
1

Knowledge-based recommender systems
Robin Burke

Department of Information and Computer Science
University of California, Irvine

burke@ics.uci.edu

(To Appear in the Encyclopedia of Library and Information Science.)

1. Introduction
Recommender systems provide advice to users about items they might wish to purchase
or examine. Recommendations made by such systems can help users navigate through
large information spaces of product descriptions, news articles or other items. As on-line
information and e-commerce burgeon, recommender systems are an increasingly
important tool. A recent survey of recommender systems is found in (Maes, Guttman &
Moukas, 1999). See also (Goldberg et al. 1992), (Resnick, et al. 1994), and (Resnick &
Varian, 1997) and accompanying articles.

The most well known type of recommender system is the collaborative- or social-
filtering type. These systems aggregate data about customers’ purchasing habits or
preferences, and make recommendations to other users based on similarity in overall
purchasing patterns. For example, in the Ringo music recommender system (Shardanand
& Maes, 1995), users express their musical preferences by rating various artists and
albums, and get suggestions of groups and recordings that others with similar preferences
also liked.

Content-based recommender systems are classifier systems derived from machine
learning research. For example, the NewsDude news filtering system is a recommender
system that suggests news stories the user might like to read (Billsus & Pazzani, 1999).
These systems use supervised machine learning to induce a classifier that can
discriminate between items likely to be of interest to the user and those likely to be
uninteresting.

A third type of recommender system is one that uses knowledge about users and
products to pursue a knowledge-based approach to generating a recommendation,
reasoning about what products meet the user’s requirements. The PersonalLogic recom-
mender system offers a dialog that effectively walks the user down a discrimination tree
of product features.1 Others have adapted quantitative decision support tools for this task
(Bhargava, Sridhar & Herrick, 1999). The class of systems that we will concentrate on in
this paper draws from research in case-based reasoning or CBR (Hammond, 1989;
Kolodner, 1993; Riesbeck & Schank, 1989). The restaurant recommender Entree (Burke,
Hammond & Cooper, 1996; Burke, Hammond & Young, 1997) makes its
recommendations by finding restaurants in a new city similar to restaurants the user
knows and likes.2 The system allows users to navigate by stating their preferences with
respect to a given restaurant, thereby refining their search criteria.

Each of these approaches has its strengths and weaknesses. As a collaborative
filtering system collects more ratings from more users, the probability increases that

                                                          
1 <URL: http://www.personallogic.com/>
2 <URL: http://infolab.ils.nwu.edu/entree/>
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someone in the system will be a good match for any given new user. However, a
collaborative filtering system must be initialized with a large amount of data, because a
system with a small base of ratings is unlikely to be very useful. Further, the accuracy of
the system is very sensitive to the number of rated items that can be associated with a
given user (Shardanand & Maes, 1995). These factors contribute to a “ramp-up” problem:
until there is a large number of users whose habits are known, the system cannot be
useful for most users, and until a sufficient number of rated items has been collected, the
system cannot be useful for a particular user.

A similar ramp-up problem is associated with machine learning approaches to
recommendation. Typically, good classifiers cannot be learned until the user has rated
many items. The NewsDude system avoids this problem by using a nearest-neighbor
classifier that works with few examples, but the system can only base its
recommendations on ratings it has, and cannot recommend stories unless they are similar
to ones the user has previously rated.

A knowledge-based recommender system avoids some of these drawbacks. It does
not have a ramp-up problem since its recommendations do not depend on a base of user
ratings. It does not have to gather information about a particular user because its
judgements are independent of individual tastes. These characteristics make knowledge-
based recommenders not only valuable systems on their own, but also highly
complementary to other types of recommender systems. We will return to this idea at the
end of this article.

1.1 Example
Figure 1 shows the initial screen for the Entree restaurant recommender. The user

starts with a known restaurant, Wolfgang Puck’s “Chinois on Main” in Los Angeles. As
shown in Figure 2, the system finds a similar Chicago restaurant that combines Asian and
French influences, “Yoshi’s Cafe.”3 The user, however, is interested in a cheaper meal
and selects the “Less $$” button. The result in Figure 3 is a creative Asian restaurant in a
cheaper price bracket: “Lulu’s.” Note, however, that the French influence has been lost –
one consequence of the move to a lower price bracket.

