and scalable feature selection method based on Kullback-
Leibler (KL) divergence, tailored for the user profiling task.

We then show how the proposed framework can be imple-
mented on top of Apache Hadoop MapReduce framework.
Using real-world data we evaluate the scalability of the pro-
posed framework.

To summarize, this paper includes two main contribu-
tions. First, we describe an efficient user profiling framework
with high user profiling quality guarantees. Second, we de-
scribe a scalable implementation of the proposed framework
in Apache Hadoop and discuss its challenges.

The rest of the paper is organized as follows. We provide
background in Section 2, followed by the details of our user
profiling framework in Section 3. Section 4 presents our
framework evaluation, and we conclude in Section 5.

2. BACKGROUND
In this work we extract and maintain user profiles based

on the textual content of documents associated with users
over time. A survey on various state-of-the-art techniques
of obtaining data for user profiles and types of user pro-
file models (e.g., content-based, hierarchical, semantic pro-
file models) is provided in [6]. We now focus our discussion
on content-based user profiles.

A common approach for representing a user profile based
on content consumed or produced by the user is as a weighted
vector of terms (keywords), also known as the Bag Of Words

(BOW) model (e.g., [4, 13]). Within this model, user pro-
file terms are usually weighted according to the well know
information retrieval tf × idf measure [11].

During time, users may exhibit temporary or even con-
stant changes in their interests. Therefore, maintaining a
user profile periodically is important in order to adjust the
profile to such possible changes, while keeping the history
knowledge about the user. Such user profile maintenance
considerations have been also extensively studied in the past,
e.g., [10, 8, 13]. The most prevalent approach is to main-
tain user profiles using two main temporal abstraction levels,
i.e., a long-term level to represent the history, and a short

term level to represent the latest changes. While the long
term profile may represent more general or stable interests of
the user; the short term profile may represent more specific
or current interests. In this context, Sugiyama et al. [13]
further proposed a window-based user profile model, where
keywords that appear in past and current Web pages asso-
ciated with the user, are aggregated based on their relative
tf × idf scores and their recency.

In this work we weigh user profile terms based on the
Kullback-Leibler divergence (KL) measure, which is a non-
symmetric distance measure between two given distribu-
tions, extensively used in various fields like information the-
ory, biology, content analysis, etc. The most related works
to our setting that also used KL are works on information
filtering and annotation [7, 14]. The work by Yanagimoto
et al. [14] aimed at filtering new documents that may not
interest the user. They used the KL divergence between the
documents that the user viewed and those that he did not.

Hinne et al. [7] tried to determine the most descriptive and
discriminating query terms associated with a given URL in

order to identify whether the URL corresponds to the user’s
query intent. They used the KL divergence between each
pair of a query term and the associated URL.

Recently, with the growth in the amount of online gener-
ated data and users, several works have focused on develop-
ing frameworks and algorithms for targeting users in large
scale systems [5, 15, 3]. Chen et al. [5] developed a behav-
ioral targeting system over Hadoop MapReduce framework
to select the ads most relevant to users. Zhou et al. [15] pro-
posed large scale collaborative filtering techniques for movies
recommendation. Finally, Cetintemel et al. [3] suggested an
incremental algorithm for constructing user profiles based
on monitoring and explicit user feedback. Their approach
allows to trade between the profile complexity and its qual-
ity. In the context of these works, in this paper we describe
how a very large scale number of content-based profiles can
be extracted and maintained using Apache Hadoop MapRe-
duce framework.

3. USER PROFILING FRAMEWORK
We now describe the details of a large-scale user profiling

framework. We begin by describing the framework general
setting, followed by the details of its user profile model. We
then show how user profiles are extracted, and we conclude
this section with a description of the framework implemen-
tation in Hadoop.

3.1 Setting
We now return back to the setting illustration of Figure 1

and assume a general content management setting with mul-
tiple users who submit various requests1 for web documents
to some content provider. The provider’s server logs each re-
quest in the system log, which records all users interactions
with their documents of interest. Each record in the log is
a tuple 〈u, d, context〉 and captures a single user-document
association where u represents the user, d represents the
document associated with that user, and context is any ad-
ditional available metadata extracted from the context of
the user-document association (e.g., time, geographic loca-
tion, the query text in a search session, tags used by the user
to bookmark the document, etc). In this work we attach ev-
ery available textual context to the associated document’s
content.

