
1

CS 455/555
Intro to Networks and Communications

Applications &
Application-Layer Protocols:

The Web & HTTP

Dr. Michele Weigle
Department of Computer Science

Old Dominion University
mweigle@cs.odu.edu

http://www.cs.odu.edu/~mweigle/CS455-S13

2

Application-Layer Protocols
Outline

!  The architecture of distributed systems
»  Client/Server computing
»  P2P computing
»  Hybrid (Client/Server and P2P) systems

!  The programming model used in
constructing distributed systems
»  Socket programming

!  Example client/server systems and
their application-layer protocols
»  The World-Wide Web (HTTP)
»  Reliable file transfer (FTP)
»  E-mail (SMTP & POP)
»  Internet Domain Name System (DNS)

local ISP

company
network

regional ISP

application
transport
network

link
physical

application

3

The Web & HTTP
Outline

! Terminology (KR 2.2.1)

! HTTP protocol
»  message format (KR 2.23)
»  non-persistent and

persistent connections
(KR 2.2.2)

»  pipelining

! Authentication

! Cookies (KR 2.2.4)

! Web caches (KR
2.2.5-2.2.6)

! Security (KR 8.1-8.3)

4

Application-Layer Protocols
The Web

! User agent (client) for the
Web is called a browser
»  Google Chrome
»  Mozilla Firefox
»  Apple Safari
»  MS Internet Explorer

! Server for the Web is
called a Web server
»  Apache (public domain)
»  MS Internet Information

Server (IIS)

5

Application-Layer Protocols
Web terminology

! Web page:
»  Addressed by a URL
»  Consists of "objects"

! Most Web pages consist of:
»  Base HTML page
»  Embedded objects

6

Application-Layer Protocols
Web terminology

! Web page:
»  Addressed by a URL
»  Consists of "objects"

! Most Web pages consist of:
»  Base HTML page
»  Embedded objects

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
 <meta http-equiv="content-type" content="text/html; charset=iso-8859-1">
 <title>CNN.com</title>
 <meta http-equiv="refresh" content="1800; URL=http://www.cnn.com/?">
 <link rel="StyleSheet" href="http://i.cnn.net/cnn/virtual/2001/style/main.css" type="text/css">
 <script language="JavaScript1.1" src="http://i.cnn.net/cnn/virtual/2000/code/main.js"
 type="text/javascript"> </script>
 <script language="JavaScript1.1" type="text/javascript"> </script>
<script language="JavaScript1.1" src="http://ar.atwola.com/file/adsWrapper.js"></script>
<style type="text/css"></style>
<script language="JavaScript">document.adoffset=0</script>
</head>

<body class="cnnMainBody" bgcolor="#FFFFFF">

 :
 :

7

Web Terminology
URLs (Universal Resource Locators)

www.someSchool.edu:8080/someDept/pic.gif

Server domain name" Object path name"

Optional server port (Default = port 80)"

! URL components
»  Server address
»  (Optional port number)
»  Path name

8

Web Terminology
The Hypertext Transfer Protocol (HTTP)

! Web's application layer
protocol

! Client/server model
»  client: browser that

requests, receives,
"displays" Web objects

»  server: Web server sends
objects in response to
requests

PC running
Firefox

Server
running
Apache

Mac running
Safari ! HTTP/1.0: RFC 1945

! HTTP/1.1: RFC 2616

9

The Hypertext Transfer Protocol
 HTTP Overview

! HTTP uses TCP sockets
»  Browser initiates TCP connection

to server (on port 80)

! HTTP messages (application -
layer protocol messages)
exchanged between browser
and Web server

! HTTP/1.0: RFC 1945
»  One request/response

interaction per connection

! HTTP/1.1: RFC 2616
»  Persistent connections
»  Pipelined connections

! HTTP is "stateless"
»  Server maintains no

information about
past browser requests

!  Protocols that maintain "state"
are complex!
»  Past history (state) must be

maintained
»  If server or client crashes,

their views of "state" may
be inconsistent and must be
reconciled

aside

10

The Hypertext Transfer Protocol
HTTP example
! User enters URL www.someSchool.edu/someDept/home.index

»  Referenced object contains HTML text and references
10 JPEG images

! Browser sends an HTTP "GET" request to the server
www.someSchool.edu

Web
Server

Browser

! Server will retrieve and
send the HTML file

! Browser will read the file
and sequentially make 10
separate requests for the
embedded JPEG images

...

