
Client/Server Computing
and Socket Programming

Dr. Michele C. Weigle

CS 455/555 / Spring 2013
Intro to Networks and Communications

http://www.cs.odu.edu/~mweigle/CS455-S13/

local ISP

company
network

regional ISP

Applications and Application-Layer Protocols
Overview
!  Application:

Communicating, distributed
processes
!  Running in network hosts in

"user space"
!  Exchange messages to

implement application

!  Application-layer protocols
!  One "piece" of an application
!  Defines messages exchanged

and actions taken
!  Uses services provided by

lower layer protocols

application
transport
network

link
physical

application

application
transport
network

link
physical

application

application
transport
network

link
physical

application

2 CS 455/555 - Spring 2013 - Weigle

Application-Layer Protocols
Overview
!  Application-layer protocols define:

!  The types of messages exchanged
!  The syntax and semantics of messages
!  The rules for when and how messages

are sent

!  Public protocols (defined in RFCs)
!  HTTP, FTP, SMTP, POP, IMAP, DNS

!  Proprietary protocols
!  RealAudio, RealVideo
!  IP telephony
!  …

local ISP

company
network

regional ISP

application
transport
network

link
physical

application

3 CS 455/555 - Spring 2013 - Weigle

Network Working Group R. Fielding UC Irvine
Request for Comments: 2616 J. Gettys Compaq/W3C
Obsoletes: 2068 J. Mogul Compaq
Category: Standards Track H. Frystyk W3C/MIT
 L. Masinter Xerox
June 1999 P. Leach Microsoft
 T. Berners-Lee W3C/MIT

 Hypertext Transfer Protocol -- HTTP/1.1

Abstract

 The Hypertext Transfer Protocol (HTTP) is an application-level
 protocol for distributed, collaborative, hypermedia information

 systems. It is a generic, stateless, protocol which can be used for
 many tasks beyond its use for hypertext, such as name servers and
 distributed object management systems, through extension of its

 request methods, error codes and headers [47]. A feature of HTTP is
 the typing and negotiation of data representation, allowing systems

 to be built independently of the data being transferred.

 HTTP has been in use by the World-Wide Web global information
 initiative since 1990. This specification defines the protocol
 referred to as "HTTP/1.1", and is an update to RFC 2068 [33].

4 CS 455/555 - Spring 2013 - Weigle

Application-Layer Protocols
Outline

!  The architecture of distributed systems (KR
2.1)
!  Client/Server computing
!  P2P computing
!  Hybrid (Client/Server and P2P) systems

!  Socket programming (KR 2.7-2.8)
!  programming model used in constructing

distributed systems

!  Example client/server systems and
their application-level protocols
!  The World-Wide Web (HTTP) - KR 2.2
!  Reliable file transfer (FTP) - KR 2.3
!  E-mail (SMTP & POP) - KR 2.4
!  Internet Domain Name System (DNS) - KR

2.5

local ISP

company
network

regional ISP

application
transport
network

link
physical

application

5 CS 455/555 - Spring 2013 - Weigle

Application-Layer Protocols
Outline
!  Protocol design issues:

!  In-band vs. out-of-band control
signaling

!  Push vs. pull protocols
!  Persistent vs. non-persistent

connections

!  Client/server service
architectures
!  Contacted server responds

versus forwards request

local ISP

company
network

regional ISP

application
transport
network

link
physical

application

6 CS 455/555 - Spring 2013 - Weigle

local ISP

company
network

regional ISP

Application-Layer Protocols
Client-Server Architecture

!  Server:
!  always-on host
!  permanent IP address
!  server farms for scaling

!  Clients:
!  communicate with server
!  may be intermittently

connected
!  may have dynamic IP

addresses
!  do not communicate

directly with each other

CS 455/555 - Spring 2013 - Weigle 7

Application-Layer Protocols
Pure P2P Architecture
!  No always-on server
!  Arbitrary end systems

directly communicate
!  Peers are intermittently

connected and change IP
addresses

!  Example: Gnutella

!  Highly scalable

!  But difficult to manage

CS 455/555 - Spring 2013 - Weigle 8

local ISP

company
network

regional ISP

Application-Layer Protocols
Hybrid of Client-Server and P2P
!  Napster

!  File transfer P2P
!  File search centralized:

