
CloudBATCH: A Batch Job Queuing System on Clouds with Hadoop and HBase

Chen Zhang

David R. Cheriton School of Computer Science
University of Waterloo

Waterloo, Canada
Email: c15zhang@cs.uwaterloo.ca

Hans De Sterck

Department of Applied Mathematics
University of Waterloo

Waterloo, Canada
Email: hdesterck@math.uwaterloo.ca

Abstract—As MapReduce becomes more and more popu-
lar in data processing applications, the demand for Hadoop
clusters grows. However, Hadoop is incompatible with existing
cluster batch job queuing systems and requires a dedicated
cluster under its full control. Hadoop also lacks support for
user access control, accounting, fine-grain performance moni-
toring and legacy batch job processing facilities comparable to
existing cluster job queuing systems, making dedicated Hadoop
clusters less amenable for administrators and normal users
alike with hybrid computing needs involving both MapReduce
and legacy applications. As a result, getting a properly suited
and sized Hadoop cluster has not been easy in organizations
with existing clusters. This paper presents CloudBATCH, a
prototype solution to this problem enabling Hadoop to function
as a traditional batch job queuing system with enhanced func-
tionality for cluster resource management. With CloudBATCH,
a complete shift to Hadoop for managing an entire cluster to
cater for hybrid computing needs becomes feasible.

I. INTRODUCTION

MapReduce [1] is becoming increasingly popular and

used to solve a wide spectrum of problems ranging from

bioinformatics to astronomy. The increase of MapReduce

usage requires a growing number of Hadoop [2] clusters.

However, because Hadoop is incompatible with existing

cluster batch job queuing systems and requires a dedicated

cluster under its full control, it is not easy to get a Hadoop

cluster within organizations with existing cluster resources

due to administrative difficulties. It is also difficult to man-

age Hadoop clusters due to Hadoop’s lack of functionality

for job management, user access control, accounting, fine-

grain performance monitoring, etc. As a result, Hadoop clus-

ters may suffer from usage contention/monopoly if shared by

multiple user groups. Additionally, even for institutions that

can afford several dedicated clusters for various usages, pro-

visioning resources for Hadoop clusters is still tricky since

the resources, once dedicated to Hadoop, cannot be used for

the load balancing of legacy batch job submissions to other

overloaded traditional clusters even if they are idle. This

is because Hadoop is designed for running a certain type

of applications, mainly back-end server computations such

as page rank calculations, which are normally MapReduce

programs for large-scale data processing tasks rather than

general computing problems with diverse types of legacy

programs and paradigms.

Going for public cloud services such as Amazon EC2 and

S3 is not suitable for all Hadoop needs either. Specifically,

it could be too expensive or infeasible to transfer and store

large amounts of data with Amazon. For example, a live

cell image processing application described in [7] generates

more than 300GB of data daily. Assuming 3MB/s WAN

bandwidth, it would take about 27 hours to transfer all the

data into Amazon at the cost of $301, and another $45 per

day for storage if using Amazon S3. Worse still, some of

these big data sets might only need to be processed once

and then discarded or archived, making the expensive data

transfer even less cost-effective. It could be more suitable for

these types of data processing tasks to be completed within

the institutions where the data are generated.

Efforts are made to make Hadoop and traditional queuing

systems coexist and work together. But these efforts have

limitations themselves. The Hadoop project itself has tried

to work in this direction and provides a Hadoop On Demand

(HOD) package in support of provisioning and managing

independent Hadoop MapReduce and HDFS instances on

a shared cluster of nodes managed by a resource manager

called “Torque”. It is relatively easy to make HOD work with

other resource managers such as Condor, SGE (Sun Grid

Engine), and Moab. However, an important limitation [4] for

HOD is that HOD cannot effectively move computation near

data to exploit data locality because of its design choice of

creating small sub-clusters for processing individual users’