11

HTTP 1.0 Example
URL www.someschool.edu/someDept/home.index

1) Browser initiates TCP connection to
server at www.someSchool.edu.
Port 80 is "well known" for server

2) Server "accepts" connection 3) Client writes an HTTP GET
request message (containing path)
to TCP connection socket

time

5) Server closes TCP connection

4) Server reads request message, forms
response message containing
requested object, writes message to
socket

Client Server

0) Server process at host
www.someSchool.edu waiting
for TCP connections on port 80

12

6) Browser reads response message
containing the HTML file.

 Ten references to JPEG objects are
found during the HTML parse

 The above steps are repeated for
each of the 10 JPEG objects

7) Browser initiates TCP connection to
server at www.someSchool.edu

8) Server "accepts" connection

HTTP 1.0 Example
URL www.someschool.edu/someDept/home.index

time

Client Server

13

The Web & HTTP
Outline

! Terminology (KR 2.2.1)

! HTTP protocol
»  message format (KR 2.23)
»  non-persistent and

persistent connections
(KR 2.2.2)

»  pipelining

! Authentication

! Cookies (KR 2.2.4)

! Web caches (KR
2.2.5-2.2.6)

! Security (KR 8.1-8.3)

14

The Hypertext Transfer Protocol
HTTP message format
! Two types of HTTP message formats: request and response

»  ASCII (human-readable format)

! HTTP request message:

method <SP> path <SP> version <CR><LF>"
header field name ":" value <CR><LF>"

header field name ":" value <CR><LF>"
<CR><LF>"
entity body"

…

»  Request line

»  Optional
header lines

»  Present only
for some
methods
(e.g., POST)

15

HTTP Message Format
Chrome and Safari request examples

!  How does Chrome process:
 http://www.cs.odu.edu:8080/~mweigle/ ?

GET /~mweigle/ HTTP/1.1
Host: www.cs.odu.edu:8080
Connection: keep-alive
Accept: text/html,application/xhtml+xml,application/
xml;q=0.9,*/*;q=0.8
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_2)
AppleWebKit/537.17 (KHTML, like Gecko) Chrome/24.0.1312.56
Safari/537.17
Accept-Encoding: gzip,deflate,sdch
Accept-Language: en-US,en;q=0.8
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3
Cookie: SESSID=TkZCQjBROTI2NjY4; __utma=35744766....

16

HTTP Message Format
Chrome and Safari request examples

!  How does Safari process:
 http://www.cs.odu.edu:8080/~mweigle/ ?

GET /~mweigle/ HTTP/1.1
Host: www.cs.odu.edu:8080
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_2)
AppleWebKit/536.26.17 (KHTML, like Gecko) Version/6.0.2
Safari/536.26.17
Accept: text/html,application/xhtml+xml,application/
xml;q=0.9,*/*;q=0.8
Accept-Language: en-us
Accept-Encoding: gzip, deflate
Cookie: __utma=256360345.1846808915.1...

17

HTTP Message Format
General response message format

version <SP> code <SP> phrase <CR><LF>"
header field name ":" value <CR><LF>"

header field name ":" value <CR><LF>"
<CR><LF>"
entity body"

…

! Response messages
»  ASCII (human-readable format)

! Message structure:

»  Status line

»  Optional
header lines

»  Requested
object, error
message
message, etc.

18

HTTP Message Format
Telnet example

% telnet www.cs.odu.edu 80
Trying 128.82.4.2...
Connected to xenon.cs.odu.edu.
Escape character is '^]'.
GET /~mweigle/files/foo.txt HTTP/1.0

HTTP/1.1 200 OK
Date: Wed, 30 Jan 2013 01:44:23 GMT
Server: Apache/2.2.17 (Unix) PHP/5.3.5 ...
Last-Modified: Thu, 19 May 2011 19:23:43 GMT
ETag: "5c-4a3a5f178cdd0"
Accept-Ranges: bytes
Content-Length: 92
Connection: close
Content-Type: text/plain

This test file is stored in the UNIX file
system at
/home/mweigle/public_html/files/foo.txt
Connection closed by foreign host.

