

CS 455/555 / Spring 2013 Intro to Networks and Communications

Whirlwind Introduction to the Internet (part 2)

Dr. Michele C. Weigle

http://www.cs.odu.edu/~mweigle/CS455-S13/

A Whirlwind Introduction to the Internet Overview

- What's the Internet (KR 1.1)
- Network Edge (KR 1.2)
- ▶ Network Core (KR 1.3)
- Performance: Loss and Delay (KR 1.4)
- Protocol Layering (KR 1.5)
- Networks Under Attack (KR 1.6)
- History (KR 1.7)

<complex-block>

Packets queue in router buffers

- packet arrival rate to link (temporarily) exceeds output link capacity
- packets queue, wait for turn

• If queue is full, packets are not admitted (dropped)

> 3

CS 455/555 - Spring 2013 - Weigle

Performance: Loss and Delay

Delay in packet-switched networks

- Packets experience variable delays along the path from source to destination
- Four sources of delay at each hop
 - Processing
 - Check for bit errors
 - Determine the output interface to forward packet on
 - Queuing

Propagation

Transmission

- Time spent waiting at outbound interface for transmission
- Duration depends on the level of congestion at the interface
- Duration depends on the level of congestion at the interface

Delay in Packet-Switched Networks Transmission & Propagation Delay

propagation delay

- time it takes a *bit* to travel (propagate) the length of a wire
- depends upon the length of the wire and the *propagation* speed of the physical medium (coaxial cable, fiber optics, air, etc.)
- tells you when the first bit will reach the other end of the wire

transmission delay

- time it takes to put (transmit) a *packet* on the wire
- depends on the length (size) of the packet and the transmission speed (or link speed or bandwidth)
- tells you when the last bit of the packet is transmitted (leave the sender)

See Java applet

Delay in Packet-Switched Networks Calculating Transmission & Propagation Delay

- propagation delay $(d_{prop} = m / s)$
 - divide the length of the wire (m) by the propagation speed (s) (typically 2.5 x 10⁸ meters/second)
 - end result is a time, so units should be seconds or milliseconds
- transmission delay $(d_{trans} = L / R)$
 - divide the size of the packet (L) by the transmission speed (R)
 - end result is a time, so units should be seconds or milliseconds

7

CS 455/555 - Spring 2013 - Weigle

Delay in Packet-Switched Networks Transmission & Propagation Delay

transmission speed (or link speed or bandwidth)

10 Mbps 20 ms

propagation delay

end-to-end delay

- time it takes for the entire packet to reach the receiver (i.e., when does the last bit of the packet reach the receiver?)
- transmission delay + propagation delay

8

Delay in Packet-Switched Networks Bandwidth Delay Product (BDP)

- R * dprop
- Three ways to think about it:
 - If you are sending continuously, how much can you send before the first bit is received?
 - Max amount of data that can be in the link at one time.
 - What size packet would you need so that $d_{trans} = d_{prop}$?

$$\frac{L}{R} = \frac{m}{s} \implies L = R \left(\frac{m}{s}\right) \implies L = R * d_{prop}$$

Performance: Loss and Delay Delay in packet-switched networks

- Typical transmission delay:
 - L/R (significant for low-speed links)
 - 120 μs (for 1,500 byte packet on a 100 Mbps Ethernet)
- Typical propagation delay:
 - $\leq 1 \ \mu s$ on a small campus
 - ≈ 25 ms to the West coast

- Typical processing delay:
 - a few microsecs or less
- Typical queuing delay:
 - depends on congestion

- What dominates end-to-end delay?
- Note that processing, transmission, and queuing delays are encountered at each hop
 - End-to-end delay is largely a function of the number of routers encountered along the path from source to destination

13

CS 455/555 - Spring 2013 - Weigle

Delay in Packet-Switched Networks Queuing Delay

• What affects queuing delay?

- traffic arrival rate (La)
- ▶ speed of outgoing link (*R*)
- nature of arriving traffic (uniform or bursty)
 hard to quantify
- Represent queuing delay with statistical measures
 - average queuing delay
 - variance of queuing delay
 - probability that queuing delay exceeds some value

• Traffic intensity (La/R)

- $La/R \sim 0$ avg queuing delay small
- $La/R \rightarrow 1$ avg queuing delay large
- ► La/R > 1 more "work" arriving than can be serviced, avg delay infinite!

See Java applet

CS 455/555 - Spring 2013 - Weigle

La/R -> 1

Questions

- What is the transmission delay for a 2000-byte packet over a 1 Mbps link?
- Where is the last bit of the packet after the transmission delay has passed?
- What is the transmission delay for a 250,000bit packet over a 1 Mbps link?