tasks in a subset of compute nodes where data may not

reside. Other efforts have been made to develop new queuing

systems to work with Hadoop. Oracle attempted to provide

a solution and recently made a new release of the Oracle

Grid Engine, SGE 6.2u5, claiming to be the first cluster

resource management system with Hadoop integration so

that users can submit Hadoop applications to an SGE cluster

just like they would with any other parallel jobs. SGE

will take care of setting up the Hadoop MapReduce on

demand. Apart from the apparent limitation of requiring

users to use/switch to SGE, the SGE Hadoop integration also

suffers from the data locality problem, although less severe

1Inbound data transfer to Amazon is free till November 2010

2nd IEEE International Conference on Cloud Computing Technology and Science

978-0-7695-4302-4/10 $26.00 © 2010 IEEE

DOI 10.1109/CloudCom.2010.22

368

than HOD, as well as problems concerning non-exclusive

host access (See Section II). Additionally, both HOD and

SGE with Hadoop integration suffer from wasting resources

during the reduce phase, which is an intrinsic drawback

for dynamically creating a private Hadoop cluster per user

MapReduce application request, and there exists no solution

for this problem yet.

To address the above mentioned problems, this paper

attempts to provide a solution where Hadoop can function as

a traditional batch job queuing system with enhanced man-

agement functionalities in addition to its original resource

management capability. The goal is to develop a system that

enables cluster administrators to make a complete shift to

Hadoop for managing an entire cluster for hybrid computing

needs. Our system is named “CloudBATCH”. The general

idea about how CloudBATCH works is as follows: The

system includes a set of HBase [3] tables that are used

for storing resource management information, such as user

credentials and queue and job information, which provide

the basis for rich customized management functionalities.

In addition, based on the HBase tables, our system provides

a queuing system that allows “Job Brokers” to submit

“Wrappers” (Map-only MapReduce programs) as agents to

execute jobs in Hadoop. Users can submit jobs and check

job status by using a “Client” at any time.

The remainder of the paper is structured as follows:

in Section II we introduce related work about Hadoop

schedulers, Hadoop on Demand, and SGE with Hadoop

integration. In Section III we briefly describe some desired

properties of a batch job queuing system for clusters. Section

IV will describe the design and implementation of Cloud-

BATCH and how CloudBATCH achieves the properties

listed in Section III. In Section V we give a performance

evaluation. Section VI concludes.

II. RELATED WORK

In this section, we review existing solutions for Hadoop

resource management and its integration with existing clus-

ter batch job queuing systems, and examine their limitations.

To our knowledge, none of the existing solutions can enable

Hadoop with a rich set of traditional cluster management

functionalities comparable to what CloudBATCH provides.

A. Hadoop Schedulers

Hadoop allows customized schedulers to be developed

as pluggable components. The motivation for supporting

various schedulers, besides an obvious objective of achieving

better system utilization, originates from the user demands

to share a Hadoop cluster allocated into different queues for

various types of jobs (production jobs, interactive jobs, etc.)

among multiple users. The default Hadoop scheduler is a

simple FIFO queue for the entire Hadoop cluster which is

insufficient to provide guaranteed capacity with fair resource

allocations for mixed usage needs. Several schedulers are

created for various purposes, such as the Capacity Scheduler,

the Fair Scheduler [5], and the Dynamic Priority (DP)

parallel task scheduler [4].

However, Hadoop schedulers cannot make Hadoop more

favorable towards functioning as a cluster batch queuing

system. They are task level schedulers that only concern

stateless decisions for job executions and do not provide

rich functionality for cluster level management, such as user

access control and accounting, and advanced job and job

queue management with easily customizable priority levels

and reservation support.

B. Hadoop on Demand

As the Hadoop project’s effort to alleviate its incompati-

bility with traditional queuing systems, Hadoop on Demand

(HOD) is added to Hadoop for dynamically creating and

using Hadoop clusters through existing queuing systems.

The idea is to make use of the existing cluster queuing

system to schedule jobs that each run a Hadoop daemon

on a compute node. These running daemons together create

an on-demand Hadoop cluster. After the Hadoop cluster

is set up, user submitted MapReduce applications can be

executed. A simple walkthrough of the process for creating

a Hadoop cluster and executing user submitted MapReduce

jobs through HOD is as follows:

1) User requests from cluster resource management sys-

tem a number of nodes on reserve and submits a job

called RingMaster to be started on one of the reserved

nodes.

2) Nodes are reserved and RingMaster is started on one

of the reserved nodes.

