
Java vs
.NET

Denis Piliptchouk

O’Reilly Network eDocument

Introduction
An introduction to the history and approaches of
the Java and .NET platforms, document’s
philosophy in comparing their respective
approaches to security issues.

User Authentication and Authorization
A description of the platforms’ approaches to
authenticating users and granting or denying
them permission to execute privileged actions.

Conclusion and Summary
Score for each platform’s offerings in each area of
interest.

Upcoming Security Features
A look ahead to the anticipated security offerings
of J2SE 1.5 and the “Whidbey” release of .NET and
how they address the shortcomings of previous
offerings.

Security Configuration
and Code Containment
A comparison of how the platforms’ security
features are configured, a survey of how they
handle code verification and code containment.

Cryptography and Communication
An analysis of what cryptographic services are
available to Java and .NET applications.

Code Protection
and Code Access Security
A consideration of how application code is secured
against misappropriation and misuse.

A practical guide for comparison and
contrast of security features offered by
Enterprise Java and .NET platforms

Security

Table of Contents

Introduction . 3
An introduction to the history and approaches of the Java and .NET platforms, plus a
statement of the document’s philosophy in comparing their respective approaches to security
issues.

Chapter 1 — Security Configuration and Code Containment . 6
A comparison of how the platforms’ security features are configured, followed by a survey of
how they handle code verification and code containment issues, such as application isolation
and limits imposed by the Java and C# programming languages.

Chapter 2 — Cryptography and Communication . 15
An analysis of what cryptographic services are available to Java and .NET applications, how
they are configured, and how they are used to secure communication.

Chapter 3 — Code Protection and Code Access Security (CAS) . 28
A consideration of how application code is secured against misappropriation and misuse, as
well as how cryptographic signing is used to verify that code is authentic and can be trusted.

Chapter 4 — User Authentication and Authorization . 48
A description of the platforms’ approaches to authenticating users and granting or denying
them permission to execute privileged actions.

Conclusion and Summary . 70
An overview of the security topics considered in the preceding chapters and a score for each
platform’s offerings in each area of interest.

Epilogue — Upcoming Security Features . 73
A look ahead to the anticipated security offerings of J2SE 1.5 and the “Whidbey” release of
.NET and how they address the shortcomings of previous offerings.

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 2 of 80

Introduction

Philosophy
This document reviews security features of two most popular modern development platforms
— Java and .NET (Java v1.4.2/J2EE v1.4 and .NET v1.1). The platform choice is not random,
because they represent, to a certain extent, competition between UNIX-like and Windows
systems, which largely defined software evolution over the last decade. Although Java
applications run on Windows, and there exist UNIX bridges for .NET, the Java/UNIX and
.NET/Windows combinations are used for development of a significant portion (if not
majority) of applications on their respective operating systems, so both platforms deserve a
careful examination of their capabilities.

Such an examination is especially important since different aspects of UNIX/Windows and
Java/.NET competition have been flaming endless heated debates between proponents of
both camps, which often blindly deny merits of the opposite side while at the same time
praising their preferred solution. The material here is purposely structured by general
categories of protection mechanism and reviewing each platform’s features in those areas.
This allows starting each topic with a platform-neutral security concept and performing
relatively deep drill-downs for each technology without losing track of the overall focus of
providing an unbiased side-by-side comparison.

The document is based on the research material that was used as a foundation of the feature
article, “Securing .NET and Enterprise Java: Side by Side”, which was written by Vincent
Dovydaitis and myself and appeared in Numbers 3-4 of Computer Security Journal in 2002.
The following areas will be considered:

● Security Configuration and Code Containment
● Cryptography and Communication
● Code Protection and Code Access Security, or CAS
● Authentication and User Access Security, or UAS

It would be unrealistic to expect complete and detailed coverage of all aspects of platform
security in the space available. Rather, the document attempts to highlight the most important
issues and directions, leaving it up to the reader to check the appropriate manuals and
reference literature. Another important aspect of platform security is that it does not attempt
to deal with all possible types of threats, thus requiring the services of an OS and third-party
software (such as using IIS in .NET). These services and applications will also be outside of
the scope of this publication.

Historical Background
Although the foundations of modern computer security were laid in 1960s and 1970s, the
scopes of tasks and challenges that needed to be addressed by the software systems of that
time and today differ as much as medieval castles and sprawling megapolises of modern age.

Advances in computer hardware were one of the significant contributing factors — it is
sufficient to remind that today’s average PC workstations, sitting on office desks, easily
surpass a super-computer Cray from late 1970s in terms of computing power. Such advances
allowed development of new types of applications, unattainable twenty years ago, and making
them available on people’s desktops. While previously execution of software applications and
results interpretation was an exclusive domain of bearded and gloomy half-gods —

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 3 of 80

inhabitants of computer rooms, which were taking up whole floors — now it has been pushed
down to an average Joe. Correspondingly, an average user now has enough skills for powering
up the computer and starting an application, but not nearly enough to protect himself from
his own actions.

The Internet revolution represented another quantum leap of software evolution. As very
close-knit communities of programming professionals from 60s-70s gave way to a myriad of
loosely-coupled nodes on the world-wide Web, castle-like protection mechanisms started
failing when faced with new, distributed paradigm. Once a computer was brought out of the
isolated facility and connected to the global network, the old trusted and nurturing
environment was gone, and the operating systems together with applications were confronted
with hostile and aggressive environment.

The new realities required new types of platform support, as tightly bound, monolithic, and
relatively small applications were being replaced by newer component-based distributed
systems. These systems also required different types of protection: their modules were often
supplied by different vendors, trusted and not so, direct authentication was no longer always
possible, replaced by third-party and offline modes, encrypted data was not physically carried,
but electronically transported via public networks, authorizations were issued by policy
servers and had to be relayed via trusted mechanisms, etc. The emerging platforms had to
take into account all these (and many other) requirements in order to become viable and
attractive.

Platform Introduction — Java
The Java platform was brought to the world by a group of enthusiastic engineers from Sun,
who had a nice technological concept and were trying to find an application for it in the first
half of 1990s. The project, initially dubbed “The Green Project”, changed its name several
times, until the term Java emerged, allegedly as a tribute to the various coffee places where the
group regularly held its meetings. The technology, initially slated to be incorporated into
digital consumer devices like TV set-top boxes, was not accepted at that time because the
industry was not yet ready for the concept. The onset of the Internet boom, however, was a
fateful coincidence for the new platform — suddenly, it was perceived as the future global
platform for Java, especially after it was endorsed by Netscape, “The Browser” of those days.

Java borrowed some concepts from SmallTalk and a number of earlier research environments
to produce a platform based on a virtual machine (VM), which uses a single language (Java) to
run on multiple operating systems... hence the famous catchy slogan “write once, run
anywhere”. However, the Internet-based distribution and execution model, intermediate
bytecode language, interpreted by the JVM at run time, and other innovative features
immediately presented Java applications (and their users) with new, unexpected ways to
attack them. Correspondingly, the JVM had to incorporate more and more security features
that are typical of operating systems. The application programmers, too, had to become aware
of the Internet realities and could no longer assume that their applications are going to be
running fully isolated behind concrete walls of corporate offices.

Platform Introduction — .NET
Microsoft went through several stages in its quest to come up with its own Internet platform.
COM and COM+ were the early attempts to create loosely-coupled distributed applications,
but they brought with them a very steep learning curve and still did not provide the desired
solution. Attempts to fool around with “enhancing” Java ended in a lengthy and unpleasant
court battle with Sun, which ended with a legal defeat for Microsoft, withdrawing the license,

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 4 of 80

and banning them from making modifications to the Java language.

Even though .NET has a number of strikingly similar characteristics to the JVM, it took its
roots in a little-known OmniVM, developed by Colusa Software, which was acquired by
Microsoft in 1996. That VM pioneered some of the features that later became the pillars of
.NET technology: multiple languages running on the same VM, application isolation model
(known in .NET as AppDomains), JIT to native code, as opposed to Java’s interpreter-based
approach. Of course, .NET architects carefully studied Java’s features and made use of
concepts like code verification, automatic memory management, garbage collection, etc.

In order to support its paradigm of “multiple languages — one platform”, .NET had to define
a minimalist subset of its functionality, that became known as Common Language
Infrastructure, or CLI, and impose certain restrictions on the managed languages. The main
rule: the language must produce a verifiable type-safe code that can passes bytecode
verification. Since traditional C++, because of its immense flexibility and memory pointers,
could not be made verifiably safe without severely restricting it, Microsoft came up with a
clever idea of producing a new language that would combine the best features from the most
influential modern languages. The language, called C#, was introduced with .NET 1.0, and it
incorporates many familiar Java concepts, as well as borrowing some nice traits from C++
and a number of other programming languages.

As C# is designed to be the most feature-complete language in the .NET framework, it was
chosen for all examples and discussions on the .NET side. In some cases, other languages may
implement only subsets of its functionality — check the documentation for the appropriate
language to see what it supports.

Although Java’s success and its apparent threat to Microsoft’s market dominance were one
obvious reason for the .NET shift, business reasons also played a significant role in this move
— the myriad of existing products and technologies did not have the unifying basis, besides
the ever-growing Windows platform. Coincidentally, a number of security initiatives were
launched in the same timeframe with .NET (with various degrees of success), and the
company’s leadership has been regularly bringing the terms “security” and “.NET” together in
the same sentence ever since.

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 5 of 80

Chapter 1 — Security Configuration and Code
Containment

Configuration
Configuration on both platforms is handled through XML or plain-text files, which can be
modified in any text editor, or through the supplied tools. However, the platforms differ
significantly in how they handle configuration hierarchies.

In the .NET world, tools like Mscorcfg.msc and Caspol.exe can be used to modify all aspects
of security configuration. The former displays a GUI interface, shown in Figure 1-1, to
perform GUI-based administration tasks.

Figure 1-1. Mscorcfg.msc screen

On the other hand, Caspol.exe provides a number of command-line options, appropriate for
use in scripts and batch routines. Here’s how it would be used to add full trust to an

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 6 of 80

assembly: caspol -af MyApp.exe.

The Java platform provides a single GUI-based tool, policytool.exe, shown in Figure 1-2,
for setting code- and Principal-based security policies. This tool works with arbitrary policy
files (as long as they are in the proper format), as opposed to .NET, where names and
locations of the configuration files are fixed (see below).

Figure 1-2. Policytool.exe screen

.NET defines machine-wide and application-specific configuration files, and allows for
enterprise, machine, and user security policy configuration, whose intersection provides the
effective policy for the executing user. These file have fixed names and locations, most of
them residing under the Common Library Runtime (CLR) tree, at: %CLR install path%
\Config

For .NET v1.1, the location is: C:\WINNT\Microsoft.NET\Framework\v1.1.4322\CONFIG.

Multiple versions of CLR may co-exist on the same computer, but each particular version can
have only a single installation. Since security policy files cannot be specified as runtime
parameters of .NET applications, this centralized approach hurts co-existence when
applications require conflicting policy settings. For instance, if one attempts to strip locally
installed code of FullTrust permission set in order to make Code Access Security features of
his application work right, it will, most likely, break a number of existing programs which rely
on this setting.

Three security configuration files (enterprise, machine, and user) contain information about
configured zones, trusted assemblies, permission classes, and so on. Additionally, the general
machine configuration file contains machine-wide settings for algorithms, credentials,
timeouts, etc, and certain application-specific parameters (for instance, ASP.NET
authentication/authorization parameters) can be configured or overriden in the application
configuration file. The files’ names and locations are listed below:

● User security configuration file: %userprofile%\Application data\Microsoft\CLR
security config\vxx.xx\Security.config

● Machine security configuration file: %CLR install path%\Config\Security.config
● Enterprise security configuration file: %CLR install path%\Config\Enterprisesec.

config
● Machine configuration file: %CLR install path%\Config\machine.config
● Application configuration files: <AppName>.exe.config (or Web.config for ASP.NET)

in the application or web project’s main directory

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 7 of 80

Core Java and J2EE configuration files have specific locations, but locations of additional
configuration files for extension and J2EE products vary by vendor. J2SE does provide
significant runtime flexibility by using a number of command-line application parameters,
which allow the caller, on a per-application basis, to set keyfiles, trust policy, and extend the
security policy in effect:

java -Djava.security.manager
 -Djava.security.policy=Extend.policy Client1

or to completely replace it:

java -Djava.security.manager
 -Djava.security.policy==Replace.policy Client2

The Java platform’s specifications require the following configuration files:

● J2SE: $JAVA_HOME/lib/security/java.security
This file defines security properties for VM: security providers, policy providers,
package access restrictions, keystore types, and so on.

● J2SE: $JAVA_HOME/lib/security/java.policy, $HOME/.java.policy
Machine and user security policy that grants evidence- and Principal-based code
permissions. Additional/alternative files may be specified on the command line or in
the java.security file.

● J2EE: %application dir%/WEB-INF/web.xml, %application dir%/META-INF/ejb-
jar.xml
These files contain Servlet and EJB deployment instructions and include, among
other parameters, authentication/delegation settings, security roles, role-based
Access Control Lists (ACL), and transport security configuration. The “UAS” section
in Part 4 will provide more detailed coverage of their elements.

Certain JVM parameters may be configured only in $JAVA_HOME/lib/security/java.
security, as shown in the examples below:

● Adding third-party providers: security.provider.<Number>=<ProviderClassName>
● Configuring alternative policy providers: policy.provider=<ProviderClassName>
● Specifying multiple policy files: policy.url.<Number>=file:<URL>

Note: By allowing command-line JVM parameters, Java provides a significantly more flexible
and configurable environment, without conflicts among multiple JVM installations.

Code Containment: Verification
In both environments, the respective VM starts out with bytecode, which it verifies and
executes. The bytecode format is well known and can be easily checked for potential
violations, either at loading or at execution time. Some of the checks include stack integrity,
overflow and underflow, validity of bytecode structure, parameters’ types and values, proper
object initialization before usage, assignment semantics, array bounds, type conversions, and
accessibility policies.

Both Java and CLS languages possess memory- (or type-) safety property; that is, applications
written in those languages are verifiably safe, if they do not use unsafe constructs (like calling
into unmanaged code).

In .NET, CLR always executes natively compiled code; it never interprets it. Before IL is

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 8 of 80

compiled to native code, it is subjected to validation and verification steps. The first step
checks the overall file structure and code integrity. The second performs a series of extensive
checks for memory safety, involving stack tracing, data-flow analysis, type checks, and so on.
No verification is performed at runtime, but the Virtual Execution System (VES) is responsible
for runtime checks that type signatures for methods are correct, and valid operations are
performed on types, including array bounds checking. These runtime checks are
accomplished by inserting additional code in the executing application, which is responsible
for handling error conditions and raising appropriate exceptions. By default, verification is
always turned on, unless SkipVerification permission is granted to the code.

The Java VM is responsible for loading, linking, verifying, and executing Java classes. In the
HotSpot JVM, Java classes are always interpreted first, and then only certain, most frequently
used sections of code are compiled and optimized. Thus, the level of security available with
interpreted execution is preserved. Even for compiled and optimized code, the JVM maintains
two call stacks, preserving original bytecode information. It uses the bytecode stack to
perform runtime security checks and verifications, like proper variable assignments, certain
type casts, and array bounds; that is, those checks that cannot be deduced from static analysis
of Java bytecode.

Code verification in a JVM is a four-step process. It starts by looking at the overall class file
format to check for specific tags, and ends up verifying opcodes and method arguments. The
final pass is not performed until method invocation, and it verifies member access policies. By
default, the last step of verification is run only on remotely loaded classes. The following
switches can be passed to JVM to control verification:

● -verifyremote: verifies only classes from the network (default)
● -verify: verifies all classes
● -noverify: turns off verification completely

Starting with the initial releases of Java, there have been multiple verification problems
reported, where invalid/malicious bytecode could sneak beyond the verifier. At the moment,
there are no new reports about verification bugs, and Java 2 documentation does not list
verification switches, which implies that the verification is always run in full.

However, the -verify switch is still required for local code to behave correctly, as the
following example shows. Given class Intruder...

public class Intruder
{
 public static void main(String[] args)
 {
 Victim v = new Victim();
 System.out.println(
 "Intruder: calling victim's assault() method...");
 v.assault();
 }
}

A Victim class with a public method:

public class Victim
{
 public void assault()
 {
 System.out.println(

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 9 of 80

 "Victim: OK to access public method");
 }
}

And another version of the Victim class with a private method:

public class Victim
{
 private void assault()
 {
 System.out.println(
 "Victim: Private method assaulted!!!");
 }
}

We get the following output when we run a script to compile and run Intruder first against
the public version of Victim, and then, without recompiling the Intruder class, against the
private verison. Finally, it is run against the private version again, this time with -verify
passed as a command-line argument to JVM:

**
* Calling public version of Victim.assault()
**
Intruder: calling victim's assault() method...
Victim: OK to access public method

* Calling private version of Victim.assault()

Intruder: calling victim's assault() method...
Victim: Private method assaulted!!!
**
* Calling private Victim.assault() with verification
**
Intruder: calling victim's assault() method...
java.lang.IllegalAccessError:
 tried to access method Victim.assault()V from class Intruder
 at Intruder.main(Intruder.java:7)
Exception in thread "main"

The sources and the execute.bat file are available as Java.I.NoVerification.zip for download.

Note: JVM, as opposed to .NET, does not verify local code by default. On the other hand,
JVM always preserves the bytecode stack for runtime checks, while .NET relies on a
combination of static analysis and injection of verification code at runtime.

Code Containment: Application Isolation
In effect, each VM represents a mini OS by replicating many of its essential features. Each
platform provides application isolation for managed applications running side by side in the
same VM, just as OSes do it. Automatic memory management is an important feature of both
environments — it aids tremendously in writing stable, leak-free applications. The “CAS”
section in Part 3 will provide detailed discussion about permissions, policies, and access
checks.

Both environments do allow for exercising unsafe operations (JNI in Java; unsafe code and P/

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 10 of 80

http://www.onjava.com/onjava/2003/11/26/examples/Java.I.NoVerification.zip

Invoke in .NET), but their use requires granting highly privileged code permissions.

Application Domains (AppDomains) represent separate .NET applications running inside the
same CLR process. Domain isolation is based on the memory safety property because
applications from different domains cannot directly access each other’s address spaces, and
they have to use the .NET Remoting infrastructure for communication.

Application security settings are determined by CLR on a per-domain basis, by default using
host’s security settings to determine those for loaded assemblies. The CLR receives
information about the assembly’s evidence from so-called trusted hosts:

● Browser host (Internet Explorer): Runs code within the context of a web site.
● Server host (ASP.NET): Runs code that handles requests submitted to a server.
● Shell host: Launches managed applications (.exe files) from the Windows shell.
● Custom hosts: An application that starts execution of CLR engine.

Domain security settings can be administered only programmatically; that is, there is no
configuration file where those could be set. If the host process is granted a special
SecurityPermission to control evidence, it is allowed to specify the AppDomain's policy at
creation time. However, it can only reduce the compound set of permissions granted by the
enterprise, machine, and user policies from security policy files. The following example, taken
from MSDN documentation, illustrates using programmatic AppDomain policy administration
to restrict permission set of the new domain to Execution only:

using System;
using System.Threading;
using System.Security;
using System.Security.Policy;
using System.Security.Permissions;

namespace AppDomainSnippets
{
 class ADSetAppDomainPolicy
 {
 static void Main(string[] args)
 {
 // Create a new application domain.
 AppDomain domain =
 System.AppDomain.CreateDomain("MyDomain");

 // Create a new AppDomain PolicyLevel.
 PolicyLevel polLevel =
 PolicyLevel.CreateAppDomainLevel();
 // Create a new, empty permission set.
 PermissionSet permSet =
 new PermissionSet(PermissionState.None);
 // Add permission to execute code to the
 // permission set.
 permSet.AddPermission
 (new SecurityPermission(
 SecurityPermissionFlag.Execution));
 // Give the policy level's root code group a
 // new policy statement based on the new
 // permission set.
 polLevel.RootCodeGroup.PolicyStatement =
 new PolicyStatement(permSet);
 // Give the new policy level to the
 // application domain.
 domain.SetAppDomainPolicy(polLevel);

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 11 of 80

 // Try to execute the assembly.
 try
 {
 // This will throw a PolicyException
 // if the executable tries to access
 // any resources like file I/O or tries
 // to create a window.
 domain.ExecuteAssembly(
 "Assemblies\\MyWindowsExe.exe");
 }
 catch(PolicyException e)
 {
 Console.WriteLine("PolicyException: {0}",
 e.Message);
 }

 AppDomain.Unload(domain);
 }
 }
}

Application-style isolation is achieved in Java through a rather complicated combination of
ClassLoaders and ProtectionDomains. The latter associates CodeSource (i.e., URL and code
signers) with fixed sets of permissions, and is created by the appropriate class loaders (URL,
RMI, custom). These domains may be created on demand to account for dynamic policies,
provided by JAAS mechanism (to be covered in Part 4, in the “Authentication” section).
Classes in different domains belong to separate namespaces, even if they have the same
package names, and are prevented from communicating within the JVM space, thus isolating
trusted programs from the untrusted ones. This measure works to preserve and prevent bogus
code from being added to packages.