!  Peers register content at central server
!  Peers query same central server to locate content

!  Instant messaging
!  Chatting between two users is P2P
!  Presence detection/location centralized:

!  User registers its IP address with central server when it comes
online

!  User contacts central server to find IP addresses of buddies

9 CS 455/555 - Spring 2013 - Weigle

Application-Layer Protocols
Transport Services
!  Data loss

!  Some apps (e.g., audio)
can tolerate some loss

!  Other apps (e.g., file
transfer, telnet) require
100% reliable data
transfer

!  Timing
!  Some apps (e.g., Internet

telephony, interactive
games) require low
delay to be "effective"

! Bandwidth
!  Some apps (e.g.,

multimedia) require
minimum amount of
bandwidth to be
"effective"

!  Other apps ("elastic
apps") make use of
whatever bandwidth
they get

CS 455/555 - Spring 2013 - Weigle 10

Internet Applications
Transport Service Requirements

CS 455/555 - Spring 2013 - Weigle 11

Application

file transfer
e-mail

Web documents
real-time audio/video

stored audio/video
interactive games
instant messaging

Data loss

no loss
no loss
no loss

loss-tolerant

loss-tolerant
loss-tolerant

no loss

Bandwidth

elastic
elastic
elastic

audio: 5kbps-1Mbps
video:10kbps-5Mbps

same as above
few kbps up

elastic

Time Sensitive

no
no
no

yes, 100's msec

yes, few secs
yes, 100's msec

yes and no

Internet Transport Protocols
Services Provided
!  TCP service:

!  connection-oriented: setup
required between client,
server

!  reliable transport between
sending and receiving
process

!  flow control: sender won't
overwhelm receiver

!  congestion control: throttle
sender when network
overloaded

!  does not provide: timing,
minimum bandwidth
guarantees

!  UDP service:
!  unreliable data transfer

between sending and
receiving process

!  does not provide:
connection setup,
reliability, flow control,
congestion control, timing,
or minimum bandwidth
guarantees

CS 455/555 - Spring 2013 - Weigle 12

Why bother? Why is
there a UDP?

Internet Applications
Application and Transport Protocols

CS 455/555 - Spring 2013 - Weigle 13

Application

e-mail
remote terminal access

Web
file transfer

streaming multimedia

Internet telephony

Application
layer protocol

SMTP [RFC 2821]
Telnet [RFC 854]
HTTP [RFC 2616]

FTP [RFC 959]
HTTP (YouTube),

proprietary (RealNetworks)
proprietary

(e.g., Skype)

Underlying
transport protocol

TCP
TCP
TCP
TCP

TCP or UDP

typically UDP

local ISP

company
network

regional ISP

The Application Layer
The client-server paradigm
!  Typical network application has

two pieces: client and server

!  Client:
!  Initiates contact with server

("speaks first")
!  Requests service from server
!  For Web, client is implemented in

browser; for e-mail, in mail reader
!  Server:

!  Provides requested service to client
!  "Always" running
!  May also include a "client

interface"

CS 455/555 - Spring 2013 - Weigle 14

reply

request

Client

Server

application
transport
network

link
physical

application

application
transport
network

link
physical

application

Client/Server Paradigm
Socket programming
!  Sockets are the

fundamental building
block for client/server
systems

!  Sockets are created and
managed by applications
!  Strong analogies with files

!  Two types of transport services
are available via the socket API:
!  UDP sockets: unreliable, datagram-oriented communications
!  TCP sockets: reliable, stream-oriented communications