Figures 4 through 7 show a similar interaction sequence with the knowledge-based
recommender system at the e-commerce portal site “Recommender.com”. The search
starts when the user enters the name of a movie that he or she liked, “The Verdict,” a
courtroom drama starring Paul Newman. The system looks up this movie and finds a
handful of others that are similar, one of which appears in Figure 5. The top-rated
recommendation is a comedy, however, and the user, in this case, wants something more
suspenseful. The “Add Feature” menu seen in Figure 6 allows the user to push the search
in a slightly different direction, specifying that that the movie must also have a “Mystery
& Suspense” component. Figure 7 shows the results of this search: the system finds “The
Jagged Edge.” This movie combines courtroom drama with murder mystery.

                                                          
3 Note that the connection between “Pacific New Wave” cuisine and its Asian and French culinary
components is part of the system’s knowledge base of cuisines.
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Figure 1: Entry point for the Entree system
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Figure 2: Similarity-based retrieval in Entree



5

Figure 3: Navigation using the "Less $$" tweak
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Figure 4: Entry point for Recommender.com movie recommender

Figure 5: Similarity based retrieval in the movie recommender
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Figure 6: Applying the "Add Feature" tweak
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Figure 7: Result of adding the "Mystery and Suspense" feature as a tweak
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2. History
Both Entree and Recommender.com are FindMe knowledge-based recommender
systems. FindMe systems are distinguished from other recommender systems by their
emphasis on examples to guide search and on the search interaction, which proceeds
through tweaking or altering the characteristics of an example.

The FindMe technique is one of knowledge-based similarity retrieval. There are two
fundamental retrieval modes: similarity-finding and tweak application. In the similarity
case, the user has selected a given item from the catalog (called the source) and requested
other items similar to it. To perform this retrieval, a large set of candidate entities is
initially retrieved from the database. This set is sorted based on similarity to the source
and the top few candidates returned to the user.

Tweak application is essentially the same except that the candidate set is filtered prior
to sorting to leave only those candidates that satisfy the tweak. For example, if a user
responds to item X with the tweak “Nicer,” the system determines the “niceness” value of
X and rejects all candidates except those whose value is greater.

The first FindMe system was the Car Navigator, an information access system for
descriptions of new car models. In this system, cars were rated against a long list of
criteria such as horsepower, price or gas mileage, which could be directly manipulated.
Retrieval was performed by turning the individual criteria into a similarity-finding query
to get a new set of cars. After some experimentation with this interface, we added the
capability of making large jumps in the feature space through buttons that alter many
variables at once. If the user wanted a car “sportier” than the one he was currently
examining, this would imply a number of changes to the feature set: larger engine,
quicker acceleration, and a willingness to pay more, for example. The introduction of
these buttons marked the beginning of what is now the FindMe signature: conversational
interaction focused around high-level responses to particular examples, rather than on
retrieval based on fine-grained details. Although direct manipulation of the features was
appealing in some situations, we found that most users preferred to use these tweaks to
redirect the search.

For our next prototype, we turned our attention to the more complex domain of
movies, which had already gotten attention from collaborative filtering researchers. Here
we returned to a retrieval approach, letting users find movies similar to ones they already
knew and liked. Our movie recommender PickAFlick made several sets of suggestions,
introducing the idea of multiple retrieval strategies, different ways of assessing the
similarity of items. If a PickAFlick user entered the name of the movie “Bringing Up
Baby,” a classic screwball comedy starring Cary Grant and Katharine Hepburn, the
system would locate similar movies using three different strategies. First, it would look
for movies that are similar in genre: other fast-paced comedies. As Figure 8 shows, it
finds “His Girl Friday,” another comedy from the same era starring Cary Grant, as well
as several others. The second strategy looks for movies with similar casts. This strategy
will discard any movies already recommended, but it finds more classic comedies, in
particular “The Philadelphia Story,” which features the same team of Grant and Hepburn.
The director strategy returns movies made by Howard Hawks, preferring those of a
similar genre.
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Figure 8: Multi-strategy retrieval in PickAFlick
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The following system RentMe was an apartment-finding recommender system.
Unlike cars and movies, there is no easy way to name particular apartments, so our
standard entry point, a known example, was not effective in this domain. We had to
present a fairly traditional set of query menus to initiate the interaction. The list of
apartments meeting these constraints forms the starting point for continued browsing.
RentMe used natural language processing to generate its database, starting from a text file
of classified ads for apartments. The terse and often-agrammatical language of the
classified ads would have been difficult to parse rigorously, but a simple expectation-
based parser (Schank & Riesbeck, 1981) worked well, much better than simple keyword
extraction.