Secure class loading is the cornerstone of JVM security — a class loader is authorized to make
decisions about which classes in which packages can be loaded, define its CodeSource, and
even set any permissions of its choice. Consider the following implementation of
ClassLoader, which undermines all of the access control settings provided by the policy:

protected PermissionCollection
 getPermissions (CodeSource src) {
 PermissionCollection coll =
 new Permissions();
 coll.add(new AllPermission());
 return coll;
}

Note: .NET’s AppDomains, which are modeled as processes in an OS, are more straightforward
and easier to use than Java’s ProtectionDomains.

Code Containment: Language Features
Both platforms’ languages have the following security features:

● Strong typing (a.k.a. statically computable property): all objects have a runtime type.
There is no void type: a single-root class hierarchy exists, with all classes deriving
implicitly from Object root.

● No direct memory access: therefore, it is impossible to penetrate other applications’

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 12 of 80

memory space from managed code.
● Accessibility/const modifiers (such as private/protected/public): The const

(final) modifier’s semantics, however, is quite different from that in C++; only the
reference is constant, but the object’s contents can be freely changed.

● Default objects initialization: “zero initialization” for heap-allocated objects. Proper
initialization of stack objects is checked by the VM at runtime.

● Choice of serialization and transient options: controls contents of serialized objects
that are outside of VM protection domains.

● Explicit coercion required: there are few well-defined cases when implicit coercion is
used. In all other cases (and with custom objects) explicit conversion is required.

.NET defines the following accessibility modifiers: public, internal (only for the current
assembly), protected, protected internal (union of protected and internal), and private.
All properties are defined via Getters/Setters, and access to them is controlled at runtime by
CLR.

In C#, there are two choices for declaring constant data values: const for built-in value types,
whose value is known at compile time); and readonly for all others, whose value is set once at
creation time:

public const string Name = "Const Example";
//to be set in the constructor
public readonly CustomObject readonlyObject;

A .NET class can be marked as serializable by specifying [Serializable] attribute on the
class. By default, its full state is stored, including private information. If this is not desirable, a
member can be excluded by specifying a NonSerialized attribute, or by implementing a
ISerializable interface to control the serialization process.

[Serializable]
public struct Data
{
 //Ok to serialize this information
 private string publicData;
 //this member is not going to be serialized
 [NonSerialized] private string privateData;
}

Java language provides the following features to support writing secure applications:

● Accessibility modifiers: public, protected, package protected, private.
● Final classes and methods: final keyword can be applied to a class, method, or

variable, and means that this entity cannot be changed or overridden.
● Serialization and transient options: for classes implementing a marker Serializable

interface, the serialized object includes private members as well, unless they are
decorated as static or transient. Use the readObject/writeObject pair to control the
content of a serialized object. Alternatively, implementing the Externalizable
interface’s methods readExternal/writeExternal gives you complete control over
the serialization process.

public class Person implements Serializable
{
 //get serialized by default

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 13 of 80

 private string name, address;
 //excluded from the default serialization
 transient int salary;
};

Note: In terms of protective language features, both platforms rate approximately equal, with
.NET having a slight edge due to higher flexibility when it comes to constant modifiers.

Chapter 1 — Conclusions
This section covered security configuration issues and different aspects of code containment
on .NET and Java platforms. Java offers a lot of advantages with its configurability. When it
comes to code containment, both platforms have pretty strong offerings, with .NET having
slightly more choices and being more straightforward to use.

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 14 of 80

Chapter 2 — Cryptography and Communication
In today’s world, most of the means of secure data and code storage and distribution rely on
using cryptographic schemes, such as certificates or encryption keys. Thus, cryptography
mechanisms form a foundation upon which many important aspects of a solid security system
are built, and it is crucial for a really secure platform to provide adequate support for these
services.

Once an application steps out of the bounds of a single-computer box, its external
communication is immediately exposed to a multitude of outside observers with various
intentions, their interests ranging from employers scanning the list of web sites an employee
visits to business spies looking for a company’s “know-how”. In order to protect sensitive
data while it is en route, applications invoke different methods, most often with some kind of
cryptographic protection applied to the data before transmitting it. Any respectable enterprise
system has to demonstrate adequate protection measures in this area.

Cryptography: General
Cryptography in .NET is based to a large extent on the Windows CryptoAPI (CAPI) service,
with some extensions. Many algorithms are implemented as managed wrappers on top of
CAPI, and the key management system is based on CAPI key containers. Most cryptography-
related classes reside in the System.Security.Cryptography namespace, with certificate
classes separated into X509Certificates and XML digital signature functionality into Xml
subpackages. Web Service Extensions (WSE; see Secure Communication section) provides
its own set of certificate classes in the Microsoft.Web.Services.Security.X509 package.

However, .NET’s Cryptography service is more than just a managed wrapper — it extends the
CAPI in a number of ways. First, it is highly configurable and allows adding custom algorithm
implementations in the machine.config file. Second, .NET uses a stream-based model, where
all cryptographic transformations (except for asymmetric algorithms) are always performed
on streams. Third, the defaults for all algorithms are configured to the strongest and safest
settings (subject to Windows OS encryption settings, though), so the default objects that the
user receives are most secure from what his Windows encryption settings allow.

The cryptography model of .NET is horizontally organized into several layers, and vertically
grouped by types. Each family of algorithms (symmetric, asymmetric, etc.) forms a vertical
hierarchy, deriving from a single root class for that family, with (usually) two more levels
beneath it: an abstract algorithm level, and its concrete implementation. Family root classes
are sealed; i.e. they cannot be extended by applications. This means, for instance, that the
family of asymmetric algorithms can not be extended beyond the provided RSA and DSA
abstractions. By .NET’s convention, the implementation class is called Provider if it is a
wrapper around a CAPI object, or Managed if it is a completely new implementation. The
(simplified) System.Security.Cryptography class hierarchy is shown in Figure 2-1:

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 15 of 80

http://www.onjava.com/lpt/a/4415#SecCommApp

Figure 2-1. .NET cryptography class hierarchy

The Java platform’s cryptography support has two parts to it: Java Cryptography
Architecture (JCA) and Java Cryptography Extension (JCE), which were separated (due
to US export restrictions) to gain exportability for the Java platform. All cryptography
functions, which are subject to export laws, have been moved to JCE. In JDK 1.4, JCE became
an internal part of the Java platform, instead of being an optional package, as it had been up
to 1.4.

Both JCA and JCE have a similar provider-based architecture, which is widely employed in
many of the Java platform’s solutions. Those packages consist of so-called frameworks, which
implement the required infrastructure, and a number of additional providers supply
cryptography algorithms. JCA and JCE frameworks are internal Java packages, and cannot be
replaced or bypassed. The JCE framework authenticates JCE providers, which should to be
signed by a trusted Certificate Authority (Sun or IBM) — see the JCE Provider Reference
for details.

Note that prior to v1.4, JCE was an extension and its framework classes could be supplied by
a third-party vendor along with the provider itself, so the problem with signing could be
avoided by removing Sun’s JCE 1.2.2 provider and framework from the configuration. Since
JCE has now become a standard Java package, the signing step poses an additional problem
for independent vendors (although, according to representatives from Bouncy Castle, Sun is
very cooperative in this matter, which significantly simplifies the involved procedure). Thus,
with J2SE v1.4, vendors are forced to undertake the signing procedure, or begin developing
proprietary solutions and abandon the JCE framework — see the JCE Reference Guide for
further information.

The JCA Provider framework model, shown in Figure 2-2, consists of the following elements:

● Service (or Engine) abstract classes define types of functions available to developers,
independent of particular algorithms: Asymmetric, Symmetric algorithms, Digests,
etc.

● Service Providers Interfaces (SPI) for each of those services link the high-level
abstract Services to the provided implementations.

● Provider is the central class that registers available implementations with the
framework.

● Security is the class that handles all providers.

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 16 of 80

http://java.sun.com/products/jce/doc/guide/HowToImplAProvider.html
http://www.bouncycastle.org/
http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/JCERefGuide.html#NoFwAuthentication

Figure 2-2. JCA class hierarchy

Note: Java requires its crypto providers to be signed by a trusted CA, which poses an obstacle
for independent vendors.

Cryptography: Algorithms
Most common industry-standard cryptographic algorithms (Symmetric, Asymmetric, Hashes,
Signatures, PBE) and stream/block ciphers are available out-of-the-box on both platforms.

The following families of algorithms are supplied in System.Security.Cryptography
namespace of .NET:

● AsymmetricAlgorithm: digital signatures and key exchange functionality is also
implemented by these family’s providers (DSA,RSA).

● HashAlgorithm: KeyedHashAlgorithm, MD5, multiple SHA.
● SymmetricAlgorithm (DES, 3DES, RC2, Rijndael): additional parameters are

specified by PaddingMode and CipherMode enumerations.
● RandomNumberGenerator.

These asymmetric algorithm helpers are used together with configured asymmetric providers
to do their jobs:

● AsymmetricKeyExchangeFormatter/Deformatter: provides secure key exchange
mechanism using OAEP or PKCS#1 masks.

● AsymmetricSignatureFormatter/Deformatter: creates/verifies PKCS#1 v1.5 digital
signatures, using any configured by name hash algorithm.

The .NET Cryptography library provides Password Based Encryption (PBE) functionality
through its PasswordDeriveBytes class. It uses the specified hashing algorithm to produce a
secret key for the targeted symmetric encryption algorithm. A sample application that
demonstrates symmetric encryption with PBE to encrypt/decrypt is available in the
dotnet_encryption.zip example.

Symmetric and hash transforms in .NET are stream-based, so multiple transformations can be
chained together without creating temporary buffer storage. The CryptoStream class derives
from the System.IO.Stream, and plugs into any framework where stream interfaces are
acceptable: memory, data, network, and other kinds of data. CryptoStream accepts the
ICryptoTransform interface, which it then uses internally to transform the data block-by-
block by calling TransformBlock repeatedly. This interface is implemented differently by
symmetric and hash providers:

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 17 of 80

http://www.onjava.com/onjava/2003/12/10/examples/dotnet_encryption.zip

1. Using Streams with Symmetric Algorithms
In case of a symmetric algorithm, the top-level SymmetricAlgorithm class defines the abstract
methods CreateEncryptor/Decryptor. These methods’ implementations in derived classes
(providers) create an instance of CryptoAPITransform class, appropriate for the particular
algorithm, and return it to use with CryptoStream. The CryptoAPITransform class internally
hooks to the CryptoAPI Windows service to do the job using the _AcquireCSP and
_EncryptData private unmanaged functions, as shown in Figure 2-3:

Figure 2-3. Streams with .NET symmetric algorithms

2. Using Streams with Hash Algorithms
The HashAlgorithm family root class itself implements the ICryptoTransform interface, so
any derived object can be used directly with CryptoStream. Its implementation of the
TransformBlock method simply delegates the call to the derived class’ implementation of the
abstract method HashCore, as demonstrated in Figure 2-4:

Figure 2-4. Streams with .NET hash algorithms

In Java, the following services are defined in the JCA framework (java.security.*
packages), and Sun supplies two JCA providers (“SUN” and “RSAJCA”) with J2SE v1.4.2:

● MessageDigest: data hashing algorithms (MD5, SHA-1).
● Signature: data signing and signature verification (DSA, RSAwithSHA1,

RSAwithMD5).
● KeyPairGenerator: generation of public/private pair of keys for algorithms (DSA,

RSA).
● KeyFactory: key conversions (DSA, RSA).
● KeyStore: managing keystores (JKS).
● CertificateFactory: certificate creation and CRL management (X.509).
● AlgorithmParameters: algorithms’ parameter management, including their encoding

(DSA).

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 18 of 80

● AlgorithmParameterGenerator: algorithms’ parameter creation (DSA).
● SecureRandom: random numbers generators (SHA1PRNG).

As explained before, JCE has been separated out due to export restrictions. Its framework
classes reside in javax.crypto.* packages and the Sun-supplied default provider “SunJCE” is
shipped with J2SE v1.4.2:

● Cipher: objects carrying out encryption/decryption according to an algorithm, mode,
or padding (AES, DES, 3DES, Blowfish, PBE). Java ciphers have the additional
functionality of wrapping/unwrapping secret keys to make them suitable for transfer
or storage. The implementation and algorithm varies by provider (this can be a PBE,
for instance).

● CipherStream: combining input/output streams with a Cipher (CipherInputStream,
CipherOutputStream).

● KeyGenerator: generating keys for symmetric algorithms and HMAC.
● SecretKeyFactory: conversions between key representations (AES, DES, 3DES,

PBE).
● SealedObject: protecting a serialized object’s confidentiality with a cryptographic

algorithm.
● KeyAgreement: implementing Diffie-Hellman key agreement protocol (DH).
● MAC: producing cryptographically secured digests with secret keys (HMAC-MD5,

HMAC-SHA1, PBE).

Additionally, Sun’s provider supplies some JCA algorithms used by JCE: KeyPairGenerator;
AlgorithmParameterGenerator for DH; AlgorithmParameters managers for DH, DES,
3DES, Blowfish, and PBE; and KeyStore implementation for “JCEKS”.

The sample application java_encryption.zip demonstrates symmetric encryption and PBE to
encrypt/decrypt a data file.

Surprisingly, however, many third-party providers (both commercial and free) provide a
better selection of algorithms. For comparison, check the list of algorithms provided by an
open source implementation from Bouncy Castle.

Note: Both platforms supply plenty of algorithms with default installations. There are quite a
few independent Java vendors who offer even better selection than Sun’s defaults.

Cryptography: Configuration
Cryptography systems on both platforms use configurable plug-in architectures — new
algorithms, or updated implementations of existing ones can be added without code changes,
by changing just few properties in the system configuration files.

A distinct feature of .NET’s symmetric, asymmetric, and hash crypto family hierarchies (see
the Algorithms section) is their configurability — all abstract classes in the hierarchies define
static Create methods, allowing name-based lookup of the requested algorithm
implementation in the machine.config file. New implementations may be mapped to existing
(or new) names and will be picked up by the calls to the Create method, as explained later in
this section. Classes of the Cryptography namespace that are not in those hierarchies do not
follow this hierarchical approach and are not configurable by name.

At the heart of .NET Cryptography configuration lies the CryptoConfig utility class, which
maps implementation classes to algorithm names, as configured in the machine.config file (or
with the use of hardcoded defaults):

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 19 of 80

http://www.onjava.com/onjava/2003/12/10/examples/java_encryption.zip
http://www.bouncycastle.org/
http://www.onjava.com/lpt/a/4415#CryptoAlgo

<cryptographySettings>
 <cryptoNameMapping>
 <cryptoClasses>
 <cryptoClass MySHA1Hash="MySHA1HashClass,
 MyAssembly Culture='en',
 PublicKeyToken=a5d015c7d5a0b012,
 Version=1.0.0.0"/>
 </cryptoClasses>
 <nameEntry
 name="SHA1" class="MySHA1Hash"/>
 <nameEntry
 name="System.Security.Cryptography.SHA1"
 class="MySHA1Hash"/>
 <nameEntry
name="System.Security.Cryptography.HashAlgorithm"
 class="MySHA1Hash"/>
 </cryptoNameMapping>
 <oidMap>
 <oidEntry OID="1.3.14.33.42.46" name="SHA1"/>
 </oidMap>
</cryptographySettings>

Application developers have the following choices when creating a configurable algorithm
object:

● Invoke the new operator on the specific implementation class. This approach
completely bypasses the .NET configuration mechanism.

● Call the CryptoConfig.CreateFromName method to map an abstract name to a
specific algorithm implementation class.

● Using the factory pattern, call an overloaded static Create method on one of the
abstract classes in the algorithm’s family hierarchy (family root, or algorithm
abstraction). Both overloads of Create will end up calling CryptoConfig.
CreateFromName to retrieve the implementation class.

Continuing with the previous configuration example:

//all calls return an instance of MySHA1HashClass

HashAlgorithm sha1 =
 System.Security.Cryptography.SHA1.Create();

HashAlgorithm sha1 =
 System.Security.CryptoConfig.CreateFromName("SHA1");

HashAlgorithm sha1 =
 System.Security.Cryptography.HashAlgorithm.Create();

Configuration’s nameEntry tags form a lookup table, which is consulted when CryptoConfig.
CreateFromName is called. Any string can be used as a name, as long as it is unique (see
“Specifying Fully Qualified Type Names” in the MSDN documentation for character
restrictions). The OID mapping is optional; it allows mapping ASN.1 Object Identifiers to an
algorithm implementation. If no algorithm-name configuration is specified, the following
defaults are used. Note the following strong defaults for algorithm families:

● System.Security.Cryptography.HashAlgorithm: SHA1CryptoServiceProvider
● System.Security.Cryptography.AsymmetricAlgorithm:

RSACryptoServiceProvider

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 20 of 80

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconspecifyingfullyqualifiedtypenames.asp

● System.Security.Cryptography.SymmetricAlgorithm:
TripleDESCryptoServiceProvider

In order to be usable after having been installed, Java’s JCE providers should be made known
to the runtime system. A Provider can be configured either declaratively in the java.
security file:

// adding a crypto provider at the third position
security.provider.3=com.MyCompany.ProviderClassName

or programmatically by the code at runtime:

// appending a provider to the list
Security.addProvider(
 new com.MyCompany.ProviderClassName());
// adding a crypto provider at the third position
Security.insertProviderAt(
 new com.MyCompany.ProviderClassName(),3);

Programmatic runtime configuration assumes that the necessary permissions are granted to
the executing code by the security policy (note that the providers themselves may require
additional permissions to be specified):

// java.policy
// granting permissions for programmatic configuration
grant codeBase "file:/home/mydir/*" {
 permission java.security.SecurityPermission
 "Security.setProperty.*";
 permission java.security.SecurityPermission
 "Security.insertProvider.*";
 permission java.security.SecurityPermission
 "Security.removeProvider.*";
}

Whether they were added declaratively or programmatically, all Providers end up in a single
list and are queried for the requested algorithms (with optional parameters like mode and
padding) according to their positions in the list (one being the highest) until finding a match.
This process is shown in Figure 2-5. Algorithm and parameter names are hardcoded inside of
the providers and cannot be changed. Developers can optionally request using only a
particular provider, when they create an instance of an algorithm. This can be used, for
example, when the developers want to use only particularly certified providers (for instance,
DoD):

//requesting an implementation
//from only a single provider
Signature sigAlg1 = Signature.getInstance(
 "SHA1withDSA","MyGreatProvider");

//requesting the first matching implementation
Signature sigAlg2 = Signature.getInstance(
 "SHA1withDSA");

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 21 of 80

Figure 2-5. JCA collaborations

Note: Overall, both platforms are pretty even when it comes to configurability. Defaults for
algorithm names are a convenient feature in .NET. Java, on the other hand, allows specifying
additional algorithm details besides the name.

Secure Communication
During transmission, data can be protected on three levels: hardware, platform, and
application. These can be used independently, or combined for better results. In all cases,
there is some kind of cryptographic protection applied to the data prior to communication,
but the amount of required application code and its complexity increases, with application-
level solution being the most involved. While wire-level protocols (IPSec, for instance) may be
implemented at the hardware level for speed and efficiency, they are not discussed here in
order to keep the primary focus on the platforms themselves.

At the platform level, SSL is the de facto industry standard of transport protection. Both
platforms support (to some extent) the latest SSL 3.0 specification that allows mutual
authentication of both client and server. Recently, TLS 1.0 specifications were released by
IETF (RFC 2246) as a new standard for Internet communication security, which is supposed
to gradually replace SSL.

Additionally, both platforms expose — albeit at different levels — implementations of the
Generic Security Service API (GSSAPI) (RFC 1508, 1509) common standard, which
defines a generic programming interface for different authentication and communication
protocols.