3) RingMaster starts one process called HodRing on each

of the reserved nodes.

4) HodRing brings up on-demand Hadoop daemons (na-

menode, jobtracker, tasktracker, etc.) according to the

specifications maintained by RingMaster in configura-

tion files.

5) MapReduce jobs that were submitted by the user are

executed on the on-demand cluster.

6) The Hadoop cluster gets torn down and resources are

released.

As seen from the above walkthrough of an HOD process,

data locality of the external HDFS is not exploited because

the reservation and allocation of cluster nodes takes no

account of where the data to be processed are stored,

violating an important design principle and reducing the

advantage of the MapReduce framework. Another problem

with HOD is that the HodRing processes are started through

ssh by RingMaster, and the cluster resource management

system is unable to track resource usage and to perform

thorough cleanup when the cluster is torn down.

369

C. SGE with Hadoop Integration

Recently, Oracle released SGE 6.2u5 with Hadoop in-

tegration, enabling SGE to work with Hadoop without

requiring a separate dedicated Hadoop cluster. The core

design idea is similar to HOD in that it also tries to start

an on-demand Hadoop cluster by running Hadoop daemons

through the cluster resource management system on a set of

reserved compute nodes. The difference with HOD is that

SGE exerts better concern for data locality when scheduling

tasktrackers and supports better resource usage monitoring

and cleanup because tasktrackers are directly started by SGE

as opposed to be started by HodRing in HOD. The main

problem, apart from locking users down to using SGE, lies

in its mechanism of exploiting data locality and the non-

exclusive usage of compute nodes.

Figure 1 illustrates how SGE with Hadoop integration

works:

1) A process called Job Submission Verifier (JSV) talks

to the namenode of an external HDFS to obtain a data

locality mapping from the user submitted MapReduce

program’s HDFS paths to data node locations in

blocks and racks. Note that the “Load Sensors” are

responsible for reporting on the block and rack data for

each execution host where an SGE Execution Daemon

runs.

2) The SGE scheduler starts the Hadoop Parallel Environ-

ment (PE) with a jobtracker and a set of tasktrackers as

near the data nodes containing user application input

data as possible.

3) MapReduce applications that were submitted by the

user are executed. Because several tasktrackers might

have been started on the same physical node, physical

nodes could be overloaded when user applications start

to be executed.

4) The Hadoop cluster gets torn down and resources are

released.

Figure 1. SGE Hadoop Integration (taken from online blog post by Oracle).

As seen above, the major advantage about SGE compared

to HOD is the utilization of data locality information for

scheduling tasktrackers. However, a compute node could get

overloaded because multiple tasktrackers may be started on

the same node for data locality concerns to execute tasks.

In this case, an unpredictable number of Hadoop speculative

tasks [5] may be started on the other idling nodes where data

do not reside, incurring extra overhead in data staging and

waste of resources for executing the otherwise unnecessary

duplicated tasks. The unbalanced mingled execution of nor-

mal and speculative tasks may further mix up Hadoop sched-

ulers built in with the dynamically created Hadoop cluster

which are unaware of the higher level scheduling decisions

made by SGE, harming performance in unpredictable ways.

Even if the default Hadoop speculative task functionality

is turned off, the potential danger of overloading a node

persists, which could further contribute to unbalanced exe-

cutions of Map tasks that result in wasting cluster resources

as explained below. SGE also has an exclusive host access

facility. But if this facility is required, then the data locality

exploitation mechanism would be much less useful because

normally a data node would potentially host data blocks

needed by several user applications while only one of them

can benefit from data locality in the case with exclusive

host access. Additionally, the SGE installation file is about

700MB, quite large compared to Hadoop which is only about

70MB in a tar ball and thus less costly to distribute.

Worse still, both HOD and SGE suffer from the same ma-

jor problem intrinsic to the idea of creating a Hadoop cluster

on-the-fly for each user MapReduce application request.