Entree was our first FindMe system that was sufficiently stable, robust and efficient
to serve as a public web site. All of the previous FindMe systems were implemented in
Common Lisp and kept their entire corpus of examples in memory. While this design had
the advantage of quick access and easy manipulation of the data, it was not scalable to
very large data sets. The Entree system was written C++ and used an external database
for its restaurant data. It has been publicly accessible on the web since August of 1996.

Kenwood, the last domain-specific FindMe system, allowed users to navigate through
configurations for home theater systems. The user could browse among the
configurations by adjusting the budget constraint, the features of the room or by adding,
removing or replacing components. Our database was not of individual stereo
components and their features, but rather entire configurations and their properties. Since
we were dealing with configurations of items, it was also possible to construct a system
component by component and use that system as a starting point. This made the search
space somewhat different than the other systems discussed so far, in that every
combination of features that can be expressed actually exists in the system.4

3. Recommender Personal Shopper
The evolution of FindMe systems demonstrates several characteristics they share: (i)

the centrality of examples, (ii) conversational navigation via tweaks, (iii) knowledge-
based similarity metrics, and (iv) task-specific retrieval strategies. The recommendation
engine of the Recommender.com site, the Recommender Personal Shopper (RPS),
represents the culmination of the FindMe research program.5 It is a domain-independent
implementation of the FindMe algorithm that interfaces with standard relational
databases. Our task in building RPS was to create a generic recommendation capability
that could be customized for any domain by the addition of product data and declarative
similarity knowledge.

3.1 Similarity
Our initial FindMe experiments demonstrated something that case-based reasoning

researchers have always known, namely that similarity is not a simple or uniform
concept. In part, what counts as similar depends on what one’s goals are: a shoe is similar
to a hammer if one is looking around for something to bang with, but not if one wants to
extract nails. FindMe similarity measures therefore have to be goal-based, and consider

                                                          
4 An adapted version of Kenwood was part of the web presence for Kenwood, USA in 1997-1998.
5 See also (Burke, 1999).
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multiple goals and their tradeoffs. Typically, there are only a handful of standard goals in
any given product domain. For each goal, we define a similarity metric, which measures
how closely two products come to meeting the same goal. Two restaurants with the same
price would get the maximum similarity rating on the metric of price, but may differ
greatly on another metric, such as quality or type of cuisine.

Through the various FindMe prototypes, we looked at the interactions between goals,
and experimented with combinations of metrics to achieve intuitive rankings of products.
We found there were well-defined priorities attached to the most important goals and that
they could be treated independently. For example, in the restaurant domain, cuisine is of
paramount importance. Part of the reason is that cuisine is a category that more or less
defines the meaning of other features – a high-quality French restaurant is not really
comparable to a high-quality burger joint, partly because of what it means to serve
French cuisine.

We can think of the primary category as the most important goal that a
recommendation must satisfy, but there are other goals that must be factored into the
similarity calculation. For example, in the Entree restaurant recommender system, the
goals were cuisine, price, quality, and atmosphere applied in rank order, which seemed to
capture our intuition about what was important about restaurants. It is of course possible
that different users might have different goal orderings or different goals altogether. A
FindMe system may therefore have several different retrieval strategies, each capturing a
different notion of similarity. A retrieval strategy selects the goals to be used in
comparing entities, and orders them giving rise to different assessments of similarity.
PickAFlick, for example, created its multiple lists of similar movies by employing three
retrieval strategies: one that concentrated on genre, another focused on actors, and a third
that emphasized direction.

3.2 Sorting algorithm
The FindMe sorting algorithm begins with the source entity S, the item to which

similarity is sought, such as the initial entry point provided by the user, and a retrieval
strategy R, which is an ordered list of similarity metrics M1..Mm. The task is to return a
fixed-size ranked list of target entities of length n, T1..n, ordered by their similarity to S.
Our first task is to obtain an unranked set of candidates T1..j from the product database.
This retrieval process is discussed in the next section.

Similarity assessment is an alphabetic sort, using a list of buckets. Each bucket
contains a set of target entities. The bucket list is initialized so that the first bucket B1
contains all of T1..j. A sort is performed by applying the most important metric M1,
corresponding to the most important goal in the retrieval strategy. The result is a new set
of buckets B1..k, each containing items that are given the same integer score by M1.
Starting from B1, we count the contents of the buckets until we reach n, the number of
items we will ultimately return, and discard all remaining buckets. Their contents will
never make it into the result list. This process is then repeated with the remaining metrics
until there are n singleton buckets remaining (at which point further sorting would have
no effect) or until all metrics are used.