Secure Communication: Platform
Windows OS implements GSSAPI in the so-called Security Support Provider Interface
(SSPI) to select one of the configured providers for securing data exchange over networked
connections, which is used internally by .NET itself. However, as ridiculous as it sounds,
.NET applications have only SSL configuration in IIS at their disposal for protection of HTTP-
based traffic, while non-IIS based applications, such as standalone Remoting (the successor to
DCOM) or HTTP servers, have no means of protecting their data en route. Not surprisingly,
during the first year after .NET 1.0’s release, protection of Remoting communication was one
of the most frequently asked questions on the web forums.

There still exists no officially supported solution for securing Remoting communication, but
fortunately, its highly flexible sink architecture allowed for the development of a number of
low-level solutions that can be plugged into the infrastructure and server as a substitute for
platform-level protection. Microsoft also apparently realized its omission, and released a fix in

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 22 of 80

the form of two assemblies in the samples namespace, Microsoft.Samples: Security.SSPI
and Runtime.Remoting.Security. The former exposes a managed SSPI wrapper, and the
latter uses it to implement a Remoting sink featuring symmetric encryption. Another article,
which appeared at MSDN Magazine, outlined an alternative approach to Remoting security
using asymmetric encryption.

The Java platform offers Java Secure Socket Extensions (JSSE) as a platform-level service
for securing TCP/IP-based communication in vanilla J2SE applications, and J2EE’s servlet
specifications declare options for configuring SSL protection and refusing unprotected
connection attempts.

Additionally, application servers from various vendors usually include some means to
configure the SSL protocol for their HTTP servers. Since these are proprietary solutions, they
are not going to be further pursued in this document.

JSSE, originally an extension to J2SE, was incorporated as a standard package as of version
1.4, so any Java application may count on using its services. The standard JSSE API is located
in the javax.NET.* packages (javax.security.cert is obsolete and should not be used). It is
quite rich; readers should consult the Javadocs for the specified packages and the online
documentation for the class model and operation overview.

The example below shows a simple scenario of a client/server application, which will be
satisfactory in most cases. Normal sockets are replaced with SSL ones by specifying different
factory implementations, which are consequently used to obtain input/output streams:

//client establishing a connection
SSLSocketFactory clientFactory =
 (SSLSocketFactory)SSLSocketFactory.getDefault();
SSLSocket sslSocket = (SSLSocket)
clientFactory.createSocket(host,port);

//use as a normal socket
OutputStream out = sslSocket.getOutputStream();
InputStream in = sslSocket.getInputStream();

...

//server accepting a connection,
//requesting mutual authentication
SSLServerSocketFactory serverFactory =
 (SSLServerSocketFactory)
 SSLServerSocketFactory.getDefault();
SSLServerSocket ss = (SSLServerSocket)
serverFactory.createServerSocket(port);
ss.setNeedClientAuth(true);

//use as a normal socket
SSLSocket socket = ss.accept();
OutputStream out = socket.getOutputStream();
InputStream in = socket.getInputStream();

...

A connection between two peers in JSSE is represented by a javax.NET.ssl.SSLSession
object. Among other things, this session contains negotiated shared secrets and information
about ciphers used in the session. The master shared secret keys are not exposed through the
JSSE API, and remain known only to the underlying implementation classes. Cipher

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 23 of 80

http://msdn.microsoft.com/architecture/application/default.aspx?pull=/library/en-us/dndotnet/html/remsspi.asp
http://msdn.microsoft.com/architecture/application/default.aspx?pull=/library/en-us/dndotnet/html/remsec.asp
http://msdn.microsoft.com/msdnmag/issues/03/06/NETRemoting
http://java.sun.com/products/jsse/index-14.html
http://java.sun.com/products/jsse/index-14.html

information, however, is available for analysis, and the server may refuse a connection if the
client does not use strong enough ciphers:

SSLSocket socket = ss.accept();
SSLSession session = socket.getSession();
String cipher = session.getCipherSuite();
if (cipher.equals("SSL_RSA_WITH_RC4_128_SHA") ||
cipher.equals("SSL_RSA_WITH_RC4_128_MD5")) {
 //sufficient strength, may continue
 ...
} else {
 throw new SSLException(
 "Insufficient cipher strength!");
}

JSSE providers follow general JCE guidelines, and are pluggable into the provider-based JCA
architecture. As a result, they may be configured in the java.security file, or added in code just
like other security providers. Consequently, if a JCE provider, implementing the same
algorithms as a JSSE one, is configured higher (i.e. it has a lower ordinal number — see JCE
Providers Configuration) in the crypto providers list than the JSSE provider, JSSE operations
will use the JCE provider’s implementations instead of the built-in ones. Note, however, that
the JSSE cryptography algorithm implementations are private and not available for public
usage. Also, as a departure from the usual provider model due to export restrictions, the
default SSLSocketFactory and SSLServerSocketFactory cannot be replaced.

In JDK 1.4.2, Sun provides a reasonably good reference JSSE implementation named
“SunJSSE,” whose features are highlighted below. For the complete list, check the JSSE guide.

● API and implementations of SSL 3.0 and TLS 1.0 algorithms.
● Stream-based I/O classes: SSLSocket and SSLServerSocket.
● One-way and mutual authentication. Certificate management is required and key

and trust stores on both client and server should be set up appropriately.
● Implementation of HTTPS. Actually, JSSE services can be applied to many

application-level protocols, such as RMI, FTP, LDAP, etc.
● Internal implementations for some cryptography algorithms.
● Read-only implementation of PKCS#12 keystore, in addition to the default Java

KeyStore (JKS).
● Key and trust store management. For easier control, JSSE defines several system

properties to control behaviors of appropriate classes from the command line.

The following properties (all starting with javax.NET.ssl) may be specified on the command
line or set in code: keyStore, keyStorePassword, keyStoreType, trustStore,
trustStorePassword, and trustStoreType. For example:

java -Djavax.NET.ssl.trustStore=AppTrustStore SecureApp

Java applications using RMI communication are pretty much limited to using JSSE for
protection. Sun is working on separate specifications for secure RMI, which will include
authentication, confidentiality, or integrity mechanisms, but they are not going to be available
any time soon — the JSR 76 “RMI Security for J2SE” was rejected in February 2001. Custom
solutions are possible (such as subclassing SSLServerSocket), but they are non-trivial.

The J2EE specification promotes usage of SSL/TLS across all of its components by mandating

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 24 of 80

http://www.onjava.com/lpt/a/4415#JCEConfig
http://www.onjava.com/lpt/a/4415#JCEConfig
http://java.sun.com/j2se/1.4.2/docs/guide/security/jsse/JSSERefGuide.html#Features
http://www.jcp.org/en/jsr/detail?id=76

support for the following ciphers:

● TLS_RSA_WITH_RC4_128_MD5
● SSL_RSA_WITH_RC4_128_MD5
● TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
● SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA
● TLS_RSA_EXPORT_WITH_RC4_40_MD5
● SSL_RSA_EXPORT_WITH_RC4_40_MD5
● TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA
● SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

In most cases, cipher suites will be either SSL_RSA_WITH_RC4_128_SHA or
SSL_RSA_WITH_RC4_128_MD5 (or their TLS equivalents), as they are currently the strongest
commonly used SSL ciphers.

The servlet specification defines the transport-guarantee element in the deployment
descriptor, which is used to require a certain level of call protection from the servlet container.
Possible values are: NONE, INTEGRAL, and CONFIDENTIAL, and can be specified in the /WEB-INF/
web.xml file. The names for the constraints are pretty self-descriptive, and implementation
interpretation is left at the vendor’s discretion. However, the servlets have an option to
programmatically reject a HTTP connection if the HttpRequest.isSecure method shows that
the connection is not secure. Below is an example of specifying the transport guarantee
element:

<security-constraint>
 <user-data-constraint>
 <transport-guarantee>
 CONFIDENTIAL
 </transport-guarantee>
 </user-data-constraint>
</security-constraint>

EJBs do not have an option to determine connection’s security settings. EJB specifications,
however, require passive support for remote calls’ security; i.e., if a call is made using a secure
connection, EJB server also uses a secure connection for further calls. Remote EJB calls use
the IIOP protocol, with support for SSL 3.0 and TLS 1.0 support mandated by EJB 2.0 and
J2EE specifications.

Note: Besides IIS, .NET does not offer any standard means for communication protection at
the platform level, while Java has a complete solution in this space.

Secure Communication: Application
For finer control over applied security mechanisms, an application can use an application-
level, token-based protection mechanism, abstract from the underlying transmission protocol.
This approach has an advantage over channel blanket encryption by being smarter and
protecting only sensitive data. For instance, web services (see later in this section) use this
paradigm for message protection, where only particular details of messages are signed and
encrypted.

As already explained, J2SE includes GSSAPI, which may be utilized on the application level to
provide token-based protection using the Kerberos V 5. GSSAPI framework, is quite a thin
wrapper, delegating all requests to the underlying mechanism providers. The Java GSS
mechanisms do not perform user logins themselves — they should be done using JAAS prior

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 25 of 80

http://www.onjava.com/lpt/a/4415#SecCommApp-WS
http://www.onjava.com/lpt/a/4415#SecComm

to invoking GSSAPI services, and the credentials should be stored in some cache accessible to
the GSS mechanism provider. Using JAAS and Kerberos tickets in GSS provides not only
transport-level security protection, but also a principal delegation mechanism over the
network. See “Authentication” in Part 4 for more information about JAAS and delegation.

GSS classes reside in the org.ietf.jgss package; check the online documentation for details
and code examples.

Overall, Java offers a choice of platform-level (JSSE) and application-level (GSS) protection
services with similar security goals: client-server authentication and protection of transmitted
data. Listed below are a few criteria that can help to decide which service is more appropriate
for a particular application:

● JSSE is very easy to use from client’s code — no action besides establishing the
proper socket factory is needed. GSS setup and coding are significantly more
involved.

● Java’s “Single Sign-On” mechanism is based on Kerberos V5, which is supported
only by GSS.

● JSSE implementations are socket-based and typically use TCP as the underlying
protocol. GSS is token-based and can use any communication channel for token
transmission — the code is responsible for establishing the channel, though.

● GSS is capable of client credential delegation.
● JSSE encrypts all data sent through the socket. GSS, being token-based, can encrypt

tokens selectively, thus significantly lowering computational load.
● JSSE implements TLS 1.0 and SSL 3.0 communication protocols. GSS supports only

the Kerberos V5 protocol (known as “SSPI with Kerberos” on Win32), and provides
implementation of IETF’s generic GSS-API framework.

Web services security specifications and toolkits also look at protecting individual messages,
or tokens. This area has been rapidly evolving, and has not yet been fully standardized.
Because of this lack of standards, both platforms provide only partial support for it via
extensions or external products. However, since the topic of web services security alone
warrants a whole separate book, it is not addressed here in any significant detail. Of all
competing standards in this area, only SAML and WS-Security have been so far accepted for
standardization by OASIS, with the latter still undergoing committee reviews.

For web services security, Microsoft has been actively promoting its Web Service
Architecture (WSA, formerly GXA), and adding support for all released up-to-date
specifications via its Web Services Extension (WSE) pack for .NET. WSE is currently at 1.0
release, with 2.0 coming soon — check the MSDN documentation for updates and new
releases. Notably, WSE (and .NET in general) lacks support for SAML, even though the WS-
Security specification does define binding for SAML assertions as one of the supported token
types. In other areas, WSE provides relatively complete support of WS-Security and a number
of other specifications. Additionally, WSE’s certificate classes (located in the Microsoft.Web.
Services.Security.X509 package) are much more convenient to deal with than .NET’s
original ones. The code sample below shows how to sign a request using WSE:

// Get SOAP context from the Web service proxy
SoapContext reqCxt =
 serviceProxy.RequestSoapContext;

// Retrieve the certificate to be used for signing
Microsoft.Web.Services.Security.X509.X509Certificate crt = ...;
// Create a X509 security token
X509SecurityToken token =

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 26 of 80

http://java.sun.com/j2se/1.4.2/docs/api/org/ietf/jgss/package-summary.html
http://msdn.microsoft.com/webservices

 new X509SecurityToken(crt);

// Sign the request by adding
//a signature to the request
reqCxt.Security.Tokens.Add(token);
reqCxt.Security.Elements.Add(
 new Signature(token));

// Use the signed request to call the service...
serviceProxy.Hello();

The extensible architecture of .NET’s Remoting has allowed for the development of quite
interesting approaches to transport security, whereas Remoting’s RPC-style invocations are
transmitted and protected by the means of SOAP-based web service messages. In principle,
this is not very different from the Microsoft solution described earlier, but it allows applying
WSA-family protection (in particular, WS-Security) to individual messages, which ensures
standard-based authentication, integrity, and authorization at the message level, as opposed
to the non-standard approach of blank encryption of the former solution. For explanations
and code samples, read the excellent publications at the CodeProject web site, in particular
“Remoting over Internet” and related articles.

The Java platform does not provide direct support for web services security yet. Currently,
there are two web services security-related JSRs at work: JSR 155 “Web Services Security
Assertions”, and JSR 183 “Web Services Message Security APIs”. When accepted (although
they have been in review stage for over a year now), these specifications should provide
assertions support and transport-level security to web services written in Java. Although not a
standard part of Java platform, IBM’s Emerging Technologies Toolkit v1.2 (ETTK), formerly
known as “Web Services Toolkit”, or WSTK, adds support for the current draft of WS-
Security and some other specifications from the WSA family, of which IBM is a co-author.

Note: The .NET platform stays very current with the latest developments in web services
security, while their support in Java is not standardized and is limited to offerings from
individual vendors.

Chapter 2 — Conclusions
In this section, cryptography and communication protection on Java and .NET platforms
were reviewed. Both platforms come out pretty even in terms of cryptographic features,
although Java has a more complicated solution due to the obsolete US export restrictions. The
picture becomes muddier when it comes to communication protection — while Java fares
much better by providing a choice of both platform and application-level solutions, it clearly
lags behind .NET when it comes to support for web services security. Here, Java developers
would have to turn to independent vendors for the desired features.

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 27 of 80

http://www.codeproject.com/
http://www.codeproject.com/cs/webservices/remotingoverinternet.asp
http://www.jcp.org/en/jsr/detail?id=155
http://www.jcp.org/en/jsr/detail?id=155
http://www.jcp.org/en/jsr/detail?id=183
http://www.alphaworks.ibm.com/tech/ettk

Chapter 3 — Code Protection and Code Access
Security (CAS)
Once code or an algorithm has been written, it becomes an asset that requires protection.
Such a protection is needed not only against theft, but also against unauthorized or
unintended use. On the other hand, when somebody purchases a software package, he wants
to be confident that he is not dealing with a counterfeit product. To answer all of these
challenges, various techniques, broadly divided into cryptography-based and everything else,
are employed for code protection and verification.

Code-access security is also known as policy-based security. It allows minimizing the risks of
executing certain application code by providing policies restricting it to only a particular, well-
defined set of operations that the code is permitted to execute. Of course, the underlying
services (platform or application) have to actually carry out those checks for the policy to
become effective.

Code Protection: General
Issues discussed in this section are applicable, to a certain degree, to both platforms. They
also employ similar protection mechanisms to combat those problems.

The possibility of the reverse engineering of distributed bytecodes needs to be taken into
account when planning the security aspects of an application, because bytecode formats are
well-documented for both Java and .NET (see also GotDotNet), so any hardcoded data or
algorithms may be easily restored with readily obtainable decompiling tools. This point is
especially important for avoiding hardcoding user credentials or non-patented algorithms in
client-based application modules.

While there is no ideal way around this issue, short of shipping encrypted code and providing
just-in-time decryption, an average perpetrator’s task may be made harder by using so called
obfuscators; i.e., tools that intentionally scramble bytecodes by using unintelligible names and
moving entry points around. In addition to the obfuscator tool available with VS.2003, a
number of decompiling/obfuscating tools can be found at the Microsoft web site. For Java, a
great number of commercial or free Java decompilers and obfuscators can be found by
running a simple search on the Web.

Finally, OS-level protection mechanisms need to be utilized, along with the platform ones, in
order to ensure good protection of the stored data. All of the hard work at the platform level is
useless if code or data can be obtained and inspected as raw binary files. Therefore, any
normal OS operation security rules (like ACL, minimizing attack surface, the principle of “least
privilege,” etc.) should be employed in addition to the platform-specific ones, in order to
ensure blanket protection.

Certificate Management
Before addressing cryptography-based code protection features, the issue of certificate
management in general needs to be covered, because all cryptography-based solutions deal, in
one way or another, with certificates or keys. First of all, certificates need to be created and
stored, and then accessed from the applications. Both platforms supply tools to issue
certificate requests, as well as APIs for accessing the stored certificates.

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 28 of 80

http://java.sun.com/docs/books/vmspec/2nd-edition/html/VMSpecTOC.doc.html
http://www.msdn.microsoft.com/net/ecma
http://www.gotdotnet.com/team/clr/about_clr_Compilers.aspx
http://msdn.microsoft.com/vcsharp/team/tools/default.aspx#decompilers
http://msdn.microsoft.com/vcsharp/team/tools/default.aspx#obfuscators

.NET, as usual, heavily relies on Windows certificate stores to deal with certificates they are
used to store X509 certificates and certificate chains of trusted signers. There are a number of
tools included with the .NET SDK to help accessing certificate stores, manage certificates, and
sign assemblies with publisher certificates.

.NET’s Certificate API is represented in its System.Security.Cryptography.
X509Certificates namespace, where the X509Certificate class is of particular interest to
us. Unfortunately, this class is rather poorly designed; it does not support accessing certificate
stores, but works only with certificates in binary ASN.1 DER format, and does not provide
any way to use certificates in asymmetrical encryption. The official suggestion from Microsoft
is to stick with using unmanaged CryptoAPI (CAPI) functions, in particular CryptExportKey/
CryptImportKey. See MSDN articles for details of bridging .NET’s managed certificate
implementation with CAPI.

Another, much better alternative is using WSE (already covered in Part 2). It provides the
Microsoft.Web.Services.Security.X509 namespace with several useful classes, among
them another version of X509Certificate, derived from the .NET-supplied one. This class
recognizes the shortcomings of its predecessor and provides a very convenient interface for
accessing certificate stores, as well as extracting public/private key information in a format
appropriate for asymmetric encryption. As an added benefit, it can read certificates stored in
Base64 text format. Together with the X509CertificateStore class, they make .NET’s
certificate API pretty well rounded. The following MSDN example shows how they can be
used together:

// Open and read the Personal certificate store for
// the local machine account.
X509CertificateStore myStore =
 X509CertificateStore.LocalMachineStore(
 X509CertificateStore.MyStore);
myStore.OpenRead();

// Search for all certificates named "My Certificate"
// add all matching certificates
// to the certificate collection.
X509CertificateCollection myCerts =
 myStore.FindCertificateBySubjectString(
 "My Certificate");
X509Certificate myCert = null;

// Find the first certificate in the collection
// that matches the supplied name, if any.
if (myCerts.Count > 0)
{
 myCert = myCerts[0];
}

// Make sure that we have a certificate
// that can be used for encryption.
if (myCert == null ||
 !myCert.SupportsDataEncryption)
{
 throw new ApplicationException(
 "Service is not able to encrypt the response");
 return null;
}

The Java platform implements RFC 3280 in the Certification Path API, which is supplied

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 29 of 80

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncapi/html/encryptdecrypt2a.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwebsrv/html/wseencryption.asp
http://www.faqs.org/rfcs/rfc3280.html

in the default “SUN” provider. This API, however, allows read-only retrieving, accessing
attributes, etc. access to certificates, because they are considered to be immutable entities in
Java. Classes implementing Certification Path API belong to the JCA framework and can
be found in the java.security.cert package. There are three classes of interest there:

● Certificate: An abstract class for dealing with certificates.
● X509Certificate: An abstract class for dealing specifically with X.509 certificates,

stored using Base64 encoding, with BEGIN CERTIFICATE/END CERTIFICATE markers
serving as delimiters.

● CertificateFactory: A factory for generating certificate objects from their encoded
formats.