A user profiling module consumes the system log data dur-
ing scheduled time periods (e.g., every once a day) and is
responsible to maintain user profiles2. Both the system log
and user profiles are stored in Hadoop’s distributed file sys-
tem (HDFS). Once user profiles are updated at some time
period j, all log records are “flushed” from the log. There-
fore, on each time period j only those records that were
logged in the system log between the previous time period
j − 1 and the current one are needed for updating the user
profiles.

User profiles can be used by the content provider for tar-
geted services to users (e.g., advertisements, recommenda-
tions) or to provide personalized services (e.g., personaliza-
tion of a user’s search results). In the rest of this paper, we

1
We use the term “request” to represent either a single user data

consumption or production activity, i.e., by submitting a HTTP-GET or
HTTP-POST request to the provider’s server.
2
For simplicity, in this work we schedule profile maintenance between

fixed time intervals. Methods to determine optimal intervals also exist
[12].

focus on the aspects of our user profile model and its large
scale implementation in Hadoop.

3.2 User Profile Model

3.2.1 Basic notations
Given some time period j, we denote by Dj the “commu-

nity snapshot”, defined as the set of all requested documents
d that were recorded in the system log during that time pe-
riod. Given a user u, we also denote by Dj(u) the “user
snapshot”, defined as the subset of documents d ∈ Dj that
were requested by user u during time period j.

A user profile is represented by the textual content of
the documents associated with the user over time. In this
work we adopt the Bag Of Words (BOW) model for rep-
resenting user profiles. Given a vocabulary of terms V =
{t1, t2, . . . , tm}, the user profile of each user u, at a given
time period j (denoted by pj(u)), is then defined as a weight
vector:

pj(u) = (wu
j (t1), w

u
j (t2), . . . , w

u
j (tm))

Each weight wu
j (t) corresponds to the relative profile impor-

tance of a unique term t ∈ V at time period j, which may
appear in the textual content of the associated documents
Dj(u). If the user profile content does not contain term t,
then wu

j (t) = 0. Each term can be either a word, a phrase,
or a lexical affinity.

3.2.2 User profile maintenance
User profiles are maintained over time, and we capture

the evolution of user profiles using the following recursive
update rule:

p̃j(u)← αj · pj−1(u) + (1− αj) · pj(u) (1)

αj is a learning parameter and it controls the system’s rela-
tive preference between the fresh user profile snapshot pj(u)
and the history profile pj−1(u), where p0(u) is initiated with
zero weights. In this work we use exponential decay smooth-
ing and set αj = α0 ·exp−j/C . The larger αj is, the more we
rely on the user profile learned from history (model exploita-

tion) and the less we rely on the fresh user profile (model
exploration). The C parameter controls the rate of learn-
ing where larger values imply a slower learning process. We
learn both parameters from sample data, and in this work
we set α0 = 0.1 and C = 100.

Figure 2 further demonstrates an example of a single evolv-
ing user profile pj(u) of some user u during different time
periods j. At every time period, the user profile is repre-
sented in Figure 2 by a single “tag-cloud”, where more fresh
user profile snapshots are represented by larger clouds. The
community snapshot Dj and the user snapshot Dj(u) at ev-
ery time period j are also illustrated in Figure 2 by an ellipse
(up) and a circle (down).

3.3 Weighting User Profile Terms
Weighting user profile terms is strongly related to feature

selection which is the process of selecting a subset of the
terms for text representation, and is frequently applied by
text categorization and text clustering methods [11]. Com-
mon approaches for feature selection evaluate terms accord-
ing to their ability to distinguish the given text from the
whole text. For the user profiling task, given time period j,
we capture user u latent interests by weighting the terms in

Figure 2: Demonstration of a single user profile evo-
lution over time

pj(u) according to their contribution to the separability of
the current user snapshot Dj(u) from the entire community
snapshot Dj .

We next describe a feature selection method that is based
on few simple principles that were previously proposed for
the tasks of website findability [2] and cluster labeling [1].
This method was further shown in [1] to provide a relatively
very high quality text features for representing a cluster of
documents compared to other state-of-the-art feature selec-
tion methods [11].

We first discuss the set of basic features that we use; then,
we discuss how user profile terms are actually weighted using
the proposed feature selection method which is based on
Kullback-Leibler (KL) divergence [9].

3.3.1 Term features
Our user profiling method is based on several low level IR-

fashion term features extracted from both the community
snapshots Dj and user snapshots Dj(u) over time. Given a
term t ∈ V and a document d ∈ Dj(u) the first feature type
is the term t frequency in document d, denoted by tf(t, d).
The second feature type is the term t document frequency,
defined as the number of documents in a given document
collection that contain that term. For time period j, we
denote by df(t, Dj) and df(t, Dj(u)) the term t document
frequency in the j-th community snapshot and j-th user
snapshot.