This multi-level sort can be replaced by a single sort, provided that the score for each
target entity can be made to reflect what its position would be in the more complex
version. Consider the case of two metrics, M1 and M2. Let bi be the upper bound on the
score for comparing a target entity against S with metric Mi, that is bi > max (Mi(S, T), for



13

any target entity T). The single-pass scoring function for the combination of these two
metrics would be S(S, T) = M2(S, T) + M1(S, T) * b2. With this function, we can sort the
target entity list and end up with the same set of buckets that we would have obtained
with a two-pass sort applying first M1 and then M2. In the general case, the scoring
function becomes

S(S, T) = Σi=1..m (Mi(S, T) * Π j=i+1..m bj)
where m is the number of metrics.6
A final optimization to note is that we are rarely interested in a complete sort of the

candidate list. Generally, we are returning a small set of the best answers, five in the case
of the movie recommender. We can get the top n targets by performing n O(L) max-
finding operations where L is the length of the candidate list. When the list is large (L >
2n), this is faster than performing an O (L log L) complete sort.

The max finding operation can be optimized for this comparison function by applying
metrics in decreasing order of importance (and multiplier magnitude). High- and low-
scoring targets may not need more than one or two metric applications to rule them in or
out of the top n.

3.3 Retrieval algorithm
Our original implementations of the FindMe algorithm retrieved large candidate sets.

We used promiscuous retrieval deliberately because other steps (such as tweaking steps)
filtered out many candidates and it was important not to exclude any potentially useful
target. In our Lisp implementations, the use of a large candidate set was reasonably
efficient since the candidates were already in memory. We found this not to be true as we
moved to relational databases for storing entity data. Queries that return large numbers of
rows are highly inefficient, and each retrieved entity must be allocated on the heap.
Employed against a relational store, our original algorithms yielded unacceptable
response times, sometimes greater than 10 minutes. It was necessary therefore to retrieve
more precisely – to get back just those items likely to be highly rated by the sort
algorithm.

Our solution was a natural outgrowth of the metric and strategy system that we had
developed for sorting, and was inspired by the CADET system, which performs nearest-
neighbor retrieval in relational databases (Shimazu, Kitano & Shibata, 1993). Each metric
became responsible for generating retrieval constraints based on the source entity. These
constraints could then be turned into SQL clauses when retrieval took place. This
approach was especially powerful for tweaks. A properly-constrained query for a tweak
such as “cheaper” will retrieve only the entities that will actually pass the “cheaper”
filter, avoiding the work of reading and instantiating entities that would be immediately
discarded.

The retrieval algorithm works as follows. To retrieve candidates for comparison
against a source entity, each metric creates a constraint. The constraints are ordered by
the priority of the metric within the current retrieval strategy. If the query is to be used for
a tweak, a constraint is created that implements the tweak and is given highest priority.

                                                          
6 As a practical matter, it should be noted that if there are too many metrics with too large a scoring range,
this function will become very large. For example, six metrics of range 50 already exceeds the capacity of a
32 bit unsigned integer: 506 > 232.
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This constraint is considered “non-optional.” An SQL query is created conjoining all the
constraints and is passed to the database. If no entities (or not enough) are returned, the
lowest priority constraint is dropped and the query resubmitted. This process can
continue until all of the optional constraints have been dropped.

The interaction between constraint set and candidate set size is dramatic: a four-
constraint query that returns nothing will often return thousands of entities when relaxed
to three constraints. We are considering a more flexible constraint scheme in which each
metric would propose a small set of progressively more inclusive constraints, rather than
just one. Since database access time dominates all other processing time in the system,
we expect that any additional computation involved would be outweighed by the
efficiencies to be had in more accurate retrieval.

3.4 Product data
The generic FindMe engine implemented in RPS knows nothing about restaurants,

movies or any other domain of recommendation. It simply applies similarity metrics to
entities that are described as feature sets. Our architecture has therefore decomposed the
task of creating a recommender system into two parts: the creation of a product database
in which unique items are associated with sets of features, and the specification of the
similarity metrics and retrieval strategies that are appropriate for those items.