Connect to HTTP
server port
Telnet output
Type GET command
plus blank line
HTTP response
status line

HTTP response
headers plus
blank line

Object content
Telnet output

19

HTTP Message Format
Telnet example (2)

% telnet www.msnbc.com 80
Trying 65.55.53.235...
Connected to www.msnbc.com.
Escape character is '^]'.
HEAD /notexist.html HTTP/1.0

HTTP/1.1 404 NotFound
Cache-Control: private
Content-Length: 52017
Content-Type: text/html; charset=utf-8
Server: Microsoft-IIS/7.5
X-AspNet-Version: 2.0.50727
X-Powered-By: ASP.NET
Date: Wed, 30 Jan 2013 02:00:20 GMT
Connection: close

Connection closed by foreign host.

Connect to HTTP
server port
Telnet output
Type GET command
plus blank line
HTTP response
status line

HTTP response
headers plus
blank line

Telnet output

20

HTTP Message Format
HTTP response status codes

200 OK
»  Request succeeded, requested object later in this message

301 Moved Permanently
»  Requested object moved, new location specified later in

this message (Location:)
400 Bad Request

»  Request message not understood by server

404 Not Found
»  Requested document not found on this server

505 HTTP Version Not Supported

! Sample response codes:

21

HTTP Message Format
Typical Request and Response Headers

Connection: Keep-Alive
User-Agent: Mozilla/4.74 [en] (WinNT; U)
Host: www.cs.odu.edu:8080
Accept: image/gif, image/x-xbitmap, image/jpeg,
 image/pjpeg, image/png, */*
Accept-Encoding: gzip
Accept-Language: en
Accept-Charset: iso-8859-1,*,utf-8
Cookie: SITESERVER=ID=8a064b785a043146e4599174a3d970

Request
headers

Response
headers

Date: Fri, 02 Feb 2001 19:10:11 GMT
Server: Apache/1.3.9 (Unix) (Red Hat/Linux)
Last-Modified: Tue, 30 Jan 2001 21:48:14 GMT
ETag: "1807135e-67-3a77369e"
Accept-Ranges: bytes
Content-Length: 103
Connection: close
Content-Type: text/plain

22

HTTP Protocol Design
Non-persistent connections
! The default browser/server behavior in HTTP/1.0 is for

the connection to be closed after the completion of the
request
»  Server parses request, responds, and closes TCP connection
»  The Connection: keep-alive header allows for

persistent connections

Web
Server

Browser

! With non-persistent connections
at least 2 RTTs are required to
fetch every object
»  1 RTT for TCP handshake
»  1 RTT for request/response

23

Non-Persistent Connections
Performance

A

B

propagation
transmission

nodal
processing

queueing

Web
Server

Browser

! With non-persistent connections
at least 2 RTTs are required to
fetch every object
»  1 RTT for TCP handshake
»  1 RTT for request/response

24

HTTP Protocol Design
Persistent v. non-persistent connections

!  Non-persistent
»  HTTP/1.0
»  Server parses request, responds, and closes TCP connection
»  At least 2 RTTs to fetch every object

!  Persistent
»  Default for HTTP/1.1 (negotiable in 1.0)
»  Client sends requests for multiple objects on one TCP connection
»  Server, parses request, responds, parses next request, responds...
»  Fewer RTTs

25

Non-Persistent vs. Persistent Connections
Performance Example

! A base page with five embedded images located
on the same web server

! How many TCP connections to download the page
with non-persistent connections?
»  How many round-trip times (RTTs)?

! How many TCP connections to download the page
with persistent connections?
»  How many RTTs?

26

Non-Persistent vs. Persistent Connections
Performance Example

!  A base page with five embedded images located on
the same web server

!  How many TCP connections to download the page
with non-persistent connections?
»  1 TCP connection to download the base page
»  1 TCP connection to download each of the 5 embedded

images
»  Total: 6 TCP connections

!  How many round-trip times (RTTs)?
»  Each TCP connection requires a handshake: 1 RTT
»  Once connection is setup, it takes 1 RTT to download an

object (send HTTP request, receive HTTP response)
»  Can only download one object per connection (non-

persistent), so 2 RTTs per connection
»  Total: 2 RTTs * 6 connections = 12 RTTs

27

Non-Persistent vs. Persistent Connections
Performance Example

!  A base page with five embedded images located on
the same web server

!  How many TCP connections to download the page
with persistent connections?
»  1 TCP connection to download the base page
»  Since all 5 embedded images are at the same web server as

the base page, no more TCP connections are needed
»  Total: 1 TCP connection

!  How many round-trip times (RTTs)?
»  Each TCP connection requires a handshake: 1 RTT
»  Once connection is setup, it takes 1 RTT to download an

object (send HTTP request, receive HTTP response)
»  There are 6 objects (base page + 5 images) to download
»  Total: 1 RTT (TCP handshake) + 6 RTTs (download all

objects) = 7 RTTs

28

Non-Persistent Connections
Performance

A

B

propagation
transmission

nodal
processing

queueing

! Example: A 1 KByte base page with five 1.5 KByte
embedded images coming from the West coast on an
OC-48 link
»  1 RTT for TCP handshake = 50 ms
»  1 RTT for request/response = 50 ms