The problem is a possible significant waste of resources in

the Reduce phase, where nodes might be idling when the

number of Reduce tasks to be executed is much smaller than

the number of Map tasks that are executed. This is because

each of the on-demand clusters is privately tailored to a

single user MapReduce application submission and the size

of the Hadoop cluster is fixed at node reservation time. If

the user MapReduce application requires far more Map tasks

than Reduce tasks and the number of nodes are reserved

matching the Map tasks (which is usually what users would

request), many of the machines in the on-demand Hadoop

cluster will be idling when the much smaller number of

Reduce tasks are running at the end. The waste of resources

could also occur in the case of having unbalanced executions

of Map tasks, in which case a portion of Map tasks get

finished ahead of time and wait for the others to finish

before being able to enter the Reduce phase. There exists

no solution for this problem yet.

III. DESIRED PROPERTIES

In this section, we describe some properties that Hadoop

lacks good support of, yet are essnetial for batch job queu-

ing systems. CloudBATCH supports the majority of these

properties.

370

A. Job Queue Management

Job queue management is critical for managing shared

usage of a cluster for various purposes among multiple users.

For example, there could be a queue for batch serial jobs and

a queue for MPI applications. Cluster nodes can be assigned

to queues with a certain minimum and maximum quantity

and capacity guarantee for optimized resource utilization.

Additionally, each queue should optionally have specific

policies concerning the limit of job running time, queue

job priority, etc., to avoid the need to specify these policies

on a per job basis. Furthermore, user access control for

submitting to queues should also be in place.

B. Job Scheduling and Reservation

Jobs should be put into a certain queue with queue-

specific properties, such as priority and execution time limit.

Jobs with higher priorities should be scheduled first and may

require preemption based on priority. Reservation for pre-

scheduled job submission and customized job submission

policies may be supported such as putting a threshold on the

number of simultaneous job submissions allowed for each

user. In addition, job status and history shall be kept on a per

user basis together with descriptions for user management,

statistical study and data provenance purposes. Resource

status organized by queues shall also be maintained con-

cerning activeness and workload. Both the status of jobs

and resources shall be able to be monitored in real-time or

offline for analysis.

C. User Access Control and Accounting

User access control shall be supported at least at the

queue level, which requires user credentials to be kept and

validated when a job submission or reservation is made.

Stateful job execution status and history along with user

information shall be kept to support accounting. User groups

may also be supported.

In the following section, we discuss to which degree

CloudBATCH succeeds in meeting these desired properties.

IV. CLOUDBATCH

A. Architecture Overview

CloudBATCH is designed as a fully distributed system

on top of Hadoop and HBase. It uses a set of HBase

tables globally accessible across all the nodes to manage

Meta-data for jobs and resources, and runs jobs through

Hadoop MapReduce for transparent data and computation

distribution.

Figure 2 shows the architecture overview of the Cloud-

BATCH system. CloudBATCH has several distributed com-

ponents, Clients, Job Brokers, Wrappers and Monitors. The

general sequence of job submission and execution using

CloudBATCH is as follows: Users use Clients to submit

jobs to the system. Job information with proper job status

is put into HBase tables by the Client. In the meantime, a

Job
Broker j

Job
Broker i

Monitor

Submit Wrapper
Execute Job

Check
status

Client

Serial Job

MapReduce
Job

Reserved
Job

Hbase Tables

Pool of MapReduce Worker Nodes

Submit Wrapper
Execute Job

A

Wrapper

Wrapper

Job
x

Wrapper
n

poll poll

Job
y

Job Table User Table Queue Table Reservation
Table

User

Figure 2. CloudBATCH architecture overview.

number of Job Brokers are polling for the HBase tables to

find jobs ready for execution. If a job is ready, a Wrapper

containing the job is submitted to Hadoop MapReduce by

the Job Broker. The Wrapper is responsible for monitoring

the execution status of the job and updating relevant records

concerning job and resource information in HBase tables.

The Wrapper is also responsible for following some job

policies such as on execution time limit and may terminate

a running job if it takes too long over the limit. Monitors are

currently responsible for detecting and handling failures that

may occur after Wrappers are submitted to Hadoop MapRe-

duce but before they can start to execute the assigned jobs,

which may result in jobs being marked as “Status:queued”

but never getting executed.