An entity is represented in RPS simply as a set of integer features. This representation
is extremely generic, compact and efficient, and it can be easily stored in a relational
database. The product database is single table that associates an entity ID with its
features.

To create a feature set for a product, we must make use of whatever information is
available about the item’s qualities. In the domains where RPS has been applied, product
databases typically consist of a handful of fields describing a product’s qualities, such as
its price, and chunks of natural language text intended as a product description. Natural
language processing is needed to make use of the descriptive information. It is important
to note that we are interested only in comparing descriptions against each other: Is the
dining experience at restaurant A like the experience at restaurant B? Is the experience of
watching movie X similar to that of movie Y? We do not build sophisticated linguistic
structures, but instead transform each natural language description into atomic features
like those used to represent any other aspect of an entity.

Product descriptions in general tend to be not very complex syntactically, consisting
largely of descriptive adjectives and nouns. Typically, there are several categories of
information that are of interest. For restaurants, it might be qualities of the atmosphere
(“loud”, “romantic”) or qualities of the cuisine (“traditional”, “creative”, “bland”); for
wines, descriptions of the flavor of the wine (“berry”, “tobacco”), descriptions of the
wine’s body and texture (“gritty”, “silky”), etc. For each category, we identify the most
commonly used terms, usually nouns. We also identify modifiers both of quantity (“lots”,
“lacking”) and quality (“lovely”, “ugly”). For some applications, this level of keyword
identification is sufficient. In other cases, more in-depth analysis is required, including
phrase recognition and parsing. Descriptions of wines, with their evocative language,
have been the most difficult texts that we have tackled.
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3.5 Metrics
Similarity metrics and retrieval strategies are really the heart of knowledge-based

recommendation in a FindMe system. Metrics determine what counts a similar when two
items are being compared; retrieval strategies determine how important different aspects
of similarity are to the overall calculation. The creation of a new FindMe system requires
the creation and refinement of these two crucial kinds of information.

A similarity metric can be any function that takes two entities and returns a value
reflecting their similarity with respect to a given goal.7 Our original FindMe systems
implemented the similarity metric idea in many different domain-specific ways. For RPS,
we have created a small set of metric types general enough to cover all of the similarity
computations used in our other FindMe systems. One example is included here to give a
flavor for the kinds of comparisons these metrics perform.

Price is an obvious candidate for a similarity metric, because most consumer items
can be compared by price,. However, price is not a simple as it might seem. A user
looking for a restaurant similar to restaurant X at price Y is indicating that he or she is
willing to spend at least Y. Prices below Y shouldn’t be penalized as different the way
that prices above Y should be. Neither should prices below Y necessarily be preferred,
since the user is evidently willing to spend that amount. A price comparison can therefore
be implemented as a directional scalar metric, and has the following form:

Let S be the source entity, the item that the user has chosen.
Let T be the target entity that we are comparing against the source.
Let M be a directional metric with a decreasing preference for features in the set F
(such as the set of price features).
Let fs, ft ∈  F be features found in S and T, respectively.
Let b be the cardinality of the set F.
The score returned by the metric, M(S, T), is given by
b, if ft <= fs
b – (ft – fs), otherwise.8
If restaurant X has a price in the $30-50 price bracket and restaurant Y in the $50 and

up price bracket, this metric will report that the restaurant Y gets a score of 7 (out of a
possible 8) since it is one price bracket more expensive than X. Restaurant Z whose
typical tab is in the $15-30 price bracket would get the maximum score of 8 for price –
we do not penalize it for being cheaper than X.

Price is something of a special case since a product will usually have only one price.
Similarity metrics must also handle cases in which there are multiple features to be
compared in source and target. The multiple feature version of the metric goes through all
of the target features, aligning each to the feature in the source that gives the best score.
The scalar metric can also be non-directional. For example, when comparing shirts, it is
possible to compare the weight of different fabrics as a scalar quantity, but no direction of
preference can be assumed: shirts of different weights are just different. The score
becomes the absolute value of m – (ft – fs), in all cases.

                                                          
7 All FindMe metrics return integer values to facilitate the bucket sort. Larger numbers mean a better
match.
8 Note that this metric depends on the actual numeric difference between the integer features. Not all
metrics impose a semantics on the mapping of features to integers, but where scalar metrics such as this one
are used, all of the features in a category must be mapped into an integer range.