CS 455/555 - Spring 2013 - Weigle 15

a host-local, application created/
released, OS-controlled interface
into which an application process
can both send and receive
messages to/from another
(remote or local) application
process

socket

Client/Server Paradigm
Socket-programming using TCP
!  A socket is an application created, OS-controlled

interface into which an application can both send and
receive messages to and from another application
!  A "door" between application processes and end-to-end

transport protocols

process

TCP with
buffers,

variables

socket
controlled by

application
developer

controlled by
operating

system
Host

process

TCP with
buffers,

variables

socket
controlled by
application
developer

controlled by
operating
system

Host
Internet

16 CS 455/555 - Spring 2013 - Weigle

Socket Programming using TCP
TCP socket programming model
!  A TCP socket provides a reliable bi-directional

communications channel from one process to
another
!  A "pair of pipes" abstraction

Process

socket

Host Host

Internet Process

socket bytes
bytes

write read

write read

17 CS 455/555 - Spring 2013 - Weigle

TCP with
buffers,

variables

TCP with
buffers,

variables

Socket Programming using TCP
Network addressing for sockets
!  Sockets are addressed using an IP address and port

number

process

socket

Host Host

process

socket Local port numbers
(e.g., 10001)

Internet domain
name of host

e.g., atria.cs.odu.edu DNS

Internet addresses of hosts
(e.g., 129.92.4.182)

18 CS 455/555 - Spring 2013 - Weigle

Socket Programming using TCP
Socket programming in general

!  Client creates a local TCP
socket specifying the IP and
port number of server process
!  if necessary, client resolves IP

address from hostname
!  Client contacts server

!  Server process must be running
!  Server must have created socket

that "welcomes" client's contact

!  When the client creates a
socket, the client's TCP
establishes connection to
server's TCP

!  When contacted by a client,
server creates a new socket for
server process to communicate
with client
!  This allows the server to talk

with multiple clients
CS 455/555 - Spring 2013 - Weigle 19

Client

socket

Internet Server

socket
bytes

bytes
write read

write read

Client-Server Model
TCP

! Before data can be transmitted, TCP requires
connection setup
!  called a 3-way handshake

Internet
bytes

TCP 3-way handshake

Client Server
bytes

20 CS 455/555 - Spring 2013 - Weigle

Client-Server Model and TCP
The three-way handshake
!  Client sends SYN

segment to server

!  Server receives
SYN, replies with SYN
+ACK segment
!  ACKs received SYN

!  Third segment may be
an ACK only or
an ACK+data

!  Takes 1 round-trip time
(RTT) to complete

client

Connection request (SYN)"

server

Connection granted "

(SYN/ACK)"

Connection setup complete"
 (ACK) + data!

RTT

21 CS 455/555 - Spring 2013 - Weigle

Socket Programming using TCP
Socket creation in the client-server model

process

Internet

process

bytes
TCP 3-way handshake

Client
Server

Client

client
socket socket

"welcoming"
socket socket

connection
socket socket

bytes

socket

22 CS 455/555 - Spring 2013 - Weigle

Socket Programming with TCP
Client Structure

!  Client reads from standard input,
writes to server via a socket

!  Server reads line from a socket

!  Server converts line to uppercase
and writes back to client

!  Client reads from socket, prints
modified line to standard output

CS 455/555 - Spring 2013 - Weigle 23

client socket

Client "
Process"

(1)

(2) (3)
Standard

output
(4)

Standard
input

Socket Programming with TCP - Example
Client Structure - Java

!  Client reads from standard input
(inFromUser stream), writes to
server via a socket
(outToServer stream)

!  Server reads line from a socket

!  Server converts line to uppercase
and writes back to client

!  Client reads from socket,
(inFromServer stream) prints
modified line to standard output

CS 455/555 - Spring 2013 - Weigle 24

client socket

in
Fr

om
Se

rv
er

ou
tT

oS
er

ve
r

inFromUser

Client "
Process"

(1)

(2) (3)
Standard

output
(4)

Standard
input

TCP Client
Examples - Java and Python
! Network code is similar

! Differences are in structure of code
!  Java - class-based, more complicated input/output

! TCPClient.py
! TCPClient.java

CS 455/555 - Spring 2013 - Weigle 25

http://www.cs.odu.edu/~mweigle/CS455-S13/Code

Socket Programming with TCP
Server Structure

!  Server listens on welcoming socket, waiting for
connection from client

!  Connecting client causes a new socket to be created
on server

!  Server reads input from socket

!  Server converts line to uppercase and writes back to
client

!  Server closes connection socket

CS 455/555 - Spring 2013 - Weigle 26

TCP Server
Examples - Java and Python
! As with client, network code is similar

! Differences are in structure of code
!  Java - class-based, more complicated input/output