! Page download time with non-persistent connections?
! Page download time with a persistent connection?

29

Non-Persistent vs. Persistent Connections
Your Turn

! A base page with 3 embedded images located on
the same web server
»  RTT from client to web server is 50 ms
»  slowest link on the path is 2 Mbps

" other links are high-speed, so transmission delay is negligible

»  base page is 1000 bytes
»  each image is 3000 bytes

! What is the total time (propagation + transmission
delays) needed to download the entire web page
with non-persistent HTTP connections?

30

Non-Persistent vs. Persistent Connections
Your Turn

! A base page with 3 embedded images located on
the same web server
»  RTT from client to web server is 50 ms
»  slowest link on the path is 2 Mbps

" other links are high-speed, so transmission delay is negligible

»  base page is 1000 bytes
»  each image is 3000 bytes

! What is the total time (propagation + transmission
delays) needed to download the entire web page
with persistent HTTP connections?

31

Non-Persistent Connections
Parallel connections
! To improve performance a browser can issue multiple

requests in parallel to a server (or servers)
»  Server parses request, responds, and closes TCP connection

Web
Server

Browser

Web
Server

! Page download time with parallel connections?
»  2 parallel connections =
»  4 parallel connections =

32

Persistent Connections
Persistent connections with pipelining

Persistent without pipelining:
! Client issues new request only when previous

response has been received
! At least one RTT for each embedded object

Persistent with pipelining:
! Default in HTTP/1.1
! Client sends requests as soon as it encounters a

embedded object
! As little as one RTT for all the embedded objects

33

Persistent Connections
Without Pipelining

HTTP request msg
base HTTP response msg

HTTP request msg
(1st embedded object)

HTTP response msg
(1st embedded object)

HTTP request msg
(2nd embedded object)

HTTP response msg
(2nd embedded object)

Client Server

Time

! Client issues new
request only when
previous response has
been received

! At least one RTT for
each embedded object

34

Persistent Connections
With Pipelining

HTTP request msg
base HTTP response msg

HTTP request msg
(1st embedded object)

HTTP response msg
(1st embedded object)

HTTP request msg
(2nd embedded object)

HTTP response msg
(2nd embedded object)

Client Server

Time

! Default in HTTP/1.1
! Client sends requests

as soon as it
encounters an
embedded object

! As little as one RTT
for all the embedded
objects

35

The Web & HTTP
Outline

! Terminology (KR 2.2.1)

! HTTP protocol
»  message format (KR 2.23)
»  non-persistent and

persistent connections
(KR 2.2.2)

»  pipelining

! Authentication

! Cookies (KR 2.2.4)

! Web caches (KR
2.2.5-2.2.6)

! Security (KR 8.1-8.3)

36

HTTP User-Server Interaction
Authentication
! Problem: How to limit

access to server documents?
»  Servers provide a means to

require users to authenticate
themselves

! HTTP includes a header tag
for user to specify name and
password (on a GET request)
»  If no authorization presented,

server refuses access, sends
WWW authenticate:
header line in response

! Stateless: client must send
authorization for each request
»  A stateless design
»  (But browser may cache

credentials)

usual HTTP request msg
401: authorization
WWW authenticate:

usual HTTP request msg
+ authorization:

usual HTTP response msg

usual HTTP request msg
+ authorization:

usual HTTP response msg

Client Server

Time

37

HTTP User-Server Interaction
Cookies

!  Server sends "cookie"
to browser in response
message
Set-cookie:<value>

!  Browser presents cookie in
later requests to same
server
cookie: <value>

!  Server matches cookie
with server-stored
information
»  Provides authentication
»  Client-side state

maintenance (remembering
user preferences, previous
choices, …)

usual HTTP request msg
usual HTTP response +
Set-cookie: S1

usual HTTP request msg
cookie: S1

usual HTTP request msg
cookie: S1

cookie-
specific
action

cookie-
specific
action

usual HTTP response msg

usual HTTP response +
Set-cookie: S2

Client Server

38

The Web & HTTP
Outline

! Terminology (KR 2.2.1)