Java uses so-called keystores for storing certificates. They can have different formats, as
supplied by JCA providers (see Part 2); the default is Sun’s proprietary JKS format. There are
common keystores that contain keys, both public and private (or symmetric, if desired), and
truststores, which are used to establish certificate chains. The JVM uses truststores (lib/
security/cacert by default) to store the trusted certificates, and keystores for accessing key
information. Having keystores as separate files is a nice feature in Java, as it is easy to move
them around and manage them (compared to .NET’s reliance on CAPI containers). Both
stores can be specified as parameters on the command line, or accessed directly from code:

java -Djavax.NET.ssl.keyStore=MyKeyStore
 -Djavax.NET.ssl.keyStorePassword=password
 -Djavax.NET.ssl.trustStore=MyTrust MyClass

Compared to the standard .NET certificate implementation, Java provides very convenient
facilities of working with certificates. The examples below demonstrate how easy it is to
obtain certificates from a keystore:

FileInputStream fin = new FileInputStream("MyKeyStore");
KeyStore ks = KeyStore.getInstance("JKS");
ks.load(fin,"password");
Certificate cert = ks.getCertificate("MyEntry");

or from a file:

FileInputStream fin =
 new FileInputStream("MyCert.cer");
CertificateFactory factory =
 CertificateFactory.getInstance("X.509");
X509Certificate cert = (X509Certificate)
 factory.generateCertificate(fin);

Java provides a tool for generating keys, keytool, which has a number of options. Among
them are importing/exporting certificates, creating test certificates, creating certificate signing
requests, etc. This tool picks up the keystore types (JKS, PKCS#12, etc.) defined in the java.
security configuration file, and can use plugged-in provider types to operate on various types
of keystores. By default, keytool generates only X.509 v1 certificates, which may be restricting
for some applications.

Becoming a Certificate Authority (CA) on your own is problematic, but not impossible, with
Java. One can either purchase a commercial library, or build his or her own CA using sun.
security.x509 classes, although they only work with JKS keystores. However, the latter

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 30 of 80

solution is neither portable nor documented. There are also a number of open source libraries
that allow you to deal with certificate management, including CA functionality. A good free
implementation is OpenSSL.

Note: Java provides a solid API for dealing with certificates. .NET programmers have to turn
to unmanaged CAPI functions to access certificates, unless they use WSE, which adds a lot of
useful functionality.

Code Protection: Cryptographic
Cryptography-based mechanisms include certificates, digital signatures, and message digests,
which are used to “shrink-wrap” distributed software and data. They establish software origin
and verify its integrity with a high degree of reliability, subject to the strength of the
underlying cryptography algorithm.

In their simplest forms, CRC or digests are used to verify software integrity. For more
involved implementations, Message Authentication Code (MAC), or Hash-based MAC
(HMAC), specified in RFC 2104, may be applied, which add cryptographic protection (using
symmetric secret keys) for improved protection. Both platforms support most common digest,
MAC, and HMAC functions in their respective cryptography namespaces. See Part 2 for
details of supported algorithms. Numerous code samples are available on the Web for both
Java and .NET (also see MSDN).

Sample applications for .NET and Java are provided as NET.III.DataSigning.zip and Java.III.
DataSigning.zip respectively.

For application distribution, .NET supports software signing to prove application or publisher
identities. For the first task, it provides so-called strong names, and for the second, signing
with publisher certificates. These approaches are complementary and independent; they can
be used individually or jointly, thus proving the identities of both the application and
publisher. The users can configure .NET CAS policy based either on strong names, or on the
software publisher, because they both provide strong assurances about the signed code.
Because of their high levels of trust, strong-named assemblies can call only strong-named
assemblies.

Strong names are used to prove authenticity of the assembly itself, but they have no ties to the
author, as it is not required to use the developer’s certificate to sign an assembly. A strong
name can be viewed as a descendent of GUID mechanism, applied to the assembly names,
and composed of text name, version number, culture information, plus the assembly’s digital
signature and a unique public key, all stored within the assembly’s manifest, as shown in
Figure 3-1:

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 31 of 80

http://www.openssl.org/
http://www.faqs.org/rfcs/rfc2104.html
http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/JCERefGuide.html#HmacEx
http://www.c-sharpcorner.com/Code/2002/Dec/DigitalEnvelop.asp
http://msdn.microsoft.com/
http://www.onjava.com/onjava/2004/01/28/examples/NET.III.DataSigning.zip
http://www.onjava.com/onjava/2004/01/28/examples/Java.III.DataSigning.zip
http://www.onjava.com/onjava/2004/01/28/examples/Java.III.DataSigning.zip

Figure 3-1. Manifest of a Strong-Named Assembly

The same key pair should not be reused for signing multiple assemblies unique key pairs
should be generated for signing different assemblies. Note that a version is not guaranteed by
the strong name due to applying CLR versioning policy, as the same key will be reused to sign
a newer version of the particular assembly. .NET provides a tool named sn.exe to generate
key pairs and perform a number of validation steps related to strong names. Generated keys
can either be picked up by AssemblyLinker, or added to the assembly declaratively by using
an attribute:

[assembly: AssemblyKeyFile(@"CommonLib.snk")]

Clients, linked against a strong-named assembly, store a PublicKeyToken representing the
assembly, an eight-byte hash of the full public key used to create its strong name, as shown in
Figure 3-2. This is done transparently by the compiler when a strong-named assembly is
referenced. This is an example of early binding.

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 32 of 80

Figure 3-2. Manifest with Public Key Token

Late binding can be achieved by using Assembly.Load and calling the full display name of the
assembly, including its token:

Assembly.Load("CommonLibrary,
 Version= 1:0:1385:17444,
 Culture=neutral,
 PublicKeyToken=F5BE3B7C2C523B5D");

The CLR always verifies an assembly’s key token at runtime, when it loads the referenced
assembly. Two strong names are configured in security policy by default: one for Microsoft
code, another for .NET’s components submitted to ECMA for standardization.

Publisher certificates establish the identity of the code distributor by requiring him to use a
personal certificate to sign a whole assembly or individual files in an assembly. The signature
is then stored inside of the file and verified by the CLR at runtime. .NET provides the
Signcode.exe tool to perform the publisher signing operation. To do its job, it should have
access to both the publisher certificate (with a valid trust chain), and the private key for that
certificate, which will be used to sign the file(s).

Publisher certificates, as opposed to the strong names concept, are used to sign multiple
applications and cannot uniquely identify a particular code module, nor are they intended to.
Their intent is to identify a broad set of applications as originating from a particular vendor,
in order to assign appropriate permissions based on the level of trust in this company.

As far as signing distributives goes, Java offers a single route that is similar the publisher-
signing paradigm in .NET. However, there are significant differences in the approaches, since
JAR specifications permit multiple signers and signing of a subset of the JAR’s content.

Quite surprisingly, in Sun’s default distribution of JDK 1.4.2, only jce.jar is signed — all of
the other libraries do not have any signature. As a standard part of the JDK, Sun ships the
jarsigner tool, which works with Java keystores to obtain private keys and certificates for
signing and verification to validate certification chains. This tool operates on existing JAR files
(it does not create them), which are a standard distribution format in Java.

jarsigner -keystore PrivateKeystore.jks
 -sigfile DP -signedjar DemoApp_Sig.jar
 DemoApp.jar denis

When a JAR file is signed, its manifest is updated and two new files are added to the META-
INF directory of the archive (see the JAR Guide for details): class signature and signature block.

The manifest file is called MANIFEST.MF and contains digest records of all signed files in the
archive (which may be a subset of the archive!). Those records conform to the RFC 822
header specification and consist of a file name and one or more tuples (digest algorithm, file
digest). As a rule, either SHA1 or MD5 digest algorithms are used. It is the manifest itself, not the
physical JAR file, that is signed, so it is important to understand that once a JAR is signed, its
manifest should not change -- otherwise, all signatures will be invalidated.

Manifest-Version: 1.0
Created-By: 1.4.2-beta (Sun Microsystems Inc.)

Name: javax/crypto/KeyGeneratorSpi.class

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 33 of 80

http://java.sun.com/j2se/1.4.2/docs/guide/jar/jar.html#Signed%20JAR%20File
http://www.faqs.org/rfcs/rfc822.html

SHA1-Digest: HxiOMRd8iUmo2/fulEI1QH7I2Do=

Name: javax/crypto/spec/DHGenParameterSpec.class
SHA1-Digest: zU+QpzVweIcLXLjmHLKpVo55k0Q=

A signature file represents a signer, and an archive contains as many of these files as there are
signatures on it. File names vary, but they all have the same extension, so they looks like
<Name>.SF. Signature files contain “digests of digests” they consist of entries with digests of all
digest records in the manifest file at the time of signing. Those records conform to RFC 822
header specification and have the same format as the manifest’s ones. Additionally, this file
also contains a digest for the entire manifest, which implies that the JAR manifest may not be
changed once signed. Incidentally, this means that all signers have to sign the same set of files
in the JAR otherwise, if new files have been added to the JAR prior to generating another
signature, their digests will be appended to the manifest and invalidate already existing
signatures.

An important point to observe is that when a JAR file is signed, all of the files inside it are
signed, not only the JAR itself. Up until JDK 1.2.1, signed code had a serious bug: it was
possible to alter or replace the contents of a signed JAR, and the altered class was still allowed
to run. This problem was rectified starting with version 1.2.1 by signing each class inside of a
signed JAR.

Signature-Version: 1.0
Created-By: 1.4.2-beta (Sun Microsystems Inc.)
SHA1-Digest-Manifest: qo3ltsjRkMm/qPyC8xrJ9BN/+pY=

Name: javax/crypto/KeyGeneratorSpi.class
SHA1-Digest: FkNlQ5G8vkiE8KZ8OMjP+Jogq9g=

Name: javax/crypto/spec/DHGenParameterSpec.class
SHA1-Digest: d/WLNnbH9jJWc1NnZ7s8ByAOS6M=

A block signature file contains the binary signature of the SF file and all public certificates
needed for verification. This file is always created along with the SF one, and they are added
to the archive in pairs. The file name is borrowed from the signature file, and the extension
reflects the signature algorithm (RSA|DSA|PGP), so the whole name looks like <Name>.RSA.

The JAR-signing flexibility comes from separating digest and signature generation, which
adds a level of indirection to the whole process. When signing or verifying, individual signers
operate on the manifest file, not the physical JAR archive, since it is the manifest entries that
are signed. This allows for an archive to be signed by multiple entities and to add/delete/
modify additional files in the signed JAR, as long as it does not affect the manifest (see the
explanations in the signature file paragraph).

Note: Strong names in .NET offer an improved approach to versioning. JAR files, on the other
hand, have more options for signing, so this category is a draw.

Code Protection: Non-Cryptographic
Once a piece of software’s origin and integrity have been established, non-cryptographic
approaches may be used to ensure that the code can not be used in an unintended manner. In
particular, this implies that the platform’s package- and class-protection mechanisms cannot
be subverted by illegally joining those packages or using class derivation to gain access to
protected or internal members. These types of protection are generally used to supplement

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 34 of 80

http://www.faqs.org/rfcs/rfc822.html

CAS and aimed at preventing unauthorized execution or source code exposure.

Reflection mechanisms on both platforms allow for easy programmatic access to code details
and very late binding of arbitrary code, or even utilize code generation capabilities -- see, for
instance,.NET technology samples, or the Java Reflection tutorial. One common example of
such a threat would be a spyware application, which secretly opens installed applications and
inspects/executes their functionality in addition to its officially advertised function. To
prevent such code abuse, granting reflection permissions (System.Security.Permissions.
ReflectionPermission in .NET, java.lang.reflect.ReflectPermission in Java) in CAS
policy should be done sparingly and only to highly trusted code, in order to restrict
capabilities for unauthorized code inspection and execution.

In .NET, application modules are called assemblies, and located at runtime by a so-called
probing algorithm. By default, this algorithm searches for dependent assemblies only in the
main assembly’s directory, its subdirectories, and the Global Assembly Cache (GAC). Such a
design is used to guard against possible attempts to access code outside of the assembly’s
“home.” Note that it does not prevent loading and executing external assemblies via
reflection, so CAS permissions should be applied as well.

Types in .NET are organized into namespaces. One may extend an already established
namespace in his own assemblies, but will not gain any additional information by doing so,
since the keyword internal is applied at the assembly, and not namespace, level. Strong
names are used as a cryptographically strong measure against replacement of the existing
types.

If the designer wants to completely prohibit inheritance from a class or method overloading,
the class or method may be declared sealed. As an additional means of protection against
source browsing, the C# language defines a #line hidden directive to protect against
stepping into the code with a debugger. This directive instructs the compiler to avoid
generating debugging information for the affected area of code.

During execution of a Java application, class loaders are responsible for checking at loading/
verification time that the loaded class is not going to violate any package protection rules (i.e.,
does not try to join a sealed or protected package). Particular attention is paid to the
integrity of system classes in java.* packages — starting with version 1.3, the class-loading
delegation model ensures that these are always loaded by the null, or primordial class loader
(see “Secure Class Loading” for details).

The Java platform defines the following options for protecting packages from joining:

● Sealed JAR files

These are used to prevent other classes from “joining” a package inside of that JAR,
and thus obtaining access to the protected members. A package, com.MyCompany.
MyPackage.*, may be sealed by adding a Sealed entry for that package to the JAR
manifest file before signing it:

Name: com/MyCompany/MyPackage/
Sealed: true

● Configuration restrictions for joining packages

These can be used to control which classes can be added to a restricted package by
adding them to the java.security file. Note that none of Sun-supplied class loaders
performs this check (due to historical reasons), which means that this protection is

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 35 of 80

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpsamples/html/reflection.asp
http://java.sun.com/docs/books/tutorial/reflect/index.html
http://www.onjava.com/lpt/a/4416#CodeCrypto
http://www.onjava.com/lpt/a/4416#CodeCrypto
http://java.sun.com/j2se/1.4.2/docs/guide/security/spec/security-spec.doc5.html#20588

only effective with a custom class loader installed:

List of comma-separated packages that start
with or equal this string will cause a security
exception to be thrown when passed to
checkPackageDefinition unless the corresponding
RuntimePermission ("defineClassInPackage."+package)
has been granted.

#

by default, no packages are restricted for
definition, and none of the class loaders
supplied with the JDK call checkPackageDefinition.

package.definition=com.MyCompany.MyPackage.private

● Configuration restrictions for accessing packages

If SecurityManager is installed, it checks the package-access policies defined in java.
security file. A package can have restricted access so that only classes with
appropriate permissions can access it. For instance, all sun.* packages are restricted
in the default installation:

List of comma-separated packages that start
with or equal this string will cause a security
exception to be thrown when passed to
checkPackageAccess unless the corresponding
RuntimePermission ("accessClassInPackage."+package)
has been granted.

package.access=sun.

A sample Java application, demonstrating declarative access control to packages, is provided
as Java.III.PackageChecks.zip.

Note: Configuration options in Java add a convenient method for declarative code protection,
which gives it a slight edge over .NET in this category.

Code Access Security: Permissions
Code-access permissions represent authorization to access a protected resource or perform a
dangerous operation, and form a foundation of CAS. They have to be explicitly requested
from the caller either by the system or by application code, and their presence or absence
determines the appropriate course of action.

Both Java and .NET supply an ample choice of permissions for a variety of system operations.
The runtime systems carry out appropriate checks when a resource is accessed or an operation
is requested. Additionally, both platforms provide the ability to augment those standard
permission sets with custom permissions for protection of application-specific resources.
Once developed, custom permissions have to be explicitly checked for (demanded) by the
application’s code, because the platform’s libraries are not going to check for them.

.NET defines a richer selection here, providing permissions for role-based checks (to be
covered in the “User Access Security” section of Part 4) and evidence-based checks. An
interesting feature of the latter is the family of Identity permissions, which are used to identify

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 36 of 80

http://www.onjava.com/onjava/2004/01/28/examples/Java.III.PackageChecks.zip

an assembly by one of its traits -- for instance, its strong name
(StrongNameIdentityPermission). Also, some of its permissions reflect close binding
between the .NET platform and the underlying Windows OS (EventLogPermission,
RegistryPermission). IsolatedStoragePermission is unique to .NET, and it allows low-
trust code (Internet controls, for instance) to save and load a persistent state without revealing
details of a computer’s file and directory structure. Refer to MSDN documentation for the list
of .NET Code Access and Identity permissions.

Adding a custom code access permission requires several steps. Note that if a custom
permission is not designed for code access, it will not trigger a stack walk. The steps are:

● Optionally, inherit from CodeAccessPermission (to trigger a stack walk).
● Implement IPermission and IUnrestrictedPermission.
● Optionally, implement ISerializable.
● Implement XML encoding and decoding.
● Optionally, add declarative security support through an Attribute class.
● Add the new permission to CAS Policy by assigning it to a code group.
● Make the permission’s assembly trusted by .NET framework.

A sample of custom code-access permission can be found in the NET.III.CodePermissions.
zipdemo application. Also, check MSDN for additional examples of building and registering a
custom permission with declarative support.

.NET permissions are grouped into NamedPermissionSets. The platform includes the
following non-modifiable built-in sets: Nothing, Execution, FullTrust, Internet,
LocalIntranet, SkipVerification. The FullTrust set is a special case, as it declares that
this code does not have any restrictions and passes any permission check, even for custom
permissions. By default, all local code (found in the local computer directories) is granted this
privilege.

The above fixed permission sets can be demanded instead of regular permissions:

[assembly:PermissionSetAttribute(
 SecurityAction.RequestMinimum,
 Name="LocalIntranet")]

In addition to those, custom permission sets may be defined, and a built-in Everything set
can be modified. However, imperative code-access checks cannot be applied to varying
permission sets (i.e., custom ones and Everything). This restriction is present because they
may represent different permissions at different times, and .NET does not support dynamic
policies, as it would require re-evaluation of the granted permissions.

Permissions, defined in Java, cover all important system features: file access, socket, display,
reflection, security policy, etc. While the list is not as exhaustive as in .NET, it is complete
enough to protect the underlying system from the ill-behaving code. See the JDK
documentation for the complete list, and the Java permissions guide for more detailed
discussions of their meaning and associated risks.

Developing a custom permission in Java is not a complicated process at all. The following
steps are required:

● Extend java.security.Permission or java.security.BasicPermission.
● Add new permission to the JVM’s policy by creating a grant entry.

Obviously, the custom permission’s class or JAR file must be in the CLASSPATH (or in one of

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 37 of 80

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconCodeAccessPermissions.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconidentitypermissions.asp
http://www.onjava.com/onjava/2004/01/28/examples/NET.III.CodePermissions.zip
http://www.onjava.com/onjava/2004/01/28/examples/NET.III.CodePermissions.zip
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconimplementingcustompermission.asp
http://java.sun.com/j2se/1.4.2/docs/api/java/security/class-use/Permission.html
http://java.sun.com/j2se/1.4.2/docs/api/java/security/class-use/Permission.html
http://java.sun.com/j2se/1.4.2/docs/guide/security/permissions.html

the standard JVM directories), so that JVM can locate it.

Below is a simple example of defining a custom permission. More examples can be found in
the Java.III.CodePermissions.zip demo application or in the Java tutorial:

//permission class
public class CustomResPermission extends Permission {
 public CustomResPermission (String name,
 String action) {
 super(name,action);
 }
}

//library class
public class AccessCustomResource {
 public String getCustomRes() {
 SecurityManager mgr =
 System.getSecurityManager();
 if (mgr == null) {
 //shouldn't run without security!!!
 throw new SecurityException();
 } else {
 //see if read access to the resource
 //was granted
 mgr.checkPermission(
 new CustomResPermission("ResAccess","read"));
 }
 //access the resource here
 String res = "Resource";
 return res;
 }
}

//client class
public class CustomResourceClient {
 public void useCustomRes() {
 AccessCustomResource accessor =
 new AccessCustomResource();
 try {
 //assuming a SecurityManager has been
 //installed earlier
 String res = accessor.getCustomRes();
 } catch(SecurityException ex) {
 //insufficient access rights
 }
 }
}

J2EE reuses Java’s permissions mechanism for code-access security. Its specification defines a
minimal subset of permissions, the so-called J2EE Security Permissions Set (see section 6.2 of
the J2EE.1.4 specification). This is the minimal subset of permissions that a J2EE-compliant
application might expect from a J2EE container (i.e., the application does not attempt to call
functions requiring other permissions). Of course, it is up to individual vendors to extend it,
and most commercially available J2EE application servers allow for much more extensive
application security sets.

Note: .NET defines a richer sets-based permission structure than Java. On the other hand,
.NET blankly grants FullTrust to all locally installed code, and its permissions structure
reflects the platform’s close binding to Windows OS.