The key part of CloudBATCH is a set of HBase tables that

store Meta-data information for resources. The main tables

are Queue Table (Table I), Job Table (shown in three parts

in Tables II, III, and IV), Scheduled Time Table (Table V),

and User Table (Table VI)2.

The Queue Table (Table I) stores information about

queues such as type of jobs (e.g., a queue for MapReduce

jobs or serial jobs), queue capacity measured in the max-

imum number of simultaneous active jobs allowed, queue

job priority (numerical values with increasing priority level

from 1-10), execution time limit in milliseconds associated

with the queue, queue domain (private for some users or

public for all), and list of users or groups (access control list)

allowed to access the queue. Note that Table I is a sparse

table with rows of varying lengths. In our example settings,

queue “serial” is under the “public” domain and does not

specify a list of users/groups who are allowed to access the

queue, while queue “bioinformatics” is under the “private”

domain and only allows the listed users to submit jobs to it.

There is no priority associated with queue “bioinformatics”

meaning that either the default priority of “1” or the priority

specified by the user at job submission will be used.

2HBase column families are omitted for simplicity for all tables.

371

The Job Table (Tables II, III, IV) is a large table con-

taining extensive information about jobs. Here we show

the essential columns only and is split into three tables for

better display. Jobs are identified by unique IDs, submitted

to queues, and associated with the submitting users. Cloud-

BATCH currently accepts three types of jobs, namely, serial,

MapReduce and Scheduled Time (i.e., serial or MapReduce

jobs scheduled with an earliest start time). Each job has an

associated priority (either inherited from the queue it is sub-

mitted to or specified explicitly through the Client), execu-

tion length limit, SubmitTime (the time at the HBase server

when the Client first puts in the job record), QueuedTime

(the time a Wrapper is submitted for this job), StartTime (the

time the Wrapper starts executing the job), EndTime (the

time the Wrapper finishes job execution and status update),

and Status (submitted, queued, running, failed, succeeded).

Each job should contain an executable command. In the case

when the Network File System (NFS) is used (which is

the common case in clusters among compute nodes), job

commands should contain the necessary file paths needed

by the job. When NFS is not used, job commands should

contain input file paths relative to the execution directory

on the compute node and in the meantime specify the

corresponding absolute file paths on the machine where

the files are stored (normally in the machine from which

job submissions are made) using the –NonNFSFiles option

through the Client so that those files will be staged into

HDFS by the Client and later retrieved by the Wrapper and

put into the correct directory structure relative to the com-

mand execution directory on the cloud node where the job

is executed (in this case, there is a single globally accessible

HDFS system and each cloud node also has its own local file

system). Other supporting non-NFS input files can also be

staged in this way. Output result files are however not staged

automatically in the current CloudBATCH prototype. Users

should include a file staging logic if necessary at the end of

their programs to stage result files explicitly to the desired

destinations. Please pay attention to the way how some of the

columns are named and data are stored. For example, instead

of having a single “Status” column, we use columns named

by the corresponding status such as “Status:queued”. This

is designed for doing fast queries such as “all the jobs that

are queued” by taking advantage of some methods provided

by HBase that can rapidly scan for all the rows for columns

with non-empty values.

The Scheduled Time Table (Table V) is used to record job

requests with a specified earliest start time. Scheduled job

information is first entered into the Scheduled Time table

and then put into the Job table with “Status:submitted”. The

value of “ScheduledTime” in the Scheduled Time Table is

used to set the “SubmitTime” in the Job Table. When a Job

Broker sees a scheduled job, it will not process it until the

“SubmitTime” has been reached.

The User Table (Table VI) is used to record some user-

specific policies or restrictions such as the maximum number

of simultaneous jobs allowed to be running in queues at any

time. The “IndividualJobPriorityLimit” regulates the highest

job priority value a user can submit a job with. This ensures

that only authorized users can submit high priority jobs that

may preempt lower priority jobs if desired (future work).

In the following subsections, we introduce the key Cloud-

BATCH components one by one and discuss how well

CloudBATCH satisfies the desired properties mentioned in

Section III as well as several other design issues.

B. Client

The Client provides user interaction functionality for user

access control and job submission to proper queues with the

capability of staging Non-NFS files into Hadoop HDFS. The

Client normally runs on the job submitting machine. Figure

3 shows the process of handling job submission.