! HTTP protocol
»  message format (KR 2.23)
»  non-persistent and

persistent connections
(KR 2.2.2)

»  pipelining

! Authentication

! Cookies (KR 2.2.4)

! Web caches (KR
2.2.5-2.2.6)

! Security (KR 8.1-8.3)

39

Caching on the Web
Web caches (Proxy servers)

! Users configure browsers
to send all requests through
a shared proxy server
»  Proxy server is a large

cache of web objects

! Web caches are used to satisfy client requests without
contacting the origin server

client Proxy
server

client

Origin
server

Open research question:
How does the proxy hit ratio
change with the population of
users sharing it?

! Browsers send all HTTP
requests to proxy
»  If object in cache, proxy

returns object in HTTP
response

»  Else proxy requests object
from origin server, then
returns it in HTTP response
to browser

40

Why do Proxy Caching?
The performance implications of caching

! Consider a cache that is
"close" to client
»  E.g., on the same LAN

! Nearby caches mean:
»  Smaller response times
»  Decreased traffic on egress

link to institutional ISP (often
the primary bottleneck)

To improve Web response times
should one buy a 10 Mbps access

link or a proxy server?

origin
servers

campus
network

1.5 Mbps
access link

10 Mbps LAN

public
Internet

proxy
server

41

Why Do Proxy Caching?
Delay in packet-switched networks (review)

A

B

propagation
transmission

nodal
processing

queueing

! Packets experience variable delays along the path
from source to destination

! Four sources of delay at each hop
»  Queuing delay depends on the load ("traffic intensity") on

the network

42

Why Do Proxy Caching?
Traffic Intensity, or Utilization

L = packet length (bits/packet)
R = link speed (bps)
a = average packet arrival rate (packets/second)

La = average bit arrival rate (bits/second)

La/R = traffic intensity

 = number of bits arriving per second / number of bits that can
be transmitted per second

What happens when La/R > 1?

43

Why do Proxy Caching?
The performance implications of caching

! Web performance without caching:
»  Mean object size (L) = 50 Kbits
»  Mean request (object) rate = 29/sec
»  Mean origin server access time = 1 sec

origin
servers

campus
network

1.5 Mbps
access link

10 Mbps LAN

»  Average response time = ??

public
Internet

! Average response time is
»  average access time over access link
+ average access time over public Internet

! Average access time over access link is...

44

Why do Proxy Caching?
The performance implications of caching

! Web performance without caching:
»  Mean object size (L) = 50 Kbits
»  Mean request (object) rate (a) = 29/sec
»  Mean origin server access time = 1 sec

origin
servers

campus
network

1.5 Mbps
access link

10 Mbps LAN

= 0.96

»  Average response time = ??

! Traffic intensity on the access link:

public
Internet

La = (50,000 bits/obj) (29 obj/sec)
 = 1,450,000 b/sec

R = 1.5 Mbps

 1 sec
1,500,000 bits

La/R = 1,450,000 bits
 1 sec

X"

45

Why do Proxy Caching?
The performance implications of caching

! Web performance without caching:
»  Mean object size = 50 Kbits
»  Mean request (object) rate (a) = 29/sec
»  Mean origin server access time = 1 sec

origin
servers

campus
network

1.5 Mbps
access link

10 Mbps LAN

»  Average response time = ??

public
Internet

! Average response time is
»  average access time over access link
 + average access time over Internet
»  a long time (w/traffic intensity = 0.96)
 + 1000 ms

Rule of thumb: If traffic intensity < 60%, ignore queuing delay.
 If traffic intensity >= 60%, assume queuing delay is large.

46

Why Do Proxy Caching?
Delay in packet-switched networks (review)

! Understand queuing delay in
terms of traffic intensity La/R
»  R = link transmission speed (bps)
»  L = packet length (bits/packet)
»  a = average packet arrival rate

(packets/second)

!  If La/R ~ 0: Average queuing delay small
! As La/R ⇒ 1: Delays become large
!  If La/R > 1: Work arrives faster than it can be serviced

»  Average delay goes to infinity!

Average
Queuing Delay!