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 38 of 80

http://www.onjava.com/onjava/2004/01/28/examples/Java.III.CodePermissions.zip
http://java.sun.com/docs/books/tutorial/security1.2/userperm/index.html

Code Access Security: Policies
Code Access Security is evidence-based. Each application carries some evidence about its
origin: location, signer, etc. This evidence can be discovered either by examining the
application itself, or by a trusted entity: a class loader or a trusted host. Note that some forms
of evidence are weaker than others, and, correspondingly, should be less trusted -- for
instance, URL evidence, which can be susceptible to a number of attacks. Publisher evidence,
on the other hand, is PKI-based and very robust, and it is not a likely target of an attack,
unless the publisher’s key has been compromised. A policy, maintained by a system
administrator, groups applications based on their evidence, and assigns appropriate
permissions to each group of applications.

Evidence for the .NET platform consists of various assembly properties. The set of assembly
evidences, which CLR can obtain, defines its group memberships. Usually, each evidence
corresponds to a unique MembershipCondition, which are represented by .NET classes. See
MSDN for the complete listing of standard conditions. They all represent types of evidence
acceptable by CLR. For completeness, here is the list of the standard evidences for the initial
release: AppDirectory, Hash, Publisher, Site, Strong Name, URL, and Zone.

.NET’s policy is hierarchical: it groups all applications into so-called Code Groups. An
application is placed into a group by matching its Membership Condition (one per code group)
with the evidence about the application’s assembly. Those conditions are either derived from
the evidence or custom-defined. Each group is assigned one of the pre-defined (standard or
custom) NamedPermissionSet. Since an assembly can possess more than one type of evidence,
it can be a member of multiple code groups. In this case, its total permission set will be a
union of the sets from all groups (of a particular level) for which this assembly qualifies.
Figure 3-3 depicts code-group hierarchy in the default machine policy (also see MSDN):

Figure 3-3. NET Default Code Groups

Custom groups may be added under any existing group (there is always a single root).
Properly choosing the parent is an important task, because due to its hierarchical nature, the
policy is navigated top-down, and the search never reaches a descendent node if its parents’
MembershipCondition was not satisfied. In Figure 3-3 above, the Microsoft and ECMA nodes
are not evaluated at all for non-local assemblies.

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 39 of 80

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconcodegroups.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpcondefaultsecuritypolicy.asp

Built-in nodes can be modified or even deleted, but this should be done with care, as this may
lead to the system’s destabilization. Zones, identifying code, are defined by Windows and
managed from Internet Explorer, which allows adding to or removing whole sites or
directories from the groups. All code in non-local groups have special access rights back to the
originating site, and assemblies from the intranet zone can also access their originating
directory shares.

To add a custom code group using an existing NamedPermissionSet with an associated
MembershipCondition, one only needs to run the caspol.exe tool. Note that this tool
operates on groups’ ordinal numbers rather than names:

caspol -addgroup 1.3 -site
 www.MySite.com LocalIntranet

Actually, .NET has three independent policies, called Levels: Enterprise, Machine, and
User. As a rule, a majority of the configuration process takes place on the Machine level the
other two levels grant FullTrust to everybody by default. An application can be a member of
several groups on each level, depending on its evidence. As a minimum, all assemblies are
member of the AllCode root group.

Policy traversal is performed in the following order: Enterprise, Machine, and then User, and
from the top down. On each level, granted permission sets are determined as follows:

Level Set = Set1 U Set2 U ... U SetN

where 1..N — code groups matching assembly’s evidence. System configuration determines
whether union or intersection operation is used on the sets.

The final set of permissions is calculated as follows:

Final Set = Enterprise X Machine X User

Effectively, this is the least common denominator of all involved sets. However, the traversal
order can be altered by using Exclusive and LevelFinal policy attributes. The former allows
stopping intra-level traversal for an assembly; the latter, inter-level traversal. For instance, this
can be used to ensure, on the Enterprise level, that a particular assembly always has enough
rights to execute.

The NET.III.CodePermissions.zip demo application demonstrates the tasks involved in
granting custom permissions in the policy and executing code that requires those permissions.

Each policy maintains a special list of assemblies, called trusted assemblies -- they have
FullTrust for that policy level. Those assemblies are either part of CLR, or are specified in
the CLR configuration entries, so CLR will try to use them. They all must have strong names,
and have to be placed into the Global Assembly Cache (GAC) and explicitly added to the
policy (GAC can be found in the %WINDIR%\assembly directory):

gacutil /i MyGreatAssembly.dll

caspol -user -addfulltrust MyGreatAssembly.dll

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 40 of 80

http://www.onjava.com/onjava/2004/01/28/examples/NET.III.CodePermissions.zip

Figure 3-4 shows the Machine-level trusted assemblies:

Figure 3-4. NET Trusted Assemblies

For Java, two types of code evidence are accepted by the JVM -- codebase (URL, either web
or local), from where it is accessed, and signer (effectively, the publisher of the code). Both
evidences are optional: if omitted, all code is implied. Again, publisher evidence is more
reliable, as it less prone to attacks. However, up until JDK 1.2.1, there was a bug in the
SecurityManager’s implementation that allowed replacing classes in a signed JAR file and
then continuing to execute it, thus effectively stealing the signer’s permissions.

Policy links together permissions and evidence by assigning proper rights to code, grouped by
similar criteria. A JVM can use multiple policy files; two are defined in the default java.
security:

policy.url.1=file:${java.home}/lib/security/java.policy

policy.url.2=file:${user.home}/.java.policy

This structure allows creating multi-level policy sets: network, machine, user. The resulting
policy is computed as follows: Policy = Policy.1 U Policy.2 U ... U Policy.N JVM uses an
extremely flexible approach to providing policy: the default setting can be overwritten by
specifying a command-line parameter to the JVM:

//adds MyPolicyFile to the list of policies

java -Djava.security.policy=MyPolicyFile.txt

// replaces the existing policy with MyPolicyFile

java -Djava.security.policy==MyPolicyFile.txt

Java policy has a flat structure: it is a series of grant statements, optionally followed by
evidence, and a list of granted permissions. A piece of code may satisfy more than one clause’s
condition — the final set of granted permissions is a union of all matches:

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 41 of 80

grant [signedBy "signer1", ..., "signerN"] [codeBase "URL"] {

 permission <PermissionClassName> "TargetName", "Action"
 [signedBy "signer1", ..., "signerN"];
 ...

}

The Java.III.CodePermissions.zip demo application defines a custom permission in the policy
and executes applications requiring that permission.

Even locally installed classes are granted different trust levels, depending on their location:

● Boot classpath: $JAVA_HOME/lib, $JAVA_HOME/classes

These classes automatically have the full trust and no security restrictions. Boot
classpath can be changed both for compilation and runtime, using command-line
parameters: -bootclasspath and -Xbootclasspath, respectively.

● Extensions: $JAVA_HOME/lib/ext

Any code (JAR or class files) in that directory is given full trust in the default java.
policy:

grant codeBase "file:{java.home}/lib/ext/*" {
 permission java.security.AllPermission;
}

● Standard classpath: $CLASSPATH ("." by default)

By default, have only few permissions to establish certain network connections and
read environment properties. Again, the SecurityManager has to be installed (either
from command line using the -Djava.security.manager switch, or by calling
System.setSecurityManager) in order to execute those permissions.

Policy-based security causes problems for applets. It’s unlikely that a web site’s users will be
editing their policy files before accessing a site. Java does not allow runtime modification to
the policy, so the code writers (especially applets) simply cannot obtain the required
execution permissions. IE and Netscape have incompatible (with Sun’s JVM, too!) approaches
to handling applet security. JavaSoft’s Java plug-in is supposed to solve this problem by
providing a common JRE, instead of the browser-provided VM.

If the applet code needs to step outside of the sandbox, the policy file has to be edited
anyway, unless it is an RSA-signed applet. Those applets will either be given full trust (with
user’s blessing, or course), or if policy has an entry for the signer, it will be used. The
following clause in the policy file will always prevent granting full trust to any RSA-signed
applet:

grant {
 permission java.lang.RuntimePermission "usePolicy";
}

Note: Policy in .NET has a much more sophisticated structure than in Java, and it also works
with many more types of evidences. Java defines very flexible approach to adding and
overriding default policies -- something that .NET lacks completely.

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 42 of 80

http://www.onjava.com/onjava/2004/01/28/examples/Java.III.CodePermissions.zip

Code Access Security: Access Checks
Code access checks are performed explicitly; the code (either an application, or a system
library acting on its behalf) calls the appropriate Security Manager to verify that the
application has the required permissions to perform an operation. This check results in an
operation known as a stack walk: the Runtime verifies that each caller up the call tree has the
required permissions to execute the requested operation. This operation is aimed to protect
against a luring attack, where a privileged component is misled by a caller into executing
dangerous operations on its behalf. When a stack walk is performed prior to executing an
operation, the system can detect that the caller is not allowed to do what it is requesting, and
abort the execution with an exception.

Privileged code may be used to deal with luring attacks without compromising overall system
security, and yet provide useful functionality. Normally, the most restrictive set of permissions
for all of the code on the current thread stack determines the effective permission set. To
bypass this restriction, a special permission can be assigned to a small portion of code to
perform a reduced set of restricted actions on behalf of under-trusted callers. All of the clients
can now access the protected resource in a safe manner using that privileged component,
without compromising security. For instance, an application may be using fonts, which
requires opening font files in protected system areas. Only trusted code has to be given
permissions for file I/O, but any caller, even without this permission, can safely access the
component itself and use fonts.

Finally, one has to keep in mind that code access security mechanisms of both platforms sit
on top of the corresponding OS access controls, which are usually role or identity-based. So,
for example, even if Java/.NET’s access control allows a particular component to read all of
the files on the system drive, the requests might still be denied at the OS level.

A .NET assembly has a choice of using either imperative or declarative checks (demands) for
individual permissions. Declarative (attribute) checks have the added benefit of being stored
in metadata, and thus are available for analyzing and reporting by .NET tools like permview.
exe. In either case, the check results in a stack walk. Declarative checks can be used from an
assembly down to an individual properties level.

//this declaration demands FullTrust
//from the caller of this assembly

[assembly:PermissionSetAttribute(
 SecurityAction.RequestMinimum,
 Name = "FullTrust")]

//An example of a declarative permission
//demand on a method

[CustomPermissionAttribute(SecurityAction.Demand,
 Unrestricted = true)]
public static string ReadData()
{ //Read from a custom resource. }

//Performing the same check imperatively

public static void ReadData()
{
 CustomPermission MyPermission = new

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 43 of 80

 CustomPermission(PermissionState.Unrestricted);
 MyPermission.Demand();
 //Read from a custom resource.
}

In addition to ordinary code access checks, an application can declaratively specify
LinkDemand or InheritanceDemand actions, which allow a type to require that anybody trying
to reference it or inherit from it possess particular permission(s). The former applies to the
immediate requestor only, while the latter applies to all inheritance chain. Presence of those
demands in the managed code triggers a check for the appropriate permission(s) at JIT time.

LinkDemand has a special application with strong-named assemblies in .NET, because such
assemblies may have a higher level of trust from the user. To avoid their unintended malicious
usage, .NET places an implicit LinkDemand for their callers to have been granted FullTrust;
otherwise, a SecurityException is thrown during JIT compilation, when an under-privileged
assembly tries to reference the strong-named assembly. The following implicit declarations are
inserted by CLR:

[PermissionSet(SecurityAction.LinkDemand,
 Name="FullTrust")]

[PermissionSet(SecurityAction.InheritanceDemand,
 Name="FullTrust")]

Consequently, if a strong-named assembly is intended for use by partially trusted assemblies (i.
e., from code without FullTrust), it has to be marked by a special attribute, [assembly:
AllowPartiallyTrustedCallers], which effectively removes implicit LinkDemand checks for
FullTrust. All other assembly/class/method level security checks are still in place and
enforceable, so it is possible that a caller may still not possess enough privileges to utilize a
strong-named assembly decorated with this attribute.

.NET assemblies have an option to specify their security requirements at the assembly load
time. Here, in addition to individual permissions, they can operate on one of the built-in non-
modifiable PermissionSets. There are three options for those requirements:
RequestMinimum, RequestOptional, and RequestRefuse.

If the Minimum requirement cannot be satisfied, the assembly will not load at all. Optional
permissions may enable certain features. Application of the RequestOptional modifier limits
the permission set granted to the assembly to only optional and minimal permissions (see the
formula in the following paragraph). RequestRefuse explicitly deprives the assembly of
certain permissions (in case they were granted) in order to minimize chances that an assembly
can be tricked into doing something harmful.

//Requesting minimum assembly permissions
//The request is placed on the assembly level.

using System.Security.Permissions;
[assembly:SecurityPermissionAttribute(
 SecurityAction.RequestMinimum,
 Flags = SecurityPermissionFlag.UnmanagedCode)]
namespace MyNamespace
{
 ...
}

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 44 of 80

CLR determines the final set of assembly permissions using the granted permissions, as
specified in .NET CAS policy, plus the load-time modifiers described earlier. The formula
applied is (P - Policy-derived permissions): G = M + (O<<P) - R, where M and O default to P,
and R to Nothing.

Applications on .NET platform may affect the stack-walking process by executing special
operations on individual permissions or permission sets: Assert, Deny, PermitOnly. The
application itself should be granted the affected permissions, as well as the
SecurityPermission that grants the rights to make assertions.

The Assert option explicitly succeeds the stack walk (for the given PermissionSet or any
subset of it, as determined by the Intersect function), even if the upstream callers do not
have the required permissions (it fails if sets intersections are not empty). Deny and
PermitOnly effectively restrict the available permission sets for the downstream callers.

The NET.III.PrivilegedCode.zip demo application demonstrates the effects of applying stack-
walk modifications. Figure 3-5 represents an overview of the Code Access Security permission
grants and checks in .NET:

Figure 3-5. NET CAS Operation

In Java, permissions are normally checked by the SecurityManager (or installed derivative),
by using the checkPermission function. It defines a helper for each major group of
permissions, such as checkWrite for the write action of FilePermission. All checks are
imperative; there are no declarative code access checks in Java language. Each JVM can have
at most one SecurityManager (or derivative) installed — once set, they cannot be replaced,

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 45 of 80

http://www.onjava.com/onjava/2004/01/28/examples/NET.III.PrivilegedCode.zip

for security reasons. Browsers always start SecurityManager, so any Internet Java application
executes with enabled security. Locally started JVMs have to install a SecurityManager before
exercising the first sensitive operation; this can also be done programmatically:

System.setSecurityManager(new SecurityManager());

or using a command-line option:

java -Djava.security.manager MyClass

In Java 2, when determining application permissions, SecurityManager delegates the call to
java.security.AccessController, which obtains current snapshot of
AccessControllerContext to determine which permissions are present. SecurityManager’s
operations may be influenced by the java.security.DomainController implementation, if
one exists. It instructs an existing SecurityManager to perform additional operations before
security checks, thus allowing security system extensibility without re-implementing its core
classes. JAAS uses this functionality to add principal-based security checks to the original
code-based Java security (see section “User Access Security” in Part 4).

When making access control decisions, the checkPermission method stops checking if it
reaches a caller that was marked as “privileged” via a doPrivileged call without a context
argument. If that caller’s domain has the specified permission, no further checking is done
and checkPermission returns quietly, indicating that the requested access is allowed. If that
domain does not have the specified permission, an exception is thrown, as usual.

Writing privileged code in Java is achieved by implementing the java.security.
PrivilegedAction or PrivilegedExceptionAction interfaces. This approach is somewhat
limiting, as it does not allow specifying the exact permissions to be asserted, while still
requiring the callers to possess others — it is an “all or nothing” proposition.

public class PrivilegedClass implements PrivilegedAction {
 public Object run() {
 //perform privileged operation
 ...
 return null;
 }
}

Suppose the current thread traversed m callers, in the order of caller 1 to caller 2 to caller M,
which invoked the checkPermission method. This method determines whether access is
granted or denied based on the following algorithm:

i = m;
while (i > 0) {

 if (caller i's domain
 does not have the permission)
 throw AccessControlException

 else if (caller i is marked as privileged) {
 if (a context was specified
 in the call to doPrivileged)
 context.checkPermission(permission)

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 46 of 80

http://java.sun.com/j2se/1.4.2/docs/guide/security/doprivileged.html

 return;
 }
 i = i - 1;
}

// Next, check the context inherited when
// the thread was created. Whenever a new thread
// is created, the AccessControlContext at that
// time is stored and associated with the new
// thread, as the "inherited" context.

inheritedContext.checkPermission(permission);

A complete application demonstrating privileged code in Java can be found in the Java.III.
PrivilegedCode.zip demo.

Note: .NET arms developers with an impressive arsenal of various features for access checks,
easily surpassing Java in this respect.

Chapter 3 — Conclusions
In this section, code protection and Code Access Security features of Java and .NET platforms
were reviewed. While code protection came out more or less even, CAS features in .NET are
significantly better than the ones Java can offer, with a single exception: flexibility. Java, as it
is often the case, offers ease and configurability in policy handling that .NET cannot match.

Demo Applications
● Java.III.CodePermissions.zip
● Java.III.DataSigning.zip
● Java.III.PackageChecks.zip
● Java.III.PrivilegedCode.zip
● NET.III.CodePermissions.zip
● NET.III.DataSigning.zip
● NET.III.PrivilegedCode.zip

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 47 of 80

http://www.onjava.com/onjava/2004/01/28/examples/Java.III.PrivilegedCode.zip
http://www.onjava.com/onjava/2004/01/28/examples/Java.III.PrivilegedCode.zip
http://www.onjava.com/onjava/2004/01/28/examples/Java.III.CodePermissions.zip
http://www.onjava.com/onjava/2004/01/28/examples/Java.III.DataSigning.zip
http://www.onjava.com/onjava/2004/01/28/examples/Java.III.PackageChecks.zip
http://www.onjava.com/onjava/2004/01/28/examples/Java.III.PrivilegedCode.zip
http://www.onjava.com/onjava/2004/01/28/examples/NET.III.CodePermissions.zip
http://www.onjava.com/onjava/2004/01/28/examples/NET.III.DataSigning.zip
http://www.onjava.com/onjava/2004/01/28/examples/NET.III.PrivilegedCode.zip

Chapter 4 — Authentication and User Access
Security (UAS)
When authentication comes into play, the system should already have a strong foundation,
defined by the features discussed in previous sections. Authentication adds to that bag an
ability to determine whether the user is the person he claims to be. Results of the
authentication process are usually passed on to the authorization step.

The issue of user authorization (a.k.a. Role-based security) comes after solidifying the
platform’s base. At that point, in any more or less advanced system the administrator is left to
be the judge, determining who is allowed to do what. This is traditionally done in two ways:
using ACL to protect a particular resource (this is known as Discretionary Access Control, or
DAC), or checking a user’s group (or role) membership and allowing/denying him an
operation based on the results of this check (a variation of Mandatory Access Control, or
MAC).

User Authentication — General
The process of authentication starts right after identification by collecting caller credentials,
confirming the identity claim, and securely communicating them to the server. Those
credentials (possibly, several types of them, so it’s called multi-factor authentication) are
matched against the registered account information and a positive or negative answer is
returned regarding the claimed identity.

To do this work, application developers can either utilize standard platform facilities, as
described below, or roll out some custom authentication solution (for instance, biometric
readers), which is outside of the scope of this publication. We also do not cover RMI and
Remoting authentication, since their status was already discussed in Part 2.

.NET includes a web solution for the server side: ASP.NET, which is coupled with IIS for
processing HTTP requests. It is also possible to attach it to a different Web Server, if an
appropriate server extension is supplied. The IIS extension is called aspnet_isapi.dll, and
handles all requests directed to ASP.NET (suffixes ASPX, ASMX, etc). ASP.NET itself, however,
runs separately from IIS, in the aspnet_wp.exe process, so process isolation settings in IIS do
not matter much. All managed code is executed in the worker process, and requests are
forwarded there from the aspnet_isapi.dll extension through a named pipe.

Based on its configuration, IIS can either authenticate the requestor against a Windows
account, using one of its standard methods (NTLM, Kerberos, Basic, Digest, Certificates)
before forwarding the request, or forward the unauthenticated call to the ASP.NET handler. It
is important to remember that security settings of IIS and ASP.NET are unrelated, although
the latter uses IIS services for particular kinds of authentication.

ASP.NET handles authentication via so called Authentication Modules, one per each
authentication type that APS.NET supports, which reside in System.Web.Security
namespace. They all provide an OnAuthenticate event handler, which can be used to create a
custom authentication/authorization schema by using different user account mapping and
attaching new custom principals to the thread context.

The Java platform defines two solutions for user authentication to the servers: JAAS and
servlets. Although EJB does not have its own authentication facilities and its 2.1 specification
does not require any particular authentication mechanism from vendors, it does mention the

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 48 of 80

http://java.sun.com/products/jaas/index.jsp
http://java.sun.com/products/servlet/index.jsp

requirements for propagating the Principal object (see Identities section), created in a server-
specific manner.