The intuition behind the selection of these basic features
is that a good representative term t should be such that is
highly frequent in documents d ∈ Dj(u), should appear as
much as possible in user snapshot Dj(u) documents and as
less as possible in the community snapshot documents Dj .
Leaning on this simple intuition, given some term t ∈ V ,
and snapshots Dj and Dj(u), the initial weight we assign to
the term is given by:

w
u
j (t) = tf(t, Dj(u))udf(t, Dj(u))idf(t, Dj) (2)

where tf(t, Dj(u)) = 1
|Dj(u)|

∑

d∈Dj(u) tf(t, d) is the (av-

erage) term frequency in Dj(u)’s centroid, udf(t, Dj(u)) =
df(t,Dj(u))

|Dj(u)|
is the maximum likelihood estimation of the prob-

ability to find term t in Dj(u), and idf(t, Dj) = log

(

1 +
|Dj|

df(t,Dj)

)

is the inverse document frequency of the term t, determined

by that term relative document frequency in the j-th com-
munity snapshot Dj . A näıve approach for weighting the
user profile terms is according to Eq. 2. Next we propose a
more sophisticated method we coin the “KL method” which
is based on the initial weights of Eq. 2.

3.3.2 The KL method
Recall that, given some time period j, we wish to cap-

ture each user u’s latent interests by weighting the terms in
pj(u) according to their contribution to the separability of
the current user snapshot Dj(u) from the entire community
snapshot Dj .

Such separability can be measured using the Kullback-
Leibler (KL) divergence [9] between the user snapshot Dj(u)
term distribution and that of the entire community snapshot
Dj . For two distributions P1(t) and P2(t) over the terms in
the collection t ∈ V , the KL divergence is defined as:

DKL (P1||P2) =
∑

t∈V P1(t) log P1(t)
P2(t)

(3)

For a given term t ∈ V , let P (t|Dj(u)) and P (t|Dj) denote
the marginal term distributions over the set of documents
in Dj(u) and Dj , respectively. We now describe how each
of the two marginal distributions is generated.

Given community snapshot Dj , its marginal distribution
with respect to term t is calculated as:

P (t|Dj) = tf(t, Dj)cdf(t, Dj)Nj (4)

where cdf(t, Dj) =
df(t,Dj)

|Dj |
is the maximum likelihood es-

timation of the probability to find term t in Dj , and Nj =
(
∑

t∈V P (t|Dj)
)−1

is the probability normalization factor.
For user snapshot Dj(u), we use Eq. 2 and measure its

marginal distribution with respect to a given term t accord-
ing to the relative initial weight of that term as follows:

P (t|Dj(u)) = (1− λ)

(

wu
j (t)

∑

t∈V wu
j (t)

)

+ λP (t|Dj) (5)

λ is a smoothing parameter used to smooth P (t|Dj(u)) with
P (t|Dj), which is a common technique in language mod-
els [11]. In this work we set λ = 0.001.

Finally, we weigh each user profile term t by its marginal
contribution to the maximization of KL divergence between
the user snapshot and community snapshot distributions,
calculated as follows:

w̃
u
j (t) = P (t|Dj(u)) log

P (t|Dj(u))

P (t|Dj)
(6)

3.4 Large Scale Implementation
We now describe an efficient large scale implementation of

our user profiling solution on top of Apache Hadoop MapRe-
duce framework3. The implementation flow pseudo-code is
further provided in details in Algorithm 1.

The amount of parallelization of the user profiling frame-
work closely depends on two computational bottlenecks that
dictate the capability to process data without the need to
wait for the completion of some unprocessed sub-flows. The
first bottleneck is attributed to the calculation of the prob-
ability normalization factor Nj , used to normalize the com-

3
http://hadoop.apache.org/

Algorithm 1: User profiling

Input: Log records: [u, d], Document contents: [d, text]
Output: Userprofile weights: [(u, t), w̃u

j (t)]

Phase (1) [count the number of documents on each user snapshot
Dj(u) and calculate intermediate community snapshot Dj features]
begin

MapReduce flow: countUserDocs

begin
Map[u, d] → [u, 1]
Reduce[u, {1}] → Store[u, |Dj(u)|]