CS 455/555 - Spring 2013 - Weigle

Questions

- What are the four types of delay that are (potentially) encountered at every router/hop? Which one may not be encountered?
- What is the difference between transmission delay and propagation delay?
- What two things affect the duration of queuing delay for a particular packet?

16

Question

• How long would it take a 5000-bit packet to travel from source to destination over the following network?

Performance: Loss and Delay Example: What was the delay from my house?

• I live in Larchmont (less than 1 mile from campus)

% ping www.odu.edu PING www.odu.edu (128.82.111.39): 56 data bytes 64 bytes from 128.82.111.39: icmp_seq=0 ttl=116 time=13.851 ms 64 bytes from 128.82.111.39: icmp_seq=1 ttl=116 time=13.596 ms 64 bytes from 128.82.111.39: icmp_seq=2 ttl=116 time=13.139 ms 64 bytes from 128.82.111.39: icmp_seq=3 ttl=116 time=19.433 ms ^C --- www.odu.edu ping statistics ---4 packets transmitted, 4 packets received, 0.0% packet loss round-trip min/avg/max/stddev = 13.139/15.005/19.433/2.569 ms

Round trip time: time between sending data and the response returning, roughly equal to 2 * propagation delay

19

CS 455/555 - Spring 2013 - Weigle

Performance: Loss and Delay Example: What was the path from my house?

```
wrt54g.weigle.home my cable modem router
1
2
  10.11.184.1 Cox Cable default router
3
  68.10.14.137
4 nrfkdsrj01-ge0705.rd.hr.cox.net Cox network - Hampton Roads
  12.118.122.77
                   What's this?
5
  tbr1-p010401.wswdc.ip.att.net AT&T network - Rockville, MD
6
7 ar5-p3110.wswdc.ip.att.net
                                AT&T Gateway - Sprint network - DC
  att-gw.dc.sprint.net
8
  sl-st22-ash-15-0.sprintlink.net Sprint network - Ashburn, VA
9
10 sl-bb24-rly-8-0.sprintlink.net
                                        Sprint network - Relay, MD
11 sl-gw21-rly-9-0.sprintlink.net
12 sl-vwan-9-0.sprintlink.net ODU's Sprint default router
13 128.82.254.198 ODU's campus router
```

Note: This capture is from a couple years ago. ODU now has a Cox interface, so the traceroute is not as interesting now.

Performance: Loss and Delay Traceroute

- Traceroute program: provides delay measurement from source to router along end-end Internet path towards destination.
- For all *i*:
 - sends three packets that will reach router *i* on path towards destination
 - ▶ router *i* will return packets to sender
 - sender times interval between transmission and reply

21

CS 455/555 - Spring 2013 - Weigle

Performance: Loss and Delay Example: What was the route from my house?

% tra	aceroute	fast.cs.od	u.edu	
Trac	ing route	to fast.c:	s.odu.ed	u [128.82.4.4]
over	a maximu	m of 30 hoj	ps:	
1	1 ms	<1 ms	<1 ms	wrt54g.weigle.home [192.168.2.127]
2	29 ms	8 ms	8 ms	10.11.184.1
3	13 ms	13 ms	7 ms	68.10.14.137
4	9 ms	9 ms	23 ms	nrfkdsrj01-ge0705.rd.hr.cox.net [68.10.14.25]
5	17 ms	15 ms	14 ms	12.118.122.77
6	34 ms	16 ms	14 ms	tbr1-p010401.wswdc.ip.att.net [12.123.8.26]
7	13 ms	15 ms	13 ms	ar5-p3110.wswdc.ip.att.net [12.123.8.129]
8	18 ms	15 ms	19 ms	att-gw.dc.sprint.net [192.205.32.166]
9	15 ms	27 ms	22 ms	sl-st22-ash-15-0.sprintlink.net [144.232.29.207]
10	*	27 ms	37 ms	sl-bb24-rly-8-0.sprintlink.net [144.232.20.154]
11	18 ms	18 ms	18 ms	sl-qw21-rly-9-0.sprintlink.net [144.232.14.54]
12	21 ms	22 ms	19 ms	sl-vwan-9-0.sprintlink.net [160.81.98.58]
13	33 ms	50 ms	24 ms	128.82.254.198

Performance: Loss and Delay Packet Loss

- Queue (*buffer*) preceding the link has finite capacity
- Packet arriving to full queue dropped (*lost*)
- Lost packet may be retransmitted by previous node, by source end system, or not at all