16

A feature such as cuisine in restaurants presents a more complex matching problem.
The Entree system represents cuisines in a semantic network, and uses marker passing to
calculate distances between them. For performance reasons, we opted not to use such
networks in the RPS metric set. Instead, there is a table metric, which can represent a
network through an adjacency matrix that records the distance from one feature to all
other features reachable from it. The matrix can, of course, represent not just semantic
networks but any mapping from a feature-pair to an integer.

Retrieval strategies are the arrangement of similarity metrics into priority
relationships. Usually the most important metric is obvious: cuisine for restaurants, grape
varietal for wines, genre for movies. Selecting and ordering the lower-priority metrics is
harder and often requires some experimentation. However, it is easy to get users to
respond to questions of the form “Which of Y or Z is the most similar to item X?”
Surveys consisting of well-chosen comparisons are very useful in determining what
priority to assign to different aspects of an item. Obviously, different individuals may
hold goals in different relative priorities. The most obvious example is the goal of not
paying too much money for something. In restaurants, we distinguish three strategies: a
normal retrieval strategy that puts money second after cuisine, an epicurean strategy that
puts money third after cuisine and quality, and a “money no object” strategy that does not
consider money at all.

Ultimately, what a FindMe system “knows” about a domain is fairly shallow:
different ways that items can be similar to each other, and standard ways of prioritizing
these individual assessments into overall strategies. None of the steps required to gather
this knowledge is particularly complex, and part of our longer-term research agenda is the
creation of tools to automate the majority of the process. At this stage in the development
of the technology, the most significant obstacle to the construction of effective FindMe
systems is the very practical problem of getting high-quality up-to-date product data.

4. Hybrid recommender systems
Knowledge engineering of the type described above is necessary for building a

knowledge-based recommender system. This is the inevitable “price of admission” for a
knowledge-based approach, a price that is not incurred by knowledge-weak method such
as collaborative filtering or machine learning. However, these weak methods suffer from
the ramp-up problem mentioned earlier. The differing strengths of these approaches
suggest that they may be complementary rather than competing approaches for the
generation of recommendations. A particular benefit of FindMe systems is that they
gather preference information without requiring that users make their ratings explicit.
Rather than requiring the user to input his or her preferences as a starting point, FindMe
systems let the user browse through a catalog using qualitative ratings as navigation aids.
Each navigation step informs the system about the user’s preferences at a finer grain of
detail than a single “buy” decision, and a user is likely to make several such navigation
steps (an average of 3 in Entree) while using the system.

Table 1 contrasts the collaborative filtering and knowledge-based approaches,
identifying the positive and negative aspects of each. The third row suggests what might
be achieved in an ideal hybrid that combines the techniques. Despite the necessary
investment in knowledge engineering, such a hybrid could offer good performance even
with little or no user data, and the benefits of collaborative filtering as data is collected.
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Knowledge-
based

A. No ramp-up required
B. Detailed qualitative preference feedback
(in FindMe systems)
C. Sensitive to preferences changes

H. Knowledge engineering.
I. Suggestion ability is static.

Collaborative
filtering

D. Can identify niches precisely.
E. Domain knowledge not needed.
F. Quality improves over time.
G. Personalized recommendations.

J. Quality dependent on large historical
data set.
K. Subject to statistical anomalies in
data.
L. Insensitive to preference changes

Ideal Hybrid A, B, C, D, F, G H

Table 1: Tradeoffs between knowledge-based and collaborative-filtering recommender systems.
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he possible synergy with FindMe systems appears particularly promising, since these
ystems, through preference-based browsing, permit the collection of detailed user ratings
ven for rarely purchased items like automobiles or houses.

.1 Combining recommendation techniques
Within FindMe systems, it is often the case that a retrieval strategy fails to

iscriminate the returned items completely. The system might be required to arbitrarily
elect 10 items to return, for example, out of a topmost bucket of size 20. In such a case,
e consider the result “under-discriminated.” Eliminating under-discriminated results in
indMe systems can be difficult because it requires the addition of one or more new
imilarity metrics, with attendant knowledge-engineering tasks, or it may require a more
n-depth representation of the products. Collaborative filtering, however, can add
dditional discrimination without requiring knowledge engineering.