Get User Name
from commandline

Job submission command

Query User
Table for policies

Get Queue name from
commandline and query
Queue Table for policies

Apply Queue
Policies

Apply User
policies

Update Job Table

Update Scheduled Time
Table

Stage files

Default user

Specific user

terminate

User non-exist
User not allowed for
the intended queue

Non-NFS files

terminate

Scheduled Time Job

Default queue

Figure 3. The flow of operations in the CloudBATCH Client.

After a job is submitted through the commandline inter-

face, the Client parses the command for user and queue

names (if unspecified, the default user and queue will be

used). The User Table will be checked for access control

purposes, and user policies such as the maximum job priority

value allowed will be applied to the submitted job. The

Queue Table will also be checked to see if the user is allowed

to submit jobs to the specific queue and to apply queue

policies to the job as well. If the policy from the Queue Table

conflicts with the one from the User Table, an exception

will be raised and the job should be submitted again with

corrected information. After these checks, the Client finally

gets a unique job ID by the mechanism of global sequence

number assignment mentioned in [6] and puts the job infor-

mation into the Job Table with “Status:submitted”. If the job

uses non-NFS files, there is currently some limited support

from the Client to let users specify colon-separated pairs of

372

Table I
QUEUE TABLE

QueueID QueueType Capacity JobPriority JobLengthLimit Domain UserAlice UserBob Groupdefault

serial serial 50 1 1200000 public Y

bioinformatics MapReduce 10 600000 private Y

Table II
JOB TABLE, PART 1

JobID QueueID:

serial

QueueID:

bioinformatics

JobType:serial JobType:MapReduce JobType:ScheduledTime Priority:1 Priority:5

23 Y Y Y

24 Y Y Y

25 Y Y Y Y

Table III
JOB TABLE, PART 2

JobID StartTime EndTime SubmitTime QueuedTime Job

Length

Limit

Status:

submitted

Status:

queued

Status:

running

Status:

failed

Status:

succeeded

23 t1 1200000 Y

24 t4 t2 t3 600000 Y

25 t5 1200000 Y

Table IV
JOB TABLE, PART 3

JobID UserAlice UserBob Groupdefault Groupbio Command JobDescription AbsolutePath1 AbsolutePath2

23 Y Y Command1 mpeg encoder RelativeFileDir1

24 Y Y Command2 bio sequence RelativeFileDir2

25 Y Y Command3 space weather

absolute local file paths on the client machine and relative

remote file paths on the Hadoop execution node (used in the

job command) through the –NonNFSFiles option. The Client

creates a column in the Job table (Table IV) named after the

absolute local file path with column value the remote file

path relative to the job command execution directory. The

absolute file path, concatenated with a HDFS path prefix

containing the job ID, will be used as the temporary file path

in HDFS where the Client will transfer the user-specified

local files to. For example, for job ID X with command

“ls images/medical.jpg”, the user can specify a file pair

“/home/user/images/medical.jpg:images/medical.jpg”. Then

the local image file will be transferred to HDFS un-

der “/HDFS/tmp/jobX/home/user/images/medical.jpg”. The

Wrapper that executes this job later will copy that HDFS

file to the local relative path “images/medical.jpg” before

invoking the job command. The executable of the command

should be transferred this way as well if necessary. Future

work can be added to distinguish between input files and

output files so that non-NFS file users can have an option

to put the result files back into HDFS with customized

locations.

C. Job Broker

The Job Broker is responsible for polling the Job Table

for lists of user submitted jobs that are ready for execution.

For every job on the lists, the Job Broker submits to

the Hadoop MapReduce framework a “Wrapper” for job

execution. Figure 4 shows the tasks a Job Broker should

perform periodically when polling the Job Table.