MapReduce flow: calcCommunityFeatures

begin
Map[d, text] → [t, (d, 1)]
Reduce[t, {(d, 1)}] → Store[(t, d), tf(t, d)]
Map[(t, d), (tf(t, d), |Dj |)] → [t, (tf(t, d), |Dj |, 1)]
Reduce[t, {(tf(t, d), |Dj |, 1)}] →

Store[t, (tf(t, Dj)cdf(t, Dj), idf(t, Dj))]

Map[t, (tf(t, Dj)cdf(t, Dj))] →

[norm, (tf(t, Dj)cdf(t, Dj))]

Reduce[norm, {(tf(t, Dj)cdf(t, Dj))}] → Store[Nj]

Phase (2) [calculate community snapshot Dj marginal term
distribution and the initial user profile term weights]
begin

MapReduce flow: calcComSnapshotProb

begin

Map[t, (tf(t, Dj)cdf(t, Dj), Nj)] → [t, P (t|Dj)]
Reduce[t, P (t|Dj)] → Store[t, P (t|Dj)]

MapReduce flow: calcInitialTermWeights

begin
Map[(u, t, d), (tf(t, d), |Dj(u)|, idf(t, Dj))] →
[(u, t), (tf(t, d), |Dj |, idf(t, Dj), 1)]
Reduce[(u, t), {(tf(t, d), |Dj |, idf(t, Dj), 1)}] →
Store[(u, t), wu

j (t)]

Map[(u, t), wu
j (t)] → [u, wu

j (t)]

Reduce[u, {wu
j (t)}] → Store[u,

∑

t∈V wu
j (t)]

Phase (3) [calculate user snapshot Dj(u) marginal term
distribution and weight user profile terms using the KL method]
begin

MapReduce flow: calcUserProfileTermWeights

begin
Map[(u, t), (P (t|Dj), wu

j (t),
∑

t∈V wu
j (t), w̃u

j−1(t), αj)] →

[(u, t), w̃u
j (t)]

Reduce[(u, t), w̃u
j (t)] → Store[(u, t), w̃u

j (t)]

munity snapshot probabilities in Eq. 44. The second bottle-
neck is attributed to the calculation of the weights normal-
ization factor

∑

t∈V wu
j (t) in Eq. 5 due to a similar reason.

Therefore, the implementation flow in Algorithm 1 is par-
titioned into three main phases that are serially executed.
Each phase begins by fetching the intermediate results of
the previous phases from HDFS, followed by the parallel ex-
ecution of the phase logic using few MapReduce sub-flows,
and ends by storing back the phase intermediate results
into HDFS for use by the following phases. We now de-
scribe the flow of each phase in more details. The notations
Map[(key1), (val1)]→ [(key2), (val2)] and
Reduce[(key2), {(val2)}] → [(key3), (val3)] in Algorithm 1
denote a single MapReduce sub-flow, while the notation
Store[(key), (val)] further denotes the storage of interme-
diate results in HDFS.

4
This bottleneck can be resolved by using approximation approach

and it is considered as a future work.

The first phase executes two parallel MapReduce flows.
The first flow, countUserDocs, gets the input of user-document
pairs and counts for each user the number of documents in
that user’s snapshot. The second flow, calcCommunityFea-
tures, begins with a MapReduce sub-flow that calculates
the term frequency of each term in each document tf(t, d),
which output is then both stored in HDFS for later use in
the next phase and is piped into another MapReduce sub-
flow that calculates the community snapshot features of each
term. Its output is also both stored in HDFS for later use in
the next phase and is piped into the last MapReduce sub-
flow that calculates the value of the normalization factor Nj

and store it in HDFS for the next phase.
The second phase also executes two parallel MapReduce

flows. The first flow, calcComSnapshotProb, gets the inter-
mediate community snapshot features that were calculated
in the previous phase and calculates for each term t ∈ V

the probability P (t|Dj) according to Eq. 4. The probabil-
ity values are then stored in HDFS for later use in the last
phase. The second flow, calcInitialTermWeights, begins
with a MapReduce sub-flow that gets as an input several
user snapshot features and calculates the initial user profile
weights wu

j (t). The weight values are then both stored in
HDFS for the next phase and piped into a second MapRe-
duce sub-flow that aggregates these values and then stores
their aggregated value in HDFS for use in the next phase.

Finally, the last phase has a single MapReduce flow,
calcUserProfileTermWeights, that gets all intermediate val-
ues from the previous phases and the history user profile
terms w̃u

j−1(t) kept in HDFS from the previous time period
j − 1, and outputs for each user-profile term, the final term
KL weight according to Eq. 6.