1!
La/R

47

Why Do Proxy Caching?
The performance implications of caching

! Web performance without caching:
»  Mean object size = 50 Kbits
»  Mean request (object) rate = 29/sec
»  Mean origin server access time = 1 sec
»  Average response time = ??

! What is traffic intensity on LAN?

origin
servers

1.5 Mbps
access link

public
Internet

campus
network 10 Mbps LAN

48

Why Do Proxy Caching?
The performance implications of caching

!  Upgrade the access link to 10 Mbps
»  Response time = ??
»  Queuing is negligible hence response time ~ 1 s

!  Leave access link at 1.5 Mbps but add a proxy cache
with 40% hit ratio and 10 ms access time
»  Cache access time includes time to send request to

proxy, time to search cache, and time to send
response back to client

»  Response time = ??
»  Traffic intensity on access link =

origin
servers

campus
network

1.5 Mbps
access link

10 Mbps LAN

0.4 x 10 ms + 0.6 x 1,010 ms = 610 ms

0.6 x 0.97 = 0.58
»  Response time =

 A proxy cache lowers response time, lowers
access link utilization, and saves money!

public
Internet

49

Cache Performance for HTTP Requests
What determines the hit ratio?

! Cache size

! Locality of references
»  How often the same web object is requested

! How long objects remain "fresh" (unchanged)

! Object references that can't be cached at all
»  Dynamically generated content
»  Protected content
»  Content purchased for each use
»  Content that must always be up-to-date
»  Advertisements ("pay-per-click" issues)

50

Why Do Proxy Caching?
The case for proxy caching

! Lower latency for user's web
requests

! Reduced traffic at all network
levels

! Reduced load on servers
! Some level of fault tolerance

(network, servers)
! Reduced costs to ISPs, content

providers, etc., as web usage
continues to grow exponentially

! More rapid distribution of
content

origin
servers

campus
network

1.5 Mbps
access link

10 Mbps LAN

proxy
server

public
Internet

51

HTTP User-Server Interaction
The conditional GET
!  Goal: don’t send object if

cache has up-to-date cached
version
»  no object transmission delay
»  lower link utilization

!  Proxy specifies the date of

cached copy in HTTP request
 If-modified-since:<date>

!  Server's response contains
the object only if it has been
changed since the cached
date

!  Otherwise server returns:
 HTTP/1.0 304 Not Modified

 HTTP request
If-modified-since:

<date>

HTTP response
HTTP/1.0

304 Not Modified

object
not

modified

HTTP request
If-modified-since:

<date>

HTTP response
HTTP/1.0 200 OK

…
<data>

object
modified

Proxy Server

52

HTTP Message Format
Telnet example

% telnet www.cs.odu.edu 80
Trying 128.82.4.2...
Connected to xenon.cs.odu.edu.
Escape character is '^]'.
GET /~mweigle/files/foo.txt HTTP/1.0

HTTP/1.1 200 OK
Date: Wed, 30 Jan 2013 01:44:23 GMT
Server: Apache/2.2.17 (Unix) PHP/5.3.5 ...
Last-Modified: Thu, 19 May 2011 19:23:43 GMT
ETag: "5c-4a3a5f178cdd0"
Accept-Ranges: bytes
Content-Length: 92
Connection: close
Content-Type: text/plain

This test file is stored in the UNIX file
system at
/home/mweigle/public_html/files/foo.txt
Connection closed by foreign host.

Connect to HTTP
server port
Telnet output
Type GET command
plus blank line
HTTP response
status line

HTTP response
headers plus
blank line

Object content
Telnet output

53

The Web & HTTP
Outline

! Terminology (KR 2.2.1)

! HTTP protocol
»  message format (KR 2.23)
»  non-persistent and

persistent connections
(KR 2.2.2)

»  pipelining

! Authentication

! Cookies (KR 2.2.4)

! Web caches (KR
2.2.5-2.2.6)

! Security (KR 8.1-8.3)

54

Security
HTTPS

!  HTTP over Secure Socket Layer
»  Secure version of HTTP
»  Encrypts the session data

" Using either the SSL (Secure Socket Layer) protocol or the TLS
(Transport Layer Security) protocol

»  SSL and TLS work above TCP but below application
protocols (HTTP, SMTP, etc.)