Java Servlets is the Java platform’s HTTP-oriented server layer, which performs HTTP
processing functions, similar to those of ASP.NET layer. Correspondingly, the Servlet’s
security model is intended specifically to handle the requirements of web applications.

JAAS may be used to add authentication and authorization to any Java-based application
(executable, bean, applet, etc). It defines an API-based configurable generic authentication
mechanism, independent of the underlying methods. The power of this approach lies in the
clear separation of application and authentication code, allowing transparent replacement or
alteration of authentication mechanisms.

User Authentication — Identities
In both systems, a principal and his identity (or identities) are established as a result of the
authentication process, which serve to represent the user in the application during his further
requests.

A user and his roles are represented in .NET via objects, implementing IIdentity, and
IPrincipal interfaces, attached to the current thread context. IIdentity provides access to
name and authentication type information, IPrincipal provides access to the contained user
identity (one-to-one relationship) and role membership information. .NET provides two sets
of implementations of those interfaces — WindowsPrincipal with WindowsIdentity, and
GenericPrincipal with GenericIdentity. If the user does represent a Windows authorized
account, he may use a WindowsIdentity, and this object represents a Windows security
token, with role membership and authorization type derived from the Windows token.
Generic versions of interfaces are used to implement any additional type of principal,
unrelated to Windows accounts.

WindowsPrincipal principal =
 (WindowsPrincipal)Thread.CurrentPrincipal;
WindowsIdentity identity =
 (WindowsIdentity)principal.Identity;

There is no required relationship between the identities used by CLR and the current
Windows process token, because CLR has a separate security context from that of Windows.
In fact, CLR thread might not have an associated identity at all (or, rather, an empty one),
while Windows threads always have one. In order for the CLR thread to take on the Windows
thread’s WindowsIdentity (to synchronize, using .NET jargon), it has to be configured to use
WindowsAuthenticationModule. Otherwise, CLR and process threads will have two different
identities.

As opposed to .NET’s hierarchy, Java uses the word Principal, and the corresponding
interface java.security.Principal, to represent user’s identity. This user object carries only
username information in it, not roles or any additional attributes about the logged-on user.
This design reflects the focus on Code Access Security, prevailing in J2SE, since user access
checks were not the main point of concern for Java designers initially. As for the identity
synchronization with the OS thread, the J2EE specifications merely state that for a single sign-
on capabilities a compliant J2EE product must be able to relate those identities.

Clearly, having only a username is not sufficient for any kind of serious application, so JAAS
augmented it with additional information. JAAS groups multiple Principal objects,

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 49 of 80

representing the same user, into a single Subject, which also holds the user’s credentials,
such as password, certificate, or any kind of user-related information.

public final class Subject {
 public Set getPublicCredentials(); //not security-checked
 public Set getPrivateCredentials(); // security-checked
 public Set getPrincipals();
 ...
}

User credentials, obviously, have to be stored somewhere, for matching them later during the
authentication process. Both platforms support multiple storage formats for user accounts:
OS, disk-based files, database, and directory services. Necessary care must be taken to
configure those storage areas properly, using file protection, secure hosts, communication
encryption, etc.

ASP.NET applications have several options for storing user credentials:

● Through IIS, it can use whatever storage options are configured there (Windows
account database, Active Directory Service).

● Passport accounts directory.
● For the simplest case of Forms mode, user credentials can be stored right in the

application’s configuration file. However, this approach has obvious maintenance
drawbacks.

<credentials passwordFormat="SHA1">

 <user name="User1" password="3784AAB557DC76789FFA">

 <user name="User2" password="23933DCA564EE">

</credentials>

Neither Java nor J2EE specifications define any specific storage means for user accounts. The
applications are capable of using Directory Services via JNDI mechanism, as well as other
custom or vendor-provided solutions. Additionally, most commercial J2EE application servers
provide some kind of mapping between the underlying OS’ accounts and J2EE users and
groups.

When a user logs in, a new session is created on the server and associated with that user.
Servers typically terminate user sessions after some period of inactivity, as configured or set in
the code.

ASP.NET applications map user requests to the Session objects, with their timeouts (in
minutes) determined by sessionState tags in the web.config application file or through
global setting in machine.config.

<sessionState timeout="20"/>

To track user sessions, Java Servlet engines use the HttpSession object. The sessions can be
managed automatically and/or manually, providing expiration time to prevent session
hijacking. The servlet container determines the default timeout for servlets sessions, which
can be retrieved by calling HttpSession.getMaxInactiveInterval, and changed by calling

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 50 of 80

HttpSession.setMaxInactiveInterval. Specifying “-1” as the timeout interval means that
the session never expires. An application can also override the default timeout by setting the
desired value (in minutes) in its web.xml file:

<web-app>
 <session-config>
 <session-timeout>20</session-timeout>
 </session-config>
</web-app>

In EJB servers, Principals are associated with caller’s requests in server-specific ways. J2EE
specifications require that for all EJBs in a call chain within the same application the same
identity must be returned for all calls to EJBContext.getCallerPrincipal, which should be
the same identity as in HttpServletRequest.getUserPrincipal if that is not null. Whereas
Servlet specifications do allow returning a null Principal, EJB specifications explicitly state
that a non-null object should be returned at any time, even for representing an
unauthenticated user.

EJB specification does not dictate any programmatic ways of propagating principals in the
case of calling multiple beans or even multiple servers. Some EJB servers implement principal
delegation mechanism akin to Java’s doPrivileged privileged code execution. If desired, the
application assemblers, via the deployment descriptor, may affect the choice of identities that
execute their beans. There is <security-identity> element for that, which has two possible
values:

● <use-caller-identity> — to force using caller’s identity on any method of the
bean by propagating it from the caller.

● <run-as> — to specify a particular role to run the bean.

<security-identity>
 <run-as>
 <role-name>Administrator</role-name>
 </run-as>
</security-identity>

User Authentication — Web Mechanisms
There is a standard set of Web-based authentication methods that may reasonably be
expected by application developers on a particular platform. Generally supported
authentication mechanisms include HTTP authentication (Basic and Digest), Forms/Cookies
authentication, and Certificate authentication. The latter is usually coupled with mutual SSL/
TLS authentication — this is the standard way of implementing it.

Forms authentication is normally performed with the help of a cookies mechanism. Two
types of cookies are in use: temporary and persistent. The former last only during the current
browser session, the latter are stored at the client’s computer. Both types have an expiration
time, to prevent identity theft, but persistent cookies are typically stored on the client’s
computer and remain valid for many days, so they pose a greater security threat.

Certificate authentication is significantly more secure, as it allows mutual authentication, so
the client can be assured that it connects to the proper server. Configuring it, however, is
more problematic, because it requires installing an X509 certificate on the client side.

ASP.NET heavily relies on IIS for its authentication needs. In fact, it uses ISS to implement all

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 51 of 80

of the above authentication modes, except for Forms, and merely consumes the results of the
authentication process performed by IIS. Therefore, forms authentication is the only one that
is going to be further discussed here for ASP.NET.

Authentication is handled by FormsAuthenticationModule, which handles all traffic, received
from IIS via the extensions mechanism, as shown in Figure 4-1. It passes all authenticated
requests through, while forwarding all unauthenticated ones to the specified logon page. The
authentication, once performed, is sustained via the cookie mechanism, which can be made to
expire after a timeout to prevent stealing user identity. Alternatively, another form-
authentication scheme can be developed, for example, using hidden fields to store credentials
in the form, and taking full control of authentication process by providing a
FormsAuthentication_OnAuthenticate handler event in Global.asax file. It is possible
(although not trivial) to create a completely cookieless authentication schema using this
method.

Figure 4-1. ASP.NET Forms Authentication

ASP.NET provides a helper class, FormsAuthentication, to help with common
authentication tasks: authenticating username and password, issuing, encrypting and
decrypting tickets, redirecting user request to the originally requested page after successful
authentication, and signing out. An authenticated user is identified by the presence of an
authentication cookie (either temporary or persistent), that is usually implemented by
FormsAuthenticationTicket class. However, a custom cookie may be set in the code — this
allows better control over its expiration property, as well as over the cookie’s content.

string data = "Application data";

HttpCookie cookie = new HttpCookie(

 FormsAuthentication.FormsCookieName, data);

//expires in 10 minutes

cookie.Expires = DateTime.Now + new TimeSpan(0,0,10,0);

Response.Cookies.Add(cookie);

Custom content in a cookie may be protected by encrypting, via FormsAuthentication.
Encrypt call, with user-provided or auto-generated 3DES key, which is then stored at the
server’s Local Security Authority (LSA). HMAC validation with a specified algorithm may also
be requested.

<machineKey validationKey="AutoGenerate"

 decryptionKey="AutoGenerate"

 validation="SHA1"/>

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 52 of 80

The associated authentication cookie’s name and expiration timeout may be configured in the
top level application’s web.config file. Cookies are renewed upon the next request after half
of their expiration time has passed, thus keeping them from expiring. However, as was
explained earlier, the server-side session associated with the user’s identity expires after a
certain period of inactivity, as determined by the timeout setting in the sessionState
element. So, even if a request has a valid cookie, if the corresponding session has expired, the
user will still be prompted to re-authenticate. Calling FormsAuthentication.SignOut will
terminate any session association of the current user and remove cookies from the browser’s
cache.

<authentication mode="Forms">
 <forms forms="DemoApp"
 Loginurl="https://www.DemoApp.com/login.aspx"
 Name=".DEMOAPPCOOKIE"
 protection="All" Timeout="30" Path="/">
 </forms>
</authentication>

The authentication sequence works in the following way: after a request comes in, it is
forwarded to the OnAuthenticate handler, if present. Here, any additional information may
be extracted from the custom cookie or URL, and additional roles assigned. If a user identity
is associated with the request after finishing rhe handler’s execution, no further actions are
taken. Otherwise, the request is checked by name for the presence of authentication cookie. If
such a cookie is found, it is used to construct the appropriate Principal and associate it with
the current request; otherwise, the request is forwarded to the logon page.

The Java Servlet specification requires support for the Basic HTTP authorization mechanism,
and encourages (but does not require!) support for digest authentication, because it is a fairly
rare mechanism. Additionally, two other forms of authentication are required for J2EE
compatibility: Form-based and mutual Certificate (HTTPS Client). Basic, Digest, and
Certificate authentication is carried out transparently, between Web Server and the
connecting client, and does not require writing additional code.

<auth-method>BASIC|DIGEST|FORM|CLIENT-CERT
 </auth-method>

The form-based authentication schema is probably the most common option in use today.
The specifications require the presence of the following names on the logon form: a
j_security_check action, andthe fields j_username, and j_password. These indicate to the
servlet engine that this is the logon information to process.

<form method="POST" action="j_security_check">
 <input type="text" name="j_username">
 <input type="password" name="j_password">
</form>

A container creates a persistent or temporary cookie named JSESSIONID for the user request,
sets its expiration policy via a call to Cookie.setMaxAge before adding the cookie to the
current session, and then keeps sending it back to the client with each response. The client
returns it with each request, which allows mapping the connectionless requests to the user’s

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 53 of 80

session. Alternatively, a container may use a technique called URL Rewriting to support those
clients who do not accept cookies:

http://www.SomeHost.com/servlets/index.html;jsessionid=0124343

Note that using a GET operation in form-based login is a bad idea — it puts the entire request,
with all its fields, into the URL, thus making it available when browsing the server log, for
instance:

http://www.DemoServer.com/login?j_username=MyName&j_password=MyPassword

Using the POST operation, the URL will be as shown below, so the user information will not
show up in the server’s log:

http://www.DemoServer.com/login

When a request comes for one of the protected resources, the engine checks the user’s
authentication, and if he is has not been authenticated yet, forwards him to the login page
associated with the resource. The Servlet engine is then responsible for redirecting the user
back to the originally requested resource (or error page, in case of a failure).

<web-app>
 <login-config>
 <auth-method>FORM</auth-method>
 <form-login-config>
 <form-error-page>/Error.html
 </form-error-page>
 <form-login-page>/SignOn.html
 </form-login-page>
 </form-login-config>
</login-config>
</web-app>

Certificate authentication is configured declaratively on the server side, but support for
mutual HTTPS communication is required on both sides. The client’s request should contain
a certificate which can be mapped to a server’s defined principal, which is going to be
associated with this and further requests. Note that HTTPS, as opposed to HTTP, is a stateful
protocol, and cookies are not needed to maintain session association.

<web-app>
 <login-config>
 <auth-method>CLIENT-CERT</auth-method>
 </login-config>
 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
</web-app>

From inside of a servlet, client certificate information can be retrieved by accessing the
getAttribute method of javax.servlet.http.HttpServletRequest class, requesting the
following attribute:

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 54 of 80

X509Certificate cert =
 (X509Certificate)request.getAttribute
 ("javax.servlet.request.X509Certificate");

In the case of a HTTPS connection, the Servlet engine sets this attribute, as required by the
Servlet specifications, before invoking the target servlet. Using attributes of the returned
X509Certificate object, the servlet can perform any additional programmatic authentication
of the caller.

Note: .NET delegates all types of user authentication, except for Forms, to IIS, and barely
consumes the results. J2EE requires support for all standard authentication mechanisms from
the compliant servers.

User Authentication: Other Mechanisms
Besides the standard Web-based mechanisms, both platforms provide other means for
authentication.

In .NET, Windows and Passport authentication are incorporated as separate entities via the
corresponding modules. They both are used together with IIS, and require very little
configuration in the application’s configuration file.

WindowsAuthenticationModule relies on IIS to authenticate the caller, as shown in Figure 4-2,
and attaches WindowsPrincipal object to the application context. This is the default provider
for ASP.NET, and the easiest to use in pure Microsoft network environment, as it requires no
additional application code.

<authentication mode="Windows">
</authentication>

Figure 4-2. ASP.NET Windows Authentication

PassportAuthenticationModule is a wrapper around the Passport SDK that creates a
PassportIdentity object using Passport service and profile, as shown in Figure 4-3. This
identity object provides access to the Passport profile and allows the encrypting/decrypting
authentication tickets. Most of the authentication details are handled by the ASP.NET
framework; the developer can control the process by overloading OnAuthentication handler.

<authentication mode="Passport">

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 55 of 80

</authentication>

Figure 4-3. ASP.NET Passport Authentication

In Java, JAAS servers as a general abstraction for providing authentication services to
applications. JAAS relies on Pluggable Authentication Modules (PAM) in its operation to
provide a flexible authentication framework. Administrators can add various implementations
to the environment and modify its behavior and authentication method. The default PAM is
username/password based; however, it is possible to use alternative schemas. In JDK 1.4, Sun
provides implementations for the following login schemas via its LoginModule
implementations: UnixLoginModule, NTLoginModule, JNDILoginModule,
KeyStoreLoginModule, Krb5LoginModule. Additionally, there exist implementations of
SmartCard login modules by independent vendors, for instance — GemPlus.

The sample Java application Java.IV.JAASAuthentication.zip demonstrates some of the
discussed JAAS authentication techniques.

In this section, only the authentication part of JAAS will be reviewed. Its operation is
controlled by the LoginContext, which uses the Configuration class to retrieve the specified
LoginModules. Those modules retrieve credentials with the help of provided Callbacks,
although it is possible to use other means as well. There might be several LoginModules
configured, and during the login process all of them are queried in turn, which is shown in
Figure 4-4.

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 56 of 80

http://www.gemplus.com/
http://www.onjava.com/onjava/2004/02/25/examples/Java.IV.JAASAuthentication.zip

Figure 4-4. JAAS Login

The relationship among LoginModules is determined by the strategy configuration settings,
which tells the system how to treat login failures in individual modules:

● required — it must succeed for the overall login to succeed. However,
LoginContext finishes querying other modules before aborting the process.

● requisite — same as required, but the login process stops if this module fails.
● sufficient — success of this module means that the overall process succeeds

(provided that no required, requisite modules failed) and the login process stops.
● optional — just what it says, pretty much does not affect the login process.

JAAS introduces a couple of new permissions, javax.security.auth.
PrivateCredentialPermission and javax.security.auth.AuthPermission, to guard access
to the Subject, LoginContext, and Configuration classes. The code that works with JAAS
classes will need to have them (especially AuthPermission) granted in java.policy. See the
online javadoc for details about their usage.

The following classes are used as part of JAAS authentication process:

● javax.security.auth.login.LoginContext — represents the PAM framework.
This class is used by the server to access Configuration and use the specified
LoginModule(s) to validate the passed user credentials. Once the login operation
successfully finishes on all configured LoginModule(s) (using two-phase commit
process), the Subject is attached to the call context and is available for the
application code.

public final class LoginContext {
 public LoginContext(String name);
 public void login(); // two phase process
 public void logout();
 public Subject getSubject();//get the authenticated Subject
}

● javax.security.auth.login.Configuration — tells JAAS’ LoginContext which
LoginModule(s) are configured, and what the login strategy is. An alternative
configuration provider implementation can be specified in java.security file by
setting login.configuration.provider property.

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 57 of 80

http://java.sun.com/j2se/1.4.2/docs/api/javax/security/auth/package-summary.html

MyJAASConfig {
 UsernamePasswordLoginModule requisite;
 CertificateLoginModule sufficient;
};

The location of the configuration file is specified using the command-line option:

java -Djava.security.auth.login.config==jaas.config MyJAASApp

● javax.security.auth.spi.LoginModule — represents a particular authentication
type in an application — for instance, password-based or RSA. During login, each of
the configured modules is requested by the LoginContext object to authenticate the
user credentials. If the authentication succeeds (as configured in the JAAS), the login
is committed, and a Subject is created, otherwise the abort method is called.

public interface LoginModule {
 boolean login(); // 1st authentication phase
 boolean commit(); // 2nd authentication phase
 boolean abort();
 boolean logout();
 void initialize(Subject subject, CallbackHandler handler,
 Map sharedState, Map options);
}

● javax.security.auth.callback.Callback, javax.security.auth.callback.
CallbackHandler — are used to gather all necessary credentials and report them
back to the requesting module. Sun provides default implementations for several
callbacks with the package, most importantly: NameCallback, and
PasswordCallback. Varying handlers may be used to gather and return the requested
information; the ones supplied by default include DialogCallbackHandler for dialog-
based, and TextCallbackHandler — for command-line prompts.

Different user identities and roles are represented via Principals, added to the resulting
Subject by the configured LoginModules during the commit phase, and removed during
logout. Their credentials may also be added to that object, as well as any additional
identification information.

public abstract class DemoLoginModule implements LoginModule {
 protected Subject m_subject;
 protected ArrayList m_principals = null;
 public boolean commit() throws LoginException {
 // Login succeeded,
 // add demo Principals to the Subject.
 if (!(m_subject.getPrincipals().containsAll(
 m_principals))) {
 m_subject.getPrincipals().addAll(
 m_principals);
 }
 return ret;
 }
 public boolean logout() throws LoginException {
 // Need to remove our
 // principals from the Subject.
 if (null != m_principals) {

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 58 of 80

 m_subject.getPrincipals().removeAll(
 m_principals);
 m_principals = null;
 }
 return true;
 }
}

The interaction of the various JAAS classes during initialization process is shown in Figure 4-5
below.

Figure 4-5. JAAS Initialization

Note: JAAS provides a flexible and versatile mechanism for adding authentication to any type
of Java application.

User Authentication — Impersonation
In addition to the direct login, an application can impersonate the logged-in user while
performing sensitive operations locally, or delegate his identity when communicating with
remote servers. This way, the execution will happen in the context of the logged-in user, with
privileges granted to the user’s identity, and not that of the application.

.NET’s impersonation has a distinctive feature of being in a close relationship with the
Windows process’ identity. Turning on impersonation in ASP.NET configuration will result
in ASP.NET’s Windows execution thread borrowing the security token of the calling IIS
process. So, as far as Windows security system is concerned, ASP.NET Windows thread’s
identity will be the same as that of the IIS thread, although CLR identity may be completely
different, as has been explained before.

Sample ASP.NET configurations are listed below:

● Impersonating the IIS calling identity in ASP.NET process, and synchronizing CLR
identity. This will result in all three threads (IIS and ASP.NET Windows, and CLR

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 59 of 80

managed) to share the same Windows identity, authenticated by IIS, or
IUSR_<MACHINE> for anonymous users.