! TCPServer.py
! TCPServer.java

CS 455/555 - Spring 2013 - Weigle 27

http://www.cs.odu.edu/~mweigle/CS455-S13/Code

Socket Programming with TCP - Example
Client/server TCP socket interaction in Java

CS 455/555 - Spring 2013 - Weigle 28

create socket for incoming request (port=10001)"
welcomeSocket = new ServerSocket(...)

wait for incoming"
connection request

connectionSocket =
 welcomeSocket.accept()

create socket,"
connect to atria.cs.odu.edu, port=10001"

clientSocket = new Socket(...)

close"
connectionSocket close"

clientSocket

Server (running on atria.cs.odu.edu)

Client (running on sirius.cs...)

read reply from"
clientSocket

write request using"
clientSocket read request from"

connectionSocket

write reply to"
connectionSocket

TCP "
connection setup"

program flow
data flow"

Socket Programming using UDP
UDP socket programming model
!  A UDP socket provides an unreliable bi-

directional communication channel from one
process to another
!  A "datagram" abstraction

Host Host

Process

socket

Internet Process

socket bytes
bytes

write read

write read

29 CS 455/555 - Spring 2013 - Weigle

UDP Client
Examples - Java and Python
!  Java network code makes the datagram nature of

UDP explicit
!  must create datagram and fill it with data and receiver

address

!  With UDP, there is no listening socket. Client and
server code are very similar.

!  UDPClient.py, UDPClient.java
!  UDPServer.py, UDPClient.java

CS 455/555 - Spring 2013 - Weigle 30

http://www.cs.odu.edu/~mweigle/CS455-S13/Code

Socket Programming with UDP - Example
Client/server UDP socket interaction in Java

CS 455/555 - Spring 2013 - Weigle 31

create socket for incoming
request (port=10005)"
serverSocket = new
 DatagramSocket()

create socket,"
clientSocket = new
 DatagramSocket()

read reply from"
clientSocket

create address  
(atria.cs.odu.edu, port = 10005)  
and send datagram using"

clientSocket
read request from"
serverSocket

write reply to"
serverSocket
specifying client IP address
and port number

program flow
data flow"

Server (running on atria.cs.odu.edu) Client

close"
clientSocket

Socket Programming
Message Boundaries

! TCP does not preserve message boundaries
!  just a stream of bytes
!  one call to readLine() may return data from multiple

packets
!  using BufferedReader in Java hides this

! UDP does preserve message boundaries
!  datagrams are separate entities
!  one call to receive() returns only a single datagram

32 CS 455/555 - Spring 2013 - Weigle

Socket Programming
Out of Class Practice Exercises
!  Modify the TCPClient so that it doesn't quit after

receiving the reply (allow the user to send and receive
multiple messages)

!  Run one server and connect multiple clients to the same
server to see how they are handled.

!  Modify the TCPServer so that it prints the IP address
and port of the connected client.

!  Do the same for UDPClient and UDPServer

!  Run the Java {TCP,UDP} client against the Python
{TCP, UDP} server. Does it work?

33 CS 455/555 - Spring 2013 - Weigle

Application-Layer Protocols
Outline

!  The architecture of distributed systems (KR
2.1)
!  Client/Server computing
!  P2P computing
!  Hybrid (Client/Server and P2P) systems

!  Socket programming (KR 2.7-2.8)
!  programming model used in constructing

distributed systems

!  Example client/server systems and
their application-level protocols
!  The World-Wide Web (HTTP) - KR 2.2
!  Reliable file transfer (FTP) - KR 2.3
!  E-mail (SMTP & POP) - KR 2.4
!  Internet Domain Name System (DNS) - KR

2.5

local ISP

company
network

regional ISP

application
transport
network

link
physical

application

34 CS 455/555 - Spring 2013 - Weigle