Performance: Loss and Delay Throughput

- *throughput*: rate (bits/time unit) at which bits transferred between sender/receiver
 - *instantaneous*: rate at given point in time
 - average: rate over long(er) period of time

Performance: Loss and Delay Throughput: Internet Scenario

- Per-connection end-toend throughput:
 - $\min(R_c, R_s, R/10)$
- In practice:
 - *R_c* or *R_s* is often bottleneck

10 connections (fairly) share backbone bottleneck link R bits/sec

A Whirlwind Introduction to the Internet Overview

- What's the Internet (KR 1.1)
- Network Edge (KR 1.2)
- ▶ Network Core (KR 1.3)
- Performance: Loss and Delay (KR 1.4)
- Protocol Layering (KR 1.5)
- Networks Under Attack (KR 1.6)
- History (KR 1.7)

27

CS 455/555 - Spring 2013 - Weigle

Protocol Layering in the Internet Airline Example

Layers: each layer implements a service

- via its own internal-layer actions
- relying on services provided by layer below

ticket (purchase)		ticket (complain)	ticket
baggage (check)		baggage (claim	baggage
gates (load)		gates (unload)	gate
runway (takeoff)		runway (land)	takeoff/landing
airplane routing	airplane routing airplane routing	airplane routing	airplane routing
departure airport	intermediate air-traffic control centers	arrival airport	

Protocol Layering in the Internet Internet protocol layers ("stack")

Application layer

- Supporting network applications
 FTP, SMTP, HTTP
- Transport layer
 - Host-host data transfer
 TCP, UDP
- Network layer
 - Routing of packets from source to destination
 - ► IP, routing protocols
- Link layer
 - Data transfer between directly connected network elements
 Ethernet, 802.11, SONET, ...
- Physical layer
 - The insertion of individual bits "on the wire"
 - Manchester encoding

29

CS 455/555 - Spring 2013 - Weigle

application

transport

network

link

physical

Different services

specified at each

layer interface

Protocol Layering in the Internet Internet protocol layers ("stack")

• Each layer implements a protocol with its peer layer in a distributed system

Protocol Layering in the Internet

Logical communication


```
> 31
```

CS 455/555 - Spring 2013 - Weigle

Logical Communication Example The transport layer

Protocol Layering in the Internet Data flow through protocol layers

Protocol Layering in the Internet Protocol layering and data formats

At sender, each layer takes data from above

- Adds header information to create new data unit
- Passes new data unit to layer below

Protocol Layering in the Internet Common logical functions in most layers

Error control

- Make the logical channel between layers reliable (or simply more reliable)
- Flow control
 - Avoid overwhelming a peer with data

Segmentation and reassembly

 Partitioning large messages into smaller ones at the sender and reassembling them at the receiver

Multiplexing

 Allowing several higher-level sessions to share a single lower-level connection

Connection setup

Handshaking with a peer

35

CS 455/555 - Spring 2013 - Weigle

Questions

- What are the five network protocol layers?
- Which layers do end systems use?
- Which layers do routers use?

A Whirlwind Introduction to the Internet Overview

- What's the Internet (KR 1.1)
- Network Edge (KR 1.2)
- ▶ Network Core (KR 1.3)
- Performance: Loss and Delay (KR 1.4)
- Protocol Layering (KR 1.5)
- Networks Under Attack (KR 1.6)
- History (KR 1.7)

37

CS 455/555 - Spring 2013 - Weigle

Networks Under Attack

> Attacks on Internet infrastructure:

- infecting/attacking hosts: malware, spyware, worms, unauthorized access (data stealing, user accounts)
- denial of service: deny access to resources (servers, link bandwidth)
- Internet not originally designed with (much) security in mind
 - original vision: "a group of mutually trusting users attached to a transparent network" ☺
 - Internet protocol designers playing "catch-up"
 - Security considerations in all layers!

What Can Bad Guys Do? Malware

malware can get in host from:

- virus: self-replicating infection by receiving/ executing object (e.g., e-mail attachment)
- *worm:* self-replicating infection by passively receiving object that gets itself executed
- *spyware* can record keystrokes, web sites visited, upload info to collection site
- infected host can be enrolled in *botnet*, used for spam, DDoS attacks

> 39

CS 455/555 - Spring 2013 - Weigle

What Can Bad Guys Do? Denial of service (DoS) attacks

- Attackers make resources (server, bandwidth) unavailable to legitimate traffic by overwhelming resource with bogus traffic
- Distributed DoS
 - select target
 - break into hosts around the network (see malware)
 - send packets toward target from compromised hosts

What Can Bad Guys Do? Sniff, modify, delete your packets

Packet sniffing:

- broadcast media (shared Ethernet, wireless)
- promiscuous network interface reads/records all packets (e.g., including passwords!) passing by

What Can Bad Guys Do?