<authentication mode="Windows">
 </authentication>
<identity impersonate="true"/>

● Impersonating the IIS calling identity in ASP.NET process, and using separate CLR
identity (or synchronizing in code): note that the code should have a proper CAS
permission to modify the principal. This will result in IIS and ASP.NET Windows
threads sharing the same Windows identity, and CLR — having an empty one
initially.

<authentication mode="None">
 </authentication>
<identity impersonate="true"/>

// Providing a generic identity
<%
Identity clrIdentity =
 new GenericIdentity("CLRUser");
String[] roles = {"PowerUser"};
GenericPrincipal clrPrincipal =
 new GenericPrincipal(clrIdentity, roles);
Thread.CurrentPrincipal = clrPrincipal;
%>

When knowing account’s credentials, it is possible to impersonate not only the currently
logged in user, but also an arbitrary user. WindowsIdentity has an overloaded constructor
which accepts a Windows account token. That token can be retrieved by making an
unmanaged call to Windows function LogonUser (permissions permitting, of course).

// Impersonating a logged-in Windows user
<%
WindowsIdentity id =
 new WindowsIdentity(userTokenHandle);
WindowsImpersonationContext ctxt =
 id.Impersonate();
...
ctxt.Undo();
%>

An important point to remember about Windows impersonation is that it was designed for
use with trusted code only — any unmanaged DLL down the call chain can call
RevertToSelf, and start using IIS process identity, which will most likely be System. Although
managed code is a subject to CAS permission checks, which generally deny the corresponding
security permissions to most applications, it does not apply to the locally installed code,
which has FullTrust under the default policy.

Among .NET’s authentication options, delegation is currently supported only by the Kerberos
protocol, which is used only with WindowsIdentity for now. In order to use a Windows
identity for delegation, the impersonated user’s Windows account should be granted the right
“Act as a part of OS” by the administrator, which is not given on a general basis.

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 60 of 80

Java uses JAAS to implement impersonation on the application level. JAAS’ Subject class
allows executing a particular sensitive operation (marked so by implementing java.security.
PrivilegedAction interface) as another user’s identity.

public final class Subject {
 ...
 // associate the subject with the current
 // AccessControlContext and
 // execute the Privileged action
 public static Object doAs(Subject s,
 java.security.PrivilegedAction action);
}

When this operation is run, the doAs method associates the impersonated subject with the
current AccessControlContext, and then executes the action. At the end of the doAs call, the
subject is removed from the AccessControlContext:

//class representing a protected operation
class ProtectedOperation
 implements PrivilegedAction {
 //do something veeeery sensitive here...
 public Object run();
}

public class ImpersonationExample {
 public static void main(String args[]) {
 ...
 //carry out the authentication process
 Subject subject = loginContext.getSubject();
 //run as the impersonated user
 Subject.doAs(subject,
 new ProtectedOperation());
 }
}

In the default JDK implementation, Java impersonation is limited to application level only —
specifications do not define any relationship to user accounts on the underlying OS. Specific
vendor implementations can implement functionality that maps the logged-in user to the OS
domain names. For instance, WebLogic, if configured, can use NT PAM to authenticate users
against Windows account names.

However, GSS-API, in combination with JAAS, can handle both impersonation and
delegation, as shown in Figure 4-6.

● Impersonation is handled by creating a new Subject, using the name obtained from
the call context, and associating it with the current thread. No credentials are
obtained this way, so it will not be possible to delegate the user identity to some
other service.

GSSName name = context.getSrcName();
 Subject newSubject =
 com.sun.security.jgss.GSSUtil.createSubject(
 name,null);
 //set the execution subject and call doAs
 ...

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 61 of 80

● Delegation requires obtaining user credentials, in addition to the username, which
requires cooperation from the client — he should authorize credentials delegation to
enable this mode. This would be usually done together with mutual authentication,
to verify the server’s identity as well. Once the server obtains client’s Kerberos Ticket
(TGT), it can represent the client in calls to remote services, in addition to
performing local operations. The server’s actions are controlled by two Kerberos-
specific permissions: ServicePermission and DelegationPermission.

// client allows using its credentials
// with mutual authentication
GSSManager manager = GSSManager.getInstance();
GSSContext contextClient =
 manager.createContext(serverName,krb5Oid,
null,GSSContext.DEFAUL_LIFETIME);
contextClient.requestMutualAuth(true);
contextClient.requestCredDeleg(true);
...

//server obtains client's credentials
if (contextServer.getCredDelegState()) {
 GSSCredential credClient =
 contextServer.getDelegCr();
 //use the credentials to act as a client
 GSSContext contextDelegate =
 manager.createContext(backendName,krb5Oid,
 credClient,GSSContext.DEFAUL_LIFETIME);
}

Figure 4-6. GSS/JAAS Authentication

It is possible to configure the Kerberos provider to use an existing credentials cache so that the
login happens completely transparently.

// client JAAS configuration for GSS-API
com.sun.security.jgss.initiate {
 com.sun.security.auth.module.Krb5LoginModule
 required;

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 62 of 80

};

// server JAAS configuration for GSS-API
com.sun.security.jgss.accept {
 com.sun.security.auth.module.Krb5LoginModule
 required
 useKeyTab=true storeKey=true
 principal="nfs/host";
};

// default configuration for GSS-API
// if the above is not present
other {
...
}

Note: .NET provides good support for impersonation on Windows-only networks, but
delegation across the Internet is not possible. Java can do application-level impersonation and
is capable of supporting delegation across the Internet.

User Access Security — Basic
Once a distinguished principal has been identified as a result of the authentication step and
attached to the call context (usually associated with threads), it can be used in determining
resource access rights. In role-based systems, application code may operate not only with
specific principals, but also with their abstract roles, which results in more flexible system
configuration. So after establishing a principal, the server goes through an additional step of
mapping it to the possible application roles.

Each executing .NET thread has an associated CallContext, which carries around the
Principal and his Identity — they are either copied from the creating thread, or created anew
by CLR when code tries to access them for the first time.

WindowsPrincipal principal =
 (WindowsPrincipal) Thread.CurrentPrincipal;
WindowsIdentity identity =
 WindowsIdentity.GetCurrent();

A configurable policy governs the type of principal created by default: NoPrincipal,
UnauthenticatedPrincipal, WindowsPrincipal. An application, which is granted the
appropriate SecurityPermission, can set this policy imperatively:

AppDomain.CurrentDomain.SetPrincipalPolicy(
 PrincipalPolicy.WindowsPrincipal);

An application that possesses a proper SecurityPermission to control the principal can
replace the current thread’s principal. However, this permission is not required for normal
role-based checks:

GenericIdentity id = new GenericIdentity("user");
String[] roles = {"Manager","User"};
GenericPrincipal pr = new GenericPrincipal(
 id,roles);
Thread.CurrentPrincipal = pr;

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 63 of 80

To provide more consistent security architecture, .NET incorporates role-based security into
code access hierarchy by providing a PrincipalPermission, available for both declarative and
imperative checks. Checks can be performed by name, role, or combination of both.

[PrincipalPermissionAttribute(
 SecurityAction.Demand, Role = "PowerUser")]

Optionally, principal permission objects can be combined in code (but not declaratively!) to
support checks several identity/roles at once:

PrincipalPermission perm1 =
 new PrincipalPermission("John","Admin");
PrincipalPermission perm2 =
 new PrincipalPermission("PowerUser");
(perm2.Union(perm1)).Demand();

Finally, ordinary checks for user names and role can be performed in code by directly
accessing the IPrincipal object:

Principal principal = Thread.CurrentPrincipal;
if (principal.IsInRole("Admin"))
{
 //do something for Admin
} else if (principal.Identity.Name == "John")
{
 //do something for John
}

A sample application, demonstrating the user access checks in .NET, is provided as NET.IV.
CodeAuthorization.zip.

It is important to realize that .NET policy can not extend the final permission set granted to
the assembly, based on user’s identity. In other words, if an assembly A is granted, as a result
of policy evaluation, permission set PA, the same will be granted happen for any user
executing this assembly. This set can be further restricted based on the results of role and user
checks. This is in contrast to the way most modern operating systems, including Windows,
work: a user is granted certain additional privileges based on his identity or group
membership.

In Java, JAAS grants permissions based on user identity, as defined by name, as opposed to
the pure policy-based model, which grants the permissions based on the code’s origin.
Declarative security is set through the java.policy file — JAAS adds Principal entries to the
Java policy. As an important difference from .NET model, JAAS Principal-based model can
extend the permission set granted to a module. In the example below, the code, signed by
“MyPublisher”, is granted write permissions to “C:\” only if it is executed by “user”:

grant Signedby "MyPublisher" {
 permission java.io.FilePermission "c:\","read";
}

//an example of grant by username
grant Principal com.comp.PrincipalClass "user" {

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 64 of 80

http://www.onjava.com/onjava/2004/02/25/examples/NET.IV.CodeAuthorization.zip
http://www.onjava.com/onjava/2004/02/25/examples/NET.IV.CodeAuthorization.zip

 permission java.io.FilePermission "c:\","write";
}

Principal-based access policy enforcement is performed using PrivilegedAction and
impersonation. As has been explained in Part 3, running this class effectively asserts all
privileges granted to the code, including those based on the current Principal. Technically,
after doAs has been called with an impersonated Subject, java.lang.SecurityManager
updates current AccessControlContex from the policy file, adding permissions for the
impersonated user. An internal JAAS implementation of java.security.DomainCombiner is
responsible for instructing the installed SecurityManager to query JAAS policy and update
the AccessControlContext. In the server environment, which concurrently handles multiple
calls, it is important to use doAsPrivileged and pass it null AccessControlContex to force
policy re-evaluation by the Combiner and to create a new context customized for the user,
instead of borrowing the server’s existing one. At the security checkpoints during the
execution, the total granted permission set now includes code-based, as well as Principal-
based application permissions.

The Java.IV.JAASAuthorization.zip application demonstrates the effects of dynamic policy
evaluation in JAAS.

There is no notion of roles in the JAAS hierarchy; everything is determined by usernames.
Although not very convenient, roles and groups may be treated as named principals, and
access control may be imposed on them in the same way. Moreover, since a Subject may
contain any number of Principals, objects representing role(s) can be added to its Principal
collection. Later the Subject’s roles may be retrieved by requesting principals of only a
particular class, which denotes a particular role. To build application name-based role
hierarchies, JAAS defines com.sun.security.auth.PrincipalComparator interface, which
may be implemented by the Principal classes specified in the policy’s "grant" entries.
PrincipalComparator.implies method should return true when the specified Subject is in
a particular role:

// an example of role-based entry
grant Principal com.MySite.AppRole "PowerUser" {
 permission java.io.FilePermission "c:\","read";
}

// this class is used for building role hierarchy
public class AppRole implements
 PrincipalComparator {
 // the role this object represents
 public AppRole(String role) {...}

 //this method checks the Subject
 //for being in the role
 public boolean implies(Subject currSubject) {
 ...
 }
}

Subjects are assigned by JAAS to the current thread’s execution context, and are available for
examining directly from the code — therefore, programmatic security checks can also be
based on principal names, as obtained from the current execution context.

AccessControlContext ctxt =

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 65 of 80

http://www.onjava.com/onjava/2004/02/25/examples/Java.IV.JAASAuthorization.zip

 AccessController.getContext();
Subject subj = Subject.getContext(ctxt);
if (subj == null) {
 //no authenticated user
} else {
 Set principalsSet = subj.getPrincipals();
 Iterator iter = principalsSet.iterator();
 while(iter.hasNext()) {
 MyPrincipalClass princ =
 (MyPrincipalClass)iter.next();
 if (princ.getName().equals("MyUser")) {
 // have an authenticated user
 }
 }
}

Note: .NET has a very convenient, permission-based user access system. However, it can only
restrict the total permission set for an assembly, never extend it. JAAS makes use of dynamic
policies in Java to extend granted permission set with user-specific permissions.

User Access Security: Extended
In addition to the basic facilities for user access checks, extension packages on both platforms
define their own mechanisms.

ASP.NET provides security checks, which work on the top of regular CLR security facilities:

● FileAuthorizationModule — performs ACL checks on accessed .aspx and .asmx
files. It is active when Windows authentication is enabled, and is used to determine
whether the user passes Windows ACL checks.

● HTTP handlers — there are several of these specified in machine.config to prevent
disclosure of certain types of files. Note that this mechanism works separately from
the IIS-defined one, and only for the file extensions registered to ASP.NET, so
separate IIS configuration is needed to ensure full protection.

<httpHandlers>
 <add verb="*" path="*.vjsproj"
 type="System.Web.HttpForbiddenHandler"/>
 <add verb="*" path="*.java"

 type="System.Web.HttpForbiddenHandler"/>
 ...
 <add verb="*" path="*"
 type="System.Web.HttpMethodNotAllowedHandler"/>
</httpHandlers>

● URLAuthorizationModule — performs URL authorization by providing declarative
hierarchical mapping of users and roles to URI namespace. This mode and allows for
positive and negative assertions on the protected resources, and accepts wildcards “*”
for all users and “?” for anonymous users. There is a global configuration file, and
each subdirectory may have its own version of it, overwriting some attributes. The
hierarchy is parsed starting from the lowest level, and the first match wins. This is
certainly the quickest way to enable access control, but not necessarily the best,
because it scales poorly, and is not easily manageable, especially for multi-server
applications.

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 66 of 80

<authorization>
 <allow users="Don, MyDomain\Don" roles="Admin"
 verbs="GET, POST">
 <deny users="?" roles="Guest" >
</authorization>

Java Servlets and JSPs use role-based access control checks, which can be specified
programmatically or declaratively, similar to ASP.NET. The mapping between authenticated
users and security roles is not specified; it happens in a vendor-specific way. However, the
Servlet specification does standardize ACL declarations by security roles in the web.xml
deployment descriptor, which can protect web resources defined as HTTP methods applied to
URL-patterns. Also, the transport-guarantee element is considered during requests
evaluation. A side effect of this approach is that the resulting declarative access control
mechanism is rather coarse, on the file/operation level:

<security-constraint>
 <web-resource-collection>
 <web-resource-name>Restricted Servlets
 </web-resource-name>
 <url-pattern>/myserver/AccountingServlets/*
 </url-pattern>
 <url-pattern>/myserver/FinanceServlets/*
 </url-pattern>
 <http-method>POST</http-method >
 <http-method>GET</http-method >
 </web-resource-collection>
 <auth-constraint>
 <role-name>owner</role-name>
 </auth-constraint>
 <user-data-constraint>
 <transport-guarantee>INTEGRAL
 </transport-guarantee>
 </user-data-constraint>
</security-constraint>

Violation of the auth constraint will result in either in HTTP 401 (if unauthenticated) or
HTTP 403 (if authenticated, but ACL-rejected) status code being returned to the caller. For
cases of anonymous web users, the Web application’s deployment descriptor may contain a
<run-as> element, which will specify the identity that will be used to process the request. If it
is specified, the Servlet container is required to propagate this security identity in calls to the
EJB layer, whether in the same or different J2EE application, as was explained in the
Identities section.

Principal checks may be performed imperatively, using one of the methods exposed by
HttpServletRequest: getUserPrincipal, getRemoteUser, isUserInRole. They can be
used to provide finer-grained checks than declarative security allows for:

public void doGet(HttpServletRequest request,
 HttpServletResponse response) {
 java.security.Principal principal =
 request.getUserPrincipal();
 String user = request.getRemoteUser();
 if (user != null) {
 //have an authenticated user, check his name
 }

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 67 of 80

 if (request.isUserInRole("owner")) {
 //owner of the account
 }
}

EJB role-based security is similar to that of Servlets, and can be declarative or programmatic.
However, the declarative variant is finer-grained, as it allows access control up to methods-
level. Mapping of principals to roles is vendor-specific, but the EJB specification dictates role-
based ACL format in the bean deployment descriptor, with * as a wildcard for all permissions:

<assembly-descriptor>
 <security-role>
 <description>Role description</description>
 <role-name>UserRole</role-name>
 </security-role>
</assembly-descriptor>

<method-permission>
 <role-name>UserRole</role-name>
 <method>
 <ejb-name>UserAccess</ejb-name>
 <method-name>*</method-name>
 </method>
 <method>
 <ejb-name>OwnerAccess</ejb-name>
 <method-name>getUserInfo</method-name>
 </method>
</method-permission>

Using the <unchecked> element in the bean’s descriptor will bypass any authorization, even if
the <role-name> element is also specified.

Some methods may even be excluded from being called at deployment time by specifying
exclude list. This list provides directive from the application assembler to the Deployer that
these methods should be configured to deny any access:

<exclude-list>
 <method>
 <ejb-name>SomeBean</ejb-name>
 <method-name>problematicMethod</method-name>
 </method>
</exclude-list>

Alternatively, the principal’s attributes can be accessed from the bean’s code, using methods
exposed by EJBContext class. Note, that those methods may be invoked only in the EJB
business methods with security context present — otherwise, a java.land.
IllegalStateException will be thrown. Also, both the getCallerPrincipal and
isCallerInRole methods from EJBContext always operate on the caller identity, even if <run-
as> attribute was specified.

public class UserAccessBean
 implements SessionBean {
 EJBContext beanContext;

 public void getUserInfo() {

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 68 of 80

 java.security.Principal principal =
 beanContext.getCallerPrincipal();
 if (beanContext.isCallerInRole("UserRole")) {
 //authenticated user
 }
 }
}

Note: For extended access checks, both systems provide an adequate level of declarative
support.

Chapter 4 — Conclusions
This section addressed the user authentication and authorization features of Java and .NET
platforms. .NET suffers from tight integration with IIS, without which it is not really capable
of performing authentication. In terms of access control, it does provide a convenient
mechanism that meshes nicely with its CAS features. Java, in addition to the standard
authentication types, offers the powerful JAAS mechanism as its primary vehicle for adding
authentication and Principal-based authorization to Java applications, which adds a lot of
flexibility to the design choices.

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 69 of 80

Conclusion and Summary
The following table summarizes the items about both platforms which were highlighted
previously, and assigns a crude score for each reviewed feature. The points, following each
category, are present for helping to identify some issues or referring to strong points of each
platform, but at the end they are not simply summarized to arrive at the final score. Many
items, especially when both platforms provide similar solutions or face similar issues, are not
listed here — it is necessary to consult the appropriate section to see the complete picture and
understand the reasoning behind these scores.

Category .NET Java

Configuration Fair Excellent

Multiple installs - Single shared configuration for
each installed version

+ Configurable multiple installations

Command-line - No command-line overrides + Multiple command-line overrides

Code
Containment

Very Good Good

Verification + All code is verified - Local code is not verified

Runtime checks - Combination of static analysis and
added verification code

+ Bytecode stack preserved for
checks

Isolation model + Well-structured and
comprehensible

Languages + An additional runtime constant
modifier

- Compile-time constants only

Cryptography Good Good

Structure - Heavily relies on Windows - All providers have to be signed by
a trusted CA, architecture dictated
by the obsolete US export law

Algorithms + Significant community support

Instantiation + Creation by of algorithms by
names, strong defaults

+ Allows choice by specifying
additional parameters

Secure
Communication

Fair Very Good

Platform - No support besides IIS, some
samples available

+ JSSE as a standard component of
JDK

Application - No support + Standard GSSAPI implementation

Web Services + Up to date support of WSA - Only supported by external
vendors

Code Protection Good Good

Certificates - Poor default functionality (WSE
corrects the problem)

+ Solid and easy API

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 70 of 80

Code signing + Choice of strong names and
publisher signing

+ JAR allows multiple signers

Access control + Configurable protection policy

Code Access
Security

Excellent Good

Permissions + A rich permission set

Policy + Very sophisticated policy structure + Unlimited number of policies,
command-line overrides

 - Machine-wide policy may cause
conflicts between applications

Access control + Very fine-grained and powerful
mechanism

- Privileged code grants all-or-
nothing permissions

 - FullTrust is granted to all local
code by default

User
Authentication

Good Very Good

Structure - Heavily relies on Windows and IIS + Part of J2SE/J2EE specifications

Authentication
modes

+ Multiple modes out of the box + Very flexible mechanism

Impresonation + Integration with Windows - Application-level only

 + GSS enables application-level
delegation

User Access
Security

Good Excellent

Types of checks + Explicit and permission-based —
in code, declarative in ASP.NET

+ Declarative checks in J2EE,
explicit — in code

Dynamic policy - Static policy evaluation + Dynamic policy evaluation and
user-based permission grants

Table 1.Platform feature summary

Closing Comments
There are several specific points that can be taken from the above table, as well as from
reading the previous chapters. Java usually provides a much more configurable and flexible
solution, while .NET designers in many cases were able to simplify the subsystem’s structure
and API. A well-known downside of .NET is its tight bounding to the underlying system and
reliance on its services — CryptoAPI and IIS are examples of this.