Consider a system that, in addition to the FindMe recommender component, has
lso a collaborative filtering engine, where ratings are obtained by recording each
xample the user has seen and the user’s reaction to it. If a user names an item as a
tarting point, we can consider that a very high rating, since the user is seeking something
imilar to what he or she has seen and liked before. The exit point of the system could
lso be considered a high rating, since the user stops searching, but this is less reliable
ince the user may have given up without finding anything satisfactory. Each tweak along
he way we can consider a negative rating, since the user has found something to dislike.

ith this technique, we can accumulate ratings (typically many negative and a few
ositive) for users with only the overhead of logging their FindMe activity.

These ratings can be used to compute correlations between users. The operation of
his recommender is likely to be weak if it starts with a small amount of data, so we
ould not want to present its suggestions directly to users. However, we will not make a
ad suggestion if we only examine the items in the topmost under-discriminated bucket.
fter we have performed the normal FindMe ranking, we look at the user’s profile to rate

nd rank each item in the topmost bucket. There is little risk in applying collaborative
iltering here. In the worst case, if the ratings from the collaborative filter are random, we
ill still be selecting items that are equally similar as far as our knowledge-based system

s concerned.
Consider the following example: Alice connects to a version of Entree that includes

he collaborative filtering component. She registers as a new user, and starts browsing for
hicago restaurants by entering the name of her favorite restaurant at home, “Greens
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Restaurant” in San Francisco. “Greens” is characterized as serving “Californian
Vegetarian” cuisine. The top recommendation is “302 West,” which serves “Californian
Seafood.” It turns out that Alice is, in fact, a vegetarian, so she tweaks the system’s
cuisine choice and moves back towards vegetarian recommendations.

After the system has built up a bigger user base, another new user Ben approaches the
system with the same starting point: “Greens.” Since the recommendation given to Alice
was under-discriminated, her feedback and that of other users allows the system to more
fully discriminate Ben’s recommendation, and return “Jane’s,” a vegetarian restaurant,
preferring it over “302 West.”

This thought experiment suggests that a combination of knowledge-based and
collaborative-filtering techniques may produce a recommender system with many of the
characteristics of an ideal hybrid. Initial suggestions are good, since there is a knowledge
base to rely on. As the system’s database of ratings increases, it can move beyond the
knowledge base to characterize users more precisely. Because the knowledge base is
always present, users are not trapped by their past behavior. If Alice decides to stop being
a vegetarian, the system will not make it difficult for her to get recommendations for
steakhouses.

To test the validity of this approach, we used data gathered from the Entree system
over 3 years of public use, a total of 20,000 interactive sessions. We treat each session as
an individual user, since Entree has no way to identify unique returning users. (If
individually identified data were available, it would increase the accuracy of
collaborative filtering, since we would have fewer users and more ratings per user.) We
used 10,000 users for training, and from the remaining 10,000 selected “active” users,
those who had rated at least 15 restaurants. There were about 100 of these highly active
users. For each active user, we performed five trials selecting four, six or eight examples
to provide training data for the user and seven examples for testing, including one
restaurant that we know the user likes. The goal is for the system to predict out of the
seven test examples the one that the user would rate positively. This task is a reasonable
correlate for what we would like the system to actually perform, that is, to select the best
recommendation from an unordered bucket.

Figure 9 shows the results for three conditions compared using the precision of the
top suggestion: the percent of times that the correct restaurant is selected as the one the
user would like. In the random condition, the recommendation is chosen at random from
the test set. This is effectively what an unaugmented FindMe system would do. In the
average condition, the system chooses the recommendation that has the highest average
rating for all users. The collaborative filtering condition (CF) chooses its suggestion by
correlating the user’s known ratings with those of other users to perform the prediction.
Both collaborative filtering and using the average preference always suggest better than
chance. Once even a small number of ratings have been collected for a user, collaborative
filtering contributes substantially.
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Figure 9: Results of hybrid recommender experiments (precision of top ranked item)

While these findings suggest that the type of hybrid recommender system suggested
above will be effective, it does not incorporate all of the data available from navigational
actions in FindMe systems. The collaborative filtering technique used in this experiment
ignores the difference between user A not liking restaurant X because it is too expensive,
and user B not liking restaurant X because its cuisine is too traditional. Ideally, we would
like to aggregate users based on their reasons for disliking restaurants, also. The difficulty
in using the qualitative tweak data is that it increases the sparseness of an already sparse
data set. One of our next research directions for FindMe systems will be to explore ways
to manage the increased dimensionality of qualitative ratings. We are particularly
interested in the possible application of singular value decomposition (Deerwester, et al.
1990).