A Job Broker queries the Job Table periodically to get

a list of jobs with “Status:submitted” according to job

priorities from high to low. For each of the jobs in the list,

the Job Broker checks whether the job is a scheduled job that

has not yet reached its scheduled execution time, whether the

intended job queue is already full to its maximum capacity,

and whether the user who submits the job already has a

number of running jobs at the maximum value of his allowed

quota. If the job is allowed to be executed immediately, the

Job Broker changes the job status to “Status:queued” and

submits a Wrapper to execute it. Note that the job status is

changed before submitting the Wrapper. If the Wrapper fails

373

Table V
SCHEDULED TIME TABLE

ScheduledTimeID UserBob Groupbio JobID ScheduledTime RequestSubmitTime

2 Y Y 25 t5 t0

Table VI
USER TABLE

UserID SimultaneousJobNumLimit IndividualJobPriorityLimit Groupdefault Groupbio Groupspace

UserAlice 20 5 Y

UserBob 30 8 Y Y

Query Job Table for a list of
Status:submitted jobs by Priority

High to Low

Query Queue Table for the
capacity of queue X

Change job status to
Status:queued

Status:submitted in queue X

Query Job Table for the total No. of
running jobs in queue X

Query Job Table for the total No.
of running jobs for this user

Scheduled Time job with
SubmitTime not yet reached

Too many running tasks
for User

Query User Table for the max No. of
simultaneous jobs allowed

Submit Wrapper
to execute job

For EACH job

Reached max queue capacity

Check next job in
the job list

Figure 4. The flow of operations in the CloudBATCH Job Broker.

before actually starting the job execution, the job could be

straggling with the “queued” status forever. This is handled

by Monitors as described below.

D. Wrapper

Wrappers are responsible for executing jobs through the

Hadoop MapReduce framework. They are actually Map-only

MapReduce programs acting as agents to execute programs

at compute nodes where they are scheduled to run by

the underlying Hadoop schedulers transparently. When a

Wrapper starts at some node, it first grabs from the HBase

table the necessary job information and files that need to be

staged to the local machine. Then it starts the job execution

through commandline invocation, MapReduce and legacy

job alike, and updates the job status to “Status:running”.

During job execution, it will check the execution status such

as total running time in order to follow some job policies

such as maximum execution time limit, and may terminate

a running job if it takes too long. In the future, Wrappers

can be extended to do more advanced resource utilization

monitoring during job execution. After job execution com-

pletes, either successful or failed, the Wrapper will update

the job status (“Status:successful” or “Status:failed”) in the

Job Table, perform cleanup of the temporary job execution

directory and terminate itself normally.

E. Monitor

Monitors are currently responsible for detecting and han-

dling Wrapper failures which may happen after Wrappers

are submitted to Hadoop MapReduce but fail to execute

the assigned jobs, which results in jobs being marked as

“Status:queued” but never executed. The current method

to achieve this is to first set a time threshold T, then let

the Monitor poll the Job Table for jobs that stay in the

“queued” status for a time period longer than T counting

from “QueuedTime”. It is possible that jobs will still be

queued after a healthy Wrapper is submitted with it, even

though queue capacity or user active job number limit are

not reached. This may happen when the cluster is overloaded

and newly submitted MapReduce jobs (i.e., Wrappers them-

selves) are queued by the Hadoop MapReduce framework.

Therefore, the threshold shall be chosen and adjusted very

carefully according to cluster size and load. Monitor usages

are still not fully explored for our prototype and may be

extended in the future for detecting jobs that have been

marked as “Status:running” but actually failed.

F. Discussion

CloudBATCH supports the majority of the desired prop-

erties explained in Section III. For example, it adopts a

scalable architecture where there is no single point of failure

in its components (HBase is assumed to be scalable and

robust) and multiple numbers of its components (such as

Job Brokers) can be run according to the scale of the cluster

and job requests it manages; it supports advanced user and

job queue management with individually associated policies

concerning user access control and maximum number of

active jobs allowed, queue capacity, job priority, etc. It

also inherits Hadoop’s transparent data and computation

deployment as well as task level fault tolerance concerning

the way how Wrappers are handled. Some other proper-

ties are also supported by working complementarily with

Hadoop schedulers, such as the minimum number of node

374

allocation guaranteed to each queue which can be specified

inside Hadoop schedulers. In addition, CloudBATCH can

handle simple non-NFS file staging requests rather than

requiring users’ manual efforts. The HBase table records

can also serve as a good basis for future data provenance

support. However, MPI is not yet supported since there is

no Hadoop version of the mpirun command yet. The direct

reservation of compute nodes rather than earliest start time

specification for jobs is not supported either because Hadoop

hides compute node details from explicit user control, a

tradeoff for the purpose of transparent user access and ease

of management over large numbers of machines.