4. EXPERIMENTS
We now provide empirical evaluation of our user profiling

framework. We first describe the datasets and experimental
setting followed by quality evaluation and scalability analy-
sis of the proposed framework.

4.1 Datasets and Experimental Setup
We used two real-world datasets, data extracted from the

Open Directory Project (ODP)5 and blog data extracted
from Blogger.com6 . The ODP data was used for the quality
analysis and used to simulate a user content (resulting in
100 users with 100 documents each), and was generated as
follow; we randomly selected 100 different categories from
the ODP hierarchy. From each category we then randomly
selected up to 100 documents, resulting in a collection size
of about 10,000 documents. The categories were manually
labeled. These ground-truth“correct” labels were later used
to evaluate the KL features selection.

For scalability analysis we used the blog data to simulate
user document requests to the content provider (in this use-
case, Blogger.com); In this dataset, each blog is a collection
of posts, where each post may further have some comments
attached to it. Users usually do not read all blog posts, but
rather few posts from each blog. Therefore, we consider each
post with its comments as a single document. Each post is
further associated with a unique userid (the post author);
in addition, each comment on a post is also associated with

5
http://www.dmoz.org/

6
http://www.blogger.com/

some user (commenter). Hence, we consider both the post
author and the set of its commenters as users that are asso-
ciated with that post. In addition, the content of the post
is given by the concatenation of the original post with its
comments. We crawled 973, 518 blog posts from March 2007
until January 2009, with a total collection size of 5.45GB.

Experiments were run using a 4-nodes commodity ma-
chines cluster (each machine with 4GB RAM, 60GB HD, 4
cores), each node with Linux Ubuntu operating system and
Hadoop version 0.20.1 installations.

4.2 Quality Analysis
We start with quality analysis of our proposed user profile

model, which is based on the KL feature selection method
as described in section 3.3.2.

We compared the KL method with two other state-of-the-
art feature selection methods namely, mutual information
(MI) and χ2 [11]. We further compared the KL method
with the näıve approach which weighs user profile terms ac-
cording to Eq. 2 (denoted here as tf-udf-idf). We followed
the evaluation framework of Carmel et al. [1], where a pro-
posed feature (label) for a given cluster is considered correct
if it is identical, an inflection, or a Wordnet synonym of the
correct label. We evaluated the features selection perfor-
mance using the Match@K measure, which measures the
probability to get at least one correct feature from the set
of top-K proposed features (labels) [1]. Figure 3 shows the
Match@K obtained by the different feature selection meth-
ods. We observe that the KL method outperforms the other
methods. For example, in at least 50% of the cases, the first
label proposed by the KL method was correct (at least 20%
better than the other methods).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

K

M
at

ch
@

K

Mutual Information
Xi 2̂
tf-udf-idf
KL

Figure 3: Quality performance of KL, MI, χ2, and
tf-udf-idf feature selection methods.

4.3 Scalability Analysis
We now analyze the scalability of our framework with re-

spect to several parameter settings. We identify two main
factors that may affect the performance of Algorithm 1,
namely, the number of user profiles we are required to main-
tain, and the number of documents that are associated with
users in the system (data size).

4.3.1 Number of User Profiles
We first analyze the performance with respect to the num-

ber of user profiles that the framework needs to maintain.
It is worth noting that, when the number of user profiles in-
creases, we expect the number of documents to increase as
well. We varied the number of user profiles between 20, 000

to 120, 000, resulting with about 40, 000 to 500, 000 docu-
ments with a total data size of 250MB and 3GB, respectively.
We used the 4-nodes cluster and measured the total runtime
(in minutes) of the profiling task. Table 1 summarizes the
setting and the resulting runtime; Figure 4 further provides
relative ratios with respect to the smallest data set (the first
row, #1). For example, the user profiles, documents and
times ratios for dataset #3 with respect to dataset #1 are
6.60, 4.68 and 4.55, respectively. Interestingly, we can ob-
serve that the running times ratio is correlated with the user
profiles ratio rather than with the documents ratio, which
means that the number of user profiles rather than the num-
ber of documents dictates the performance of the algorithm.

Dataset # user profiles # documents Runtime (min.)
#1 17, 786 39,596 39.21
#2 34, 186 88,563 67.76
#3 83, 344 261,509 170.71
#4 124, 782 493,490 272.39

Table 1: Runtime performance with respect to in-
creasing number of user profiles.