5. Related work
Knowledge-based recommender systems have gotten relatively little research

attention to date. As discussed earlier, the closest precedent for our use of knowledge-
based methods in retrieval comes from case-based reasoning. A case-based reasoning
system solves new problems by retrieving old problems likely to have similar solutions.
Researchers working on the retrieval of CBR cases have concentrated on developing
knowledge-based methods for precise, efficient retrieval of well-represented examples.
For some tasks, such as case-based educational systems, where cases serve a variety of
purposes, CBR systems have also explored multiple goal-based retrieval strategies like
those discussed in this paper (Burke & Kass, 1995).

Our use of tweaks is obviously related to CBR research in case adaptation. Note
however, that our use of the term is different. Tweaking in the context of CBR means to
adapt a returned case to make it more closely match the problem situation in which it will
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be applied. The tweaks that a user invokes in FindMe are applied much differently. We
cannot invent a new movie or change an existing one to match the user’s desires – the
best we can do is attempt a new retrieval, keeping the user’s preference in mind.

The problem of intelligent assistance for browsing, especially web browsing, is a
topic of active interest in the AI community. There are a number of lines of research
directed at understanding browsing behavior in users (Konstan, et al. 1997; Perkowitz &
Etzioni, 1998), extracting information from pages (Craven, et al. 1998; Knoblock et al.
1998, Cohen, 1998), and automatically locating related information (Lieberman, 1995).
Because the web presents an unconstrained domain, these systems must use knowledge-
poor methods, typically statistical ones.

In information retrieval research, retrieval is seen as the main task in interacting with
an information source, not browsing. The ability to tailor retrieval by obtaining user
response to retrieved items has been implemented in some information retrieval systems
through retrieval clustering (Cutting, et al., 1992) and through relevance feedback (Salton
& McGill, 1983).

Our approach differs from relevance feedback approaches in both explicitness and
flexibility. In most relevance feedback approaches, the user selects some retrieved
documents as being more relevant than others, but does not have any detailed feedback
about the features used in the retrieval process. In FindMe systems, tweaks supply
concrete domain-specific feedback. In addition, FindMe systems are not limited to
finding items based on similarity alone. The user does not say "Give me more items like
this one," the aim of relevance feedback and clustering systems, but instead asks for
items that are different from a presented item in some particular way.

Examples have been used as the basis for querying in databases since the
development of Query-By-Example (Ullman, 1988). Most full-featured database systems
offer the ability to construct queries in the form of a fictitious database record with
certain features fixed and others variable. The RABBIT system (Williams, et al. 1982)
took this capacity one step further and allowed retrieval by incremental reformulation,
letting the user incorporate parts of retrieved items into the query, successively refining
it. Like these systems, FindMe uses examples to help the user elaborate their queries, but
it is unique in the use of knowledge-based reformulation to redirect search based on
specific user goals.

Schneiderman’s “dynamic query” systems present another approach to database
navigation (Schneiderman, 1994). These systems use two-dimensional graphical maps of
a data space in which examples are typically represented by points. Queries are created
by moving sliders that correspond to features, and the items retrieved by the query are
shown as appropriately-colored points in the space. This technique has been very
effective for two-dimensional data such as maps, when the relevant retrieval variables are
scalar values. Like RPS, the dynamic query approach has the benefit of letting users
discover tradeoffs in the data because users can watch the pattern of the retrieved data
change as values are manipulated. Also, as we found in our early Car Navigator
experiments, direct manipulation is less effective when there are many features to be
manipulated, especially when users may not be aware of the relationships between them.



21

6. Conclusion
Knowledge-based recommender systems perform a needed function in a world of

ever-expanding information resources. Unlike other recommender systems, they do not
depend on large bodies of statistical data about particular rated items or particular users.
Our experience has shown that the knowledge component of these systems need not be
prohibitively large, since we need only enough knowledge to judge items as similar to
each other.

Further, knowledge-based recommender systems actually help users explore and
thereby understand an information space. Users are an integral part of the knowledge
discovery process, elaborating their information needs in the course of interacting with
the system. One need only have general knowledge about the set of items and only an
informal knowledge of one's needs; the system knows about the tradeoffs, category
boundaries, and useful search strategies in the domain.

Knowledge-based recommender systems are strongly complementary to other types
of recommender systems. We have shown one way that a hybrid knowledge-
based/collaborative system might be successfully constructed, but this is a fertile research
area with much room for future experimentation.
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