Overall, the picture seems to be quite spotty, because each platform has its strengths and
weaknesses: when issues like communication security and user access control start coming
into play, Java seems to be a good choice, while .NET provides a far more superior
mechanism for doing code access security and did the right thing with introducing strong
names (which also helped to address versioning).

Despite few problematic areas, both .NET and Java have been consistently earning high
marks on various independent security comparisons, which should not be too surprising,

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 71 of 80

considering the long history of Java in the enterprise and the amount of effort that Microsoft
is putting into making .NET a premier Windows development platform. Traditionally, and
.NET is not an exception, Microsoft products have done best in the closed homogenous
environment of all-Windows networks, while Enterprise Java performs quite well in
heterogeneous environments. If we consider an all-Microsoft network, its services allow
system integration and utilization of .NET’s security features to their fullest potential. In the
case of a mixed environment, Java’s platform-independent security features may be more
useful than those of .NET.

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 72 of 80

Epilogue — Upcoming Security Features
Both platforms are expecting significant new releases (J2SE 1.5 and .NET “Whidbey”) in the
current year, and a brief preview of the upcoming security features is attempted in this
epilogue. As before, we will focus on the security features of the platforms themselves,
avoiding more broad discussion of additional products and services. The security features will
be reviewed by protection categories, to ensure that similar items are compared in each case
and to see how they augment the existing functionality.

Summary of Future Security Features: Java
In terms of Java security, this is an evolutionary, rather than a revolutionary release, because it
does not bring any new, ground-breaking changes. The updates are mostly concentrated in
the areas of cryptography and PKI.

Specifically, JSSE experiences a significant change:

● A new SSL/TLS abstraction layer is added to separate its logic from threading and I/
O issues.

● JSSE will now use JCE providers exclusively.
● External provider pluggability will be allowed.
● By default, will use a X.509 PKIX-compliant TrustManager that is based on CertPath

provider.
● Default SunJSSE provider will include support for Kerberos suites.
● AES_256 cipher suites will be enabled by default in the SunJSSE provider.

JCE is going to see some new functionality as well:

● PKCS#11 provider will be included, which adds support for hardware-based
accelerators and smartcards.

● New APIs for ECC will be added.
● SunJCE provider will include RSA encryption and several additional algorithms.
● Several parameters will be added or enhanced to provide support for XML

Encryption algorithms.
● On Solaris, better integration with the OS’ cryptographic framework will result in

significant performance improvements.

Java PKI is going to be updated as follows:

● Smartcard-based keystores are going to be available, thanks to the added PKCS#11
provider.

● Enhanced PKCS#12 implementation will be included.
● Client-side support for On-Line Certificate Service Protocol (OCSP) will be added,

and APIs for indirect CRLs will be extended.
● CertPath implementation will be PKIX-compliant.

JAR files will benefit from the newly added support for Time-Stamp Protocol (TSP), which will
enhance the verification of archives.

The Simple Authentication and Security Layer (SASL) will be supported through new APIs and
a SASL provider for JCA.

Finally, the JAAS Kerberos module in 1.5 will have an option for TGT renewals, which should
help avoid unnecessary service re-authentications.

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 73 of 80

http://www.ietf.org/rfc/rfc2560.txt
http://www.ietf.org/rfc/rfc3161.txt
http://www.ietf.org/rfc/rfc2222.txt

Summary of Future Security Features: .NET
For .NET, more changes are in store in the upcoming release, which address existing
shortcomings and add new types of functionality. These changes are quite broad in scope and
make a number of significant new features available to .NET developers.

Application Identity Based Security is a .NET buzzword for providing a restricted execution
environment, based on information found in application and deployment manifests. New
tools will be bundled with the next release to help determine the required application
permission set. This identity-based schema is designed to fit into the newly introduced
ClickOnce programming model in Windows and allow deployment of semi-trusted
applications.

CAS will be extended to include demand choices, which will allow for presenting several
choices for satisfying demands, and friend assemblies will be introduced, similar to friend
classes in C++.

PKI will be fully integrated in the upcoming release, so falling back on CryptoAPI or WSE will
no longer be necessary.

In addition to XML Signature, the upcoming release will include support for XML
Encryption, both being fully integrated with the new PKI.

File-based Windows access control will be incorporated into the framework, which will allow
setting file ACLs from managed applications.

Many of .NET’s communication protection pitfalls are going to be fully or partially resolved
in the upcoming release:

● Allowing decoupling from IIS via adding server-side HTTP listeners.
● Providing client and server classes for SSL conversation, and means of identity

propagation over streams.
● The new messaging framework, codenamed “Indigo”, will incorporate all

functionality formerly found in WSE into the core framework.

Last, but not least, ASP.NET 2.0 will include enhancements that take care of the drudgery of
programming Forms-based authentication and authorization via its new server controls, as
well as Membership and Role Management APIs.

Specifics: Cryptography
In its 1.5 release, Java extends its already quite rich offering in the cryptography space,
described in Chapter 2, with several new features.

Probably the most important addition to JCE is a new PKCS#11 provider, which, in contrast
to other existing JCE providers that contain cryptographic implementations themselves,
simply serves as a bridge to the installed PKCS#11 v2.0 implementations, to enable support
for hardware accelerators and smartcards in Java applications. Its introduction caused a
number of updates/enhancements to the existing core JCA/JCE and PKI classes, as well as
creating new ones, which will allow communication with hardware tokens and smartcard-
based keystores. Tools like Keytool and jarsigner have been updated as well to utilize the
extended functionality available with the new provider. Additionally, only on Solaris 10
platform, JCE will take advantage of the Solaris Cryptographic Framework’s PKCS#11
provider, which will result in significant (i.e., orders of magnitude) performance
improvements.

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 74 of 80

http://java.sun.com/j2se/1.5.0/docs/guide/security/p11guide.html

JCE will be furnished with additional APIs to better support Elliptic Curves (ECC). Users,
who previously have had to rely on external providers, can now use a number of standard
ECC classes from the java.security namespace.

Several classes will be added or extended to support OAEP and PSS padding schemas, as
defined in PKCS#1 v2.1 and W3C Recommendations for XML Encryption, enabling full
support for RSA-OAEP Key Transport algorithm.

In javax.crypto namespace, existing classes are updated to facilitate key-related operations:

● javax.crypto.EncryptedPrivateKeyInfo is extended with additional overloads of
getKeySpec method to enable easier retrieval of private key information.

● javax.crypto.Cipher class has new methods that allow retrieval of maximum values
for key lengths and parameters.

SunJCE default provider will have several new algorithms, which makes it a more attractive
candidate for use in development: HmacSHA (256-512), RSA and RC2 encryption, and
additional PBE algorithms.

Java’s PKI implementation benefits from the improved PKCS#12 keystore implementation,
which will have additional protection algorithms and support keystore read/write operations.
This enhancement will substantially facilitate key and certificate exchange, especially when it
comes to browsers, which tend to use PKCS#12 format for these operations.

Client-side support for the On-Line Certificate Status Protocol (OCSP), conforming to RFC
2560, will be added to PKI. In case of problems with the OCSP operation Java applications
will fail-over to the traditional CRL checking via Certification Path API, which now boasts full
PKIX compliance after passing the Public Key Interoperability Test Suite (PKITS) .

.NET’s story with PKI has been quite spotty up until now (see Chapter), to say the least. The
upcoming release brings the long overdue integration of full PKI into the .NET framework,
exposing managed implementations of Windows APIs for X509 and PKCS#7. Support for the
former includes newly updated X509CertificateEx, which essentially brings the features of
X.509 certificate class from WSE into the core framework, and allows access to all certificate
properties, as well as validation and chaining. Added support for PKCS#7 means easier
interfacing to cryptography applications, written in other systems, particularly in Java, which
already supports PKCS#7.

Continuing with its general XML push, .NET adds a fully W3C compliant implementation of
the XML Encryption recommendation. This implementation provides most popular
symmetric and asymmetric algorithms, such as 3DES, multiple AES, RSA, and is flexible
enough to allow encryption of multiple sections inside one document with different keys.
Both the existing classes for XML Digital Signature and the new ones for XML Encryption
take advantage of functions in the integrated .NET PKI to utilize X.509 certificates for their
operations.

Specifics: Secure Communication
The already-thorough Java offerings for communication protection at the platform and
application levels, described in Chapter 2, are updated by enriching the existing JSSE model
and further extended by adding SASL support.

Java’s platform-level mechanism, JSSE, undergoes a significant facelift with an addition of a
SSLEngine (fully described in the JSSE Reference Guide Addendum), which nicely abstracts

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 75 of 80

http://www.w3.org/TR/xmlenc-core
http://java.sun.com/j2se/1.5.0/docs/guide/security/jce/JCERefGuide.html#SupportHMACSHA
http://www.ietf.org/rfc/rfc2560.txt
http://www.ietf.org/rfc/rfc2560.txt
http://www.ietf.org/rfc/rfc3280.txt
http://csrc.nist.gov/pki/testing/x509paths.html
http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/jsse-tiger-beta1.html
http://java.sun.com/j2se/1.5.0/docs/guide/security/sasl/sasl-refguide.html
http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/jsse-tiger-beta1.html

the logic of SSL/TLS layer and allows advanced applications to take complete control of I/O
and threading issues. At the same time, the simplicity of traditional socket-stream SSL
programming has been preserved, and the SSLSocket class still implements that functionality.

An important change for JSSE is switching to using JCE providers exclusively — in version
1.4, it still contains internal cryptographic code, which will be gone in the new release. Thus,
JSSE will be able to take advantage of any configured JCE provider, including hardware
accelerators.

Additionally, as a result of relaxing US export restrictions, JSSE will now allow plugging in
external providers, which should support a specific set of cipher suites. The JSSE Reference
Guide Addendum contains the complete listing of required ciphers.

Kerberos suites have been included in the default SunJSSE provider, which provide support
for Kerberos-based TLS communication, as described in RFC 2712.

At the application-level, the existing GSS provider is augmented by adding a SASL
implementation, which provides a lightweight authentication and security services for
network communication. SASL is utilized by several popular modern Internet protocols,
among them LDAP v3 and IMAP v4. Its advantage over JSSE and GSS lies primarily in very
lightweight infrastructure requirements, whereas those two require complex setup, like PKI
and Kerberos. However, it is expected that JSSE, GSS, and SASL mechanisms will be layered
on top of each other in many implementations.

.NET, which has been clearly lagging in the communication space (see Chapter 2), finally
catches up by providing a managed SSL/TLS implementation that is capable of protecting
TCP-based socket-level communication. It operates via the SslClientStream and
SslServerStream classes, and is very similar to the model used in Java. Fortunately, .NET
does not stop at this, and adds support for a standalone HTTP listener (implemented in class
HTTPWebListener), essentially removing mandatory application reliance on IIS for web
interactions. Actually, a similar class has existed in .NET’s Remoting infrastructure since v1.0
— it was used in standalone applications under the covers for exposing Remoting services on
HTTP channels. Now its functionality will be upgraded to include support for authentication
and SSL.

The new “Indigo” messaging framework will incorporate all security standards from Web
Services Architecture (WSA) released to date, which were formerly found in WSE. It further
generalizes the concept of secure messaging by applying similar message-based security
protection to different types of messaging mechanisms, like ASMX and EnterpriseServices.
The “Indigo” framework partitions security functionality in three security layers: TurnKey,
Custom, and Extensibility. A majority of applications (80%) is expected to fall into the
TurnKey category, which requires fully declarative support from the developers by adding
declarative attributes and editing policy settings. The latter two categories are used for
programmatical customization of the framework at different levels.

Specifics: Code Protection and Deployment
The signing process for Java’s main code distribution vehicles, JAR files, has been described in
Chapter 3. One of the shortcomings of the existing process is the inability to determine the
validity of the archive relative to the certificate’s expiration time. The addition of Signature
Timestamps solves this problem by adding timestamps to the JAR signatures, thus allowing
checking whether the signing certificate was valid at the time of signing. The jarsigner tool
will be updated to include new signing options, and the JAR API in the java.security
package will extended with new classes and methods to access the timestamp information.

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 76 of 80

http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/jsse-tiger-beta1.html#PLUG
http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/jsse-tiger-beta1.html#PLUG
http://www.ietf.org/rfc/rfc2712.txt
http://www.ietf.org/rfc/rfc2251.txt
http://www.ietf.org/rfc/rfc2060.txt
http://java.sun.com/j2se/1.5.0/docs/guide/security/time-of-signing-beta1.html
http://java.sun.com/j2se/1.5.0/docs/guide/security/time-of-signing-beta1.html

.NET extends its existing deployment model (XCOPY or MSI-based) by introducing the
ClickOnce deployment and update mechanism for server-based installations. It is based on
using signed manifests and deployment files, similar to the model J2EE has been using for EJB
deployments.

However, there are significant improvements waiting ahead — for details of the manifest, see
the preliminary MSDN Longhorn documentation. First, the application manifest will include
security requirements of the application (not those of individual assemblies). These trust
requests and the application’s evidence are evaluated by the newly-introduced TrustManager,
and presented for the user’s consent if an application requires additional permissions outside
of the Secure Execution Environment (SEE). The results of this evaluation and the user’s
decision are stored on per-user and per-machine levels and used later for CAS decisions (see
CAS section). Secondly, deployment manifests specify update policy, which allows secure,
XML Digital Signature-based application updates. An interesting detail about the manifest’s
structure is that it is the application manifest itself that is signed, and not the individual
assemblies comprising the application — they are represented in the manifest by their digests.
In this respect, structure of .NET’s application manifest resembles signed JAR files in Java.

The designers of .NET’s Base Class Library (BCL) introduced a new feature for limiting code
exposure: friend assemblies. The premise is that the internal classes in a particular assembly
are declared to be accessible from another assembly, referenced by its PublicToken, much like
how the friend declaration works in C++ for classes. Following the general .NET approach,
this extension is introduced via a new assembly-level attribute, InternalsVisibleTo.

Specifics: Code Access Security
.NET’s CAS model, described in Chapter 3, offers an excellent framework for code access
security. However, it is rendered completely unusable for locally installed applications, whcih
are blankly granted FullTrust by the default policy, meaning that any CAS permission check
will succeed. The upcoming release of the .NET framework includes the
ApplicationSecurityManager and TrustManager, which will make the decision of granting
application trust requests based on the machine policy in effect and the application manifests
(see the Deployment section).

At the same time, developers are urged to develop their applications targeting the Internet
permission set, as an application sandbox with low trust and a “safe” permission set
(preliminary named Secure Execution Environment, or SEE) will be introduced in the
Longhorn Windows OS (due in 2005) for executing applications. However, according to the
preliminary MSDN Longhorn documentation, Longhorn’s security system, as it is presently
designed, does not attempt to verify trust of local exe files which do not have deployment
manifests, and simply grants them the same FullTrust as before. Hopefully, this policy will
change by the release time, because, with its present design, this setup presents an
unfortunate way to bypass the system checks in local scenario.

To allow several choices for attribute-based CAS demands, CLR adds DemandChoice and
LinkDemandChoice actions. Their logic is similar to the ordinary demands, but they allow
specifying several attributes with different permission sets. Satisfying any of them is sufficient
for the success of the overall check.

Specifics: Authentication and Authorization
Java’s flexible Authentication and Authorization Service, JAAS, has been reviewed in detail in

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 77 of 80

http://longhorn.msdn.microsoft.com/lhsdk/ndp/gngrfClickOnceApplicationManifest.aspx
http://longhorn.msdn.microsoft.com/lhsdk/security/tasks/fulltrust.aspx

Chapter 4, which offers Krb5LoginModule among other so-called Pluggable Authentication
Modules (PAM’s). Presently, it does not include an option for TGT renewal, which causes
their expiration in long-running services and requires either restarting the process or user
intervention for re-authentication. Setting the newly introduced configuration option,
renewTGT, to true will now result in automatic TGT renewals whenever expired tickets are
retrieved from the ticket cache.

ASP.NET 2.0, which remains the primary Web development platform for .NET, brings a
whole slew of improvements for its existing Forms-based authentication model (see Chapter
4). Most importantly, it introduces Membership and Role Management APIs (found in System.
Web.Security namespace), which take care of tedious programming tasks by essentially
eliminating, or significantly reducing the need for, writing security plumbing.

The Membership API takes care of the issues commonly present in password-based systems,
like secure credential operations (CRUD), finding and authenticating users, and password
management. Role Management API, based on ASP.NET Role model in 1.x, works together
with the Membership API (although it can be accessed separately) to solve user-to-role
mapping issue and can be used programmatically and declaratively, in Web.config. Both APIs
use a Provider Model design pattern, and are highly extensible (providers for SQL Server and
Access are included in the default installation). If these APIs eventually are made available
outside of the ASP.NET umbrella (like WSE Pipeline), they will provide a great and flexible
addition to many types of .NET applications besides Web-based ones.

New server-based GUI controls for ASP.NET take advantage of these new APIs, further
reducing the amount of required programming, often making it as simple as dropping the
controls on the form. The following controls will be made available, among others, in the new
release: Login, LoginName, LoginStatus, LoginView, and PasswordRecovery.

Conclusions
Java does not offer any significant new features in the upcoming release, extending instead its
offerings in existing categories.

.NET, on the other hand, aggressively pursues new security functionality. It will catch up with
(or even pass) Java on several topics where Java currently holds an advantage, and extend its
lead in the areas of its dominance. Most prominently it catches up in the categories of
communication protection and PKI, and it goes one more step ahead by adding full support
for the W3C XML Encryption recommendation.

However, it is worth noting that with incorporation of .NET into the core Windows OS
(starting with Windows 2003 Server), it is becoming progressively harder to distinguish .NET-
specific features from OS features, as in the upcoming versions they are often designed to
complement each other. This confusion might stem from the fact that Microsoft authors and
spokespeople often do not specifically distinguish between the two in their publications and
presentations, thus muddying the overall picture.

Incidentally, adding support for the WSA family of standards into the core .NET libraries
prior to submitting them for approval by OASIS (with the exception of WS-Security, which
already goes through the technical committee review) means that Microsoft, probably does
not expect any significant changes to the released set of specifications, or does not intend to
submit them at all. Its intentions remain to be seen, but they certainly do not make life easier
for Sun’s developers, who have to shoot at a moving target in this case.

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 78 of 80

http://www.oasis-open.org/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

Bibliography
● Dovydaitis, V. and Piliptchouk, D. (2002) Enterprise Java and .NET security side-by-

side. In the Computer Security Journal, Vol XVIII, Numbers 3-4, 2002.
● LaMacchia, B. et al (2002) .NET Framework Security. Addison-Wesley, Boston, MA.
● Gough, J. (2001) Compiling for CLR. Prentice Hall
● Box, D. (2002) Essential .NET, Volume I: The Common Language Runtime. Addison-

Wesley, Boston, MA.
● Garms, J. (2001) Professional Java Security. Wrox Press.
● Roman, E. (2001) Mastering Enterprise JavaBeans (2nd Edition). John Wiley & Sons.
● Microsoft MSDN website
● Microsoft GotDotNet website
● Microsoft ASP.NET website
● .NET 247 website
● Sun’s Java website
● IBM’s developerWorks website
● IBM’s alphaWorks website
● TheServerSide J2EE website
● JavaWorld website

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 79 of 80

http://msdn.microsoft.com/
http://www.gotdotnet.com/
http://www.asp.net/
http://www.dotnet247.com/
http://java.sun.com/
http://www-136.ibm.com/developerworks
http://www.alphaworks.ibm.com/
http://www.theserverside.com/
http://www.javaworld.com/

About the Author
Denis Piliptchouk
Denis is a senior software architect with SunClinical Data Institute (a division of Eclipsys
Corporation) with thirteen years of expertise architecting and securing Enterprise systems for
healthcare, semiconductor, and avionics industries. He holds MS in Computer Science, has
been involved in security research projects, has publications and presentations in the area of
application security. He can be reached at dpiliptchouk@hotmail.com

Copyright © 2004 O'Reilly Media, Inc. All rights reserved. 80 of 80

mailto:dpiliptchouk@hotmail.com

	Java vs .NET Security
	Table of Contents
	Introduction
	Security Configuration and Code Containment
	Cryptography and Communication
	Code Protection and Code Access Security
	Authentication and User Access Security
	Conclusion and Summary
	Epilogue — Upcoming Security Features
	Bibliography
	About the Author