1

3

5

7

9

11

13

#2 #3 #4

Dataset

R
at

io

Document Ratio
User profile Ratio
Time Ratio

Figure 4: Documents, user profiles and times ratios
(with respect to dataset #1).

4.3.2 Data Size
Finally, we analyze the scalability of our framework with

respect to the data size, given by the number of documents
need to be processed by the framework. We chose a subset
of about 180, 000 users that existed in the dataset during
the two months of March-April 2007, and extracted their
associated documents between the months March to August
2007, such that the total number of documents varied be-
tween 41, 227 to 157, 3307, resulting in a total data size of
250MB to 1.2GB, respectively. We used the 4-nodes cluster
and measured the total runtime of the profiling task. Fig-
ure 5 provides the runtime for different data sizes. We can
observe that the runtime linearly increases with the increase
in data size. While here we observe that the data size has
linear affect on the runtime, this effect is negligible when the
number of user profiles increases as was shown in the first
analysis above.

5. CONCLUSIONS
In this paper we proposed a scalable user profiling solu-

tion, implemented on top of Hadoop MapReduce framework.
Future work will include the extension of our framework with

7
Please note that some of these users only comment on others blog

posts.

30

60

90

120

40 80 120 160 200

Number of documents [Thousands]

R
un

ni
ng

 ti
m

e
[m

in
.]

Figure 5: Runtime performance with respect to in-
creasing data size.

other profile models such as hierarchical or semantic models.
We also intend to incorporate structured data sources into
our framework.

Acknowledgment
We thank Avishay Livne for his assistance with the implementa-
tion of the initial framework version.

6. REFERENCES
[1] D. Carmel, H. Roitman, and N. Zwerdling. Enhancing cluster

labeling using wikipedia. In SIGIR ’09, pages 139–146, New
York, NY, USA, 2009. ACM.

[2] D. Carmel, E. Yom-Tov, A. Darlow, and D. Pelleg. What makes
a query difficult? In SIGIR ’06, pages 390–397. ACM Press,
2006.

[3] U. Cetintemel, M. J. Franklin, and C. L. Giles. Self-adaptive
user profiles for large-scale data delivery. In ICDE, pages
622–633, 2000.

[4] L. Chen and K. Sycara. Webmate: a personal agent for
browsing and searching. In AGENTS ’98, New York, NY, USA,
1998. ACM.

[5] Y. Chen, D. Pavlov, and J. F. Canny. Large-scale behavioral
targeting. In KDD ’09, New York, NY, USA, 2009. ACM.

[6] S. Gauch, M. Speretta, A. Chandramouli, and A. Micarelli.
User profiles for personalized information access. In The
Adaptive Web, volume 4321 of Lecture Notes in Computer
Science. Berlin, Heidelberg, 2007.

[7] M. Hinne, W. Kraaij, S. Raaijmakers, S. Verberne, T. van der
Weide, and M. van der Heijden. Annotation of urls: more than
the sum of parts. In SIGIR ’09, pages 632–633, New York, NY,
USA, 2009. ACM.

[8] H. R. Kim and P. K. Chan. Learning implicit user interest
hierarchy for context in personalization. In In Proc. of
International Conference on Intelligent User Interface (IUI),
pages 101–108, 2003.

[9] S. Kullback and R. A. Leibler. On information and sufficiency.
The Annals of Mathematical Statistics, 22(1):79–86, 1951.

[10] L. Li, Z. Yang, B. Wang, and M. Kitsuregawa. Dynamic
adaptation strategies for long-term and short-term user profile
to personalize search. In APWeb/WAIM, pages 228–240, 2007.

[11] C. D. Manning, P. Raghavan, and H. Schutze. Introduction to
Information Retrieval. Cambridge University Press, 2008.

[12] H. Roitman, D. Carmel, and E. Yom-Tov. Maintaining dynamic
channel profiles on the web. Proc. VLDB Endow.,
1(1):151–162, 2008.

[13] K. Sugiyama, K. Hatano, and M. Yoshikawa. Adaptive web
search based on user profile constructed without any effort from
users. In WWW, pages 675–684, 2004.

[14] Yanagimoto and S. H. Omatu. User profile creation using
genetic algorithm with kullback leibler divergence. IEEJ
Transactions on Electronics, Information and Systems,
126:389–394, 2006.

[15] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan. Large-scale
parallel collaborative filtering for the netflix prize. In AAIM
’08, pages 337–348, Berlin, Heidelberg, 2008. Springer-Verlag.