Masquerade as you

 IP spoofing: send packet with false source address

What Can Bad Guys Do? Masquerade as you

- IP spoofing: send packet with false source address
- Record-and-playback: sniff sensitive info (e.g., password), and use later
 - password holder is that user from system point of view

What Can Bad Guys Do?

Masquerade as you

- IP spoofing: send packet with false source address
- Record-and-playback: sniff sensitive info (e.g., password), and use later
 - password holder is that user from system point of view

Networks Under Attack! More on this later

- Security will be scattered throughout the rest of the course
- Chapter 8 focuses on security

45

CS 455/555 - Spring 2013 - Weigle

A Whirlwind Introduction to the Internet Overview

- What's the Internet (KR 1.1)
- Network Edge (KR 1.2)
- ▶ Network Core (KR 1.3)
- Performance: Loss and Delay (KR 1.4)
- Protocol Layering (KR 1.5)
- Networks Under Attack (KR 1.6)
- History (KR 1.7)

Internet History Lesson

- ▶ 1961-1972: Early packet-switching principles
- 1972-1980: Internetworking, new and proprietary nets
- 1980-1990: New protocols, a proliferation of networks
- 1990-today: commercialization, the Web, new apps

CS 455/555 - Spring 2013 - Weigle

Internet History Lesson

1961-1972: Early packet-switching principles

- 1961: Kleinrock queueing theory shows effectiveness of packetswitching
- 1964: Baran packetswitching in military nets
- 1967: ARPAnet conceived by Advanced Research Projects Agency
- 1969: first ARPAnet node operational

- ▶ 1972:
 - ARPAnet public demonstration
 - NCP (Network Control Protocol) first host-host protocol
 - first e-mail program
- ARPAnet has 15 nodes

THE ARPA NETWORK CS 455/555 - Spring 2013 - Weigle

Signa 7

940

*1 5RE

47

Internet History Lesson

1972-1980: Internetworking, new and proprietary nets

- 1970: ALOHAnet satellite network in Hawaii
- 1974: Cerf and Kahn architecture for interconnecting networks
- ▶ 1976: Ethernet at Xerox PARC
- late 70's: proprietary architectures: DECnet, SNA, XNA
- late 70's: switching fixed length packets (ATM precursor)
- > 1979: ARPAnet has 200 nodes

- Cerf and Kahn's internetworking principles:
 - minimalism, autonomy
 no internal changes required to interconnect networks
 - best effort service model
 - stateless routers
 - decentralized control

49

CS 455/555 - Spring 2013 - Weigle

Internet History Lesson

1980-1990: new protocols, a proliferation of networks

 1982: SMTP e-mail protocol defined
 1983: deployment of TCP/IP
 1983: DNS defined for nameto-IP-address translation
 1985: FTP protocol defined
 1988: TCP congestion control
 100,000 hosts connected to confederation of networks

Internet History Lesson

1990, 2000's: commercialization, the Web, new apps

- Early 1990's: ARPAnet decommissioned
- 1991: NSF lifts restrictions on commercial use of NSFnet (decommissioned, 1995)
- early 1990s: Web
 - hypertext [Bush 1945, Nelson 1960's]
 - ▶ HTML, HTTP: Berners-Lee
 - ▶ 1994: Mosaic, later Netscape
 - late 1990's: commercialization of the Web

▶ Late 1990's – 2000's:

- more killer apps: instant messaging, P2P file sharing
- network security to forefront
- est. 50 million host, 100 million+ users
- backbone links running at Gbps

51

CS 455/555 - Spring 2013 - Weigle

Internet History Lesson 2005-Present

- ▶ ~850 million hosts
 - smartphones, tablets
- Aggressive deployment of broadband access
- Increasing ubiquity of high-speed wireless access
- Emergence of online social networks:
 - Facebook: soon one billion users
- Service providers (Google, Microsoft) create their own networks
 - Bypass Internet, providing "instantaneous" access to search, emai, etc.
- E-commerce, universities, enterprises running their services in "cloud" (eg, Amazon EC2)

A Whirlwind Introduction to the Internet Summary

Covered a "to

Covered a "ton" of material

- Internet overview
- What's a protocol?
- Network edge, core, access network
- Performance: loss, delay
- Layering and service models
- Backbones, NAPs, ISPs
- Network security
- History

53

You now hopefully have:

- Context, overview, "feel" of networking
- More depth, detail later in course
- Something dangerous to mumble at parties!

CS 455/555 - Spring 2013 - Weigle