Concerning fault tolerance, CloudBATCH is capable of

handling two types of failures. The first is fault tolerance for

jobs against machine failures. This is handled by the fault

tolerance mechanism of the underlying Hadoop MapRe-

duce framework through Wrappers. Because Wrappers are

MapReduce programs, they will be restarted automatically

by default for 6 times if machine failures occur. The other

type of fault would potentially occur due to the concurrent

execution of multiple CloudBATCH components. For exam-

ple, if several Job Brokers run simultaneously, they might

all try to update the status of the same job. This problem

may be avoided by fail-safe component protocols which may

possibly make use of distributed transactions with global

snapshot isolation on HBase tables [6] so that updates to the

HBase tables by different components won’t conflict with

each other.

V. PERFORMANCE EVALUATION

We present the result of a basic test for the server through-

put of handling job submissions vs the number of concurrent

Clients. The test is performed because according to the

architecture of CloudBATCH, client job submission could

become a performance bottleneck. The test investigates how

fast the system can accept job submissions (inserting job

information into the HBase tables with proper job status)

from more and more concurrent users. The result provides

insight in the system capacity of handling user requests. We

assume that there is only one queue with no restrictions in

terms of queue/user policies. Having multiple queues with

complicated policies may decrease system performance,

which will be studied in future work. The test is performed

on a 3-machine cluster with Hadoop and HBase installed.

In the test, we run an increasing number of Clients with

an even distribution of the number of Clients on each of

our 3 machines concurrently. Each Client submits 100 jobs

consecutively to our system. The result (Figure 5) shows

that the system can accept about 25 job submission requests

per second. We argue that the performance is satisfactory for

normal user job submission request loads. The reason for the

slight decline in throughput after reaching its peak value is

because the Client components compete for the same system

resources used to host Hadoop and HBase.

Figure 5. Server throughput of accepting job submissions vs Number of
concurrent Clients.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we describe a system called “CloudBATCH”

to enable Hadoop to function as a traditional batch job queu-

ing system with enhanced management functionalities for

cluster resource management. With CloudBATCH, clusters

can be managed using Hadoop alone to cater for hybrid

computing needs involving both MapReduce and legacy

applications. Future work will be explored in the direction

of further testing the system under multi-queue, multi-user

situations with heavy load and refining the prototype im-

plementation of the system for trial production deployment

in solving real-world use cases. CloudBATCH may also be

exploited to make dedicated Hadoop clusters (when they

coexist with other traditional clusters) useful for the load

balancing of legacy batch job submissions.

REFERENCES

[1] J. Dean and S. Ghemawat. Mapreduce: Simplified Data
Processing on Large Clusters. Commun. ACM, 51:107–113,
2008.

[2] Hadoop. http://hadoop.apache.org/.

[3] HBase. http://hadoop.apache.org/hbase/.

[4] T. Sandholm and K. Lai. Dynamic Proportional Share Schedul-
ing in Hadoop. In LNCS: Proceedings of the 15th Workshop
on Job Scheduling Strategies for Parallel Processing, pages
110–131, 2010.

[5] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy,
S. Shenker, and I. Stoica. Delay Scheduling: A Simple
Technique for Achieving Locality and Fairness in Cluster
Scheduling. In Proceedings of the 5th European conference
on Computer systems, EuroSys ’10, pages 265–278, 2010.

[6] C. Zhang and H. De Sterck. Supporting Multi-row Distributed
Transactions with Global Snapshot Isolation Using Bare-bones
HBase. In Proceedings of the 11th International Conference
on Grid Computing (Grid), 2010.

[7] C. Zhang, H. De Sterck, A. Aboulnaga, H. Djambazian, and
R. Sladek. Case Study of Scientific Data Processing on a Cloud
Using Hadoop. In LNCS: Proceedings of the 23rd International
Symposium of High Performance Computing Systems and
Applications (HPCS), pages 400–415, 2009.

375