!  Transferred using HTTP, encrypted
»  with default TCP/IP port 443

!  For Web pages, the URL begins with https://

!  Provides server authentication and encrypted
communication

55

Security
Authentication vs. Encryption

! Authentication
»  to confirm the sender is who they say they are
»  using a digital certificate issued by a trusted third party

! Encryption
»  to prevent others from reading the message
»  using a cipher (encryption-decryption algorithm)
»  with symmetric or asymmetric (related public and

private) keys

56

Security
Encryption and Decryption

! Symmetric cryptography
»  Same key for encryption and decryption

"  would be efficient as long as the key is pre-agreed and secure

»  Not suitable for the Web

! Asymmetric-key cryptography (also called Public-
key cryptography)
»  Using a pair of related public and private keys.

Encryption and decryption are asymmetric.
»  Used in HTTPS

57

Principles of Cryptography
The language of cryptography

symmetric key crypto: sender, receiver keys identical
public-key crypto: encryption key public, decryption key secret

"crypto" - secret
"graphy" - writing

58

Principles of Cryptography
Symmetric key cryptography

Substitution cipher: substituting one thing for another

»  Caesar cipher: substitute one letter for another by shifting
alphabet k letters

plaintext: abcdefghijklmnopqrstuvwxyz

ciphertext: lmnopqrstuvwxyzabcdefghijk

Plaintext: bob. i love you. alice

ciphertext: mzm. t wzgp jzf. lwtnp

E.g.:

59

Principles of Cryptography
Symmetric key cryptography

Substitution cipher: substituting one thing for another

»  monoalphabetic cipher: substitute one letter for another

plaintext: abcdefghijklmnopqrstuvwxyz

ciphertext: mnbvcxzasdfghjklpoiuytrewq

Plaintext: bob. i love you. alice
ciphertext: nkn. s gktc wky. mgsbc

E.g.:

60

Principles of Cryptography
Symmetric key cryptography

Symmetric key crypto: Bob and Alice know same key, KA-B

E.g.: Key is knowing substitution pattern in monoalphabetic

substitution cipher

plaintext ciphertext

K A-B

encryption
algorithm

decryption
algorithm

K A-B

plaintext
message, m

K (m)
A-B

K (m)
A-B m = K ()

A-B

61

Principles of Cryptography
Public Key Cryptography

! Symmetric key
cryptography
»  requires sender and

receiver to know
shared secret key

! Public key
cryptography
»  sender and receiver do

not share secret key
»  public encryption key

known to all
»  private decryption key

known only to receiver

62

Principles of Cryptography
Public Key Cryptography

63

RSA: Rivest, Shamir, Adelson algorithm

Public Key Cryptography Algorithms
Requirements

Need K+
B(m) and K-

B(m) such that

1.  K-
B(K+

B(m)) = m

2.  Given public key K+
B, it should be impossible to

compute private key K-
B

64

RSA
Another Important Property

The following property will be very useful later:

K (K (m)) = m B B
- +

K (K (m)) B B
+ -

=

use public key
first, followed by
private key

use private key
first, followed by
public key

Result is the same!

65

Public Key Cryptography
How To Bind a Public Key to Its User?

! Public-key infrastructure (PKI)
»  Provide a trusted third party (Certifying Authority) to

use identity certificates to bind public keys to users
»  PKI may refer to the software that manages certificates

in a large-scale setting

! A certificate may be revoked
»  check the certificate revocation list (CRL)

66

Public Key Cryptography
How to Generate a Certificate?

! Generate a public-private key pair from a large
random number

! Keep the private key, send the public key and
identifying information to a Certificate Authority
(CA)

! Pay a fee to the CA
! The CA verifies the identity
! The CA creates a certificate (including all ID

information and the URL of the web site)
! The CA signs the certificate (encoded with its own

private key) and sends the signed certificate to you

67

Key Distribution and Certification
Certification Authorities

private

!  Binds public key to
particular entity, E.

!  E registers its public key
with CA.
»  E provides "proof of

identity" to CA.
»  CA creates certificate

binding E to its public key.
»  Certificate containing E's

public key digitally signed
by CA – CA says "this is
E's public key"

Certification
Authority (CA)

68

Key Distribution and Certification
Certification Authorities

When Alice wants Bob's public key:
»  get Bob's certificate (Bob or elsewhere).
»  apply CA's public key to Bob's certificate, get Bob's

public key
" web browsers and other apps are pre-loaded with public keys

for various CAs

Bob's public
key, KB

+
digital
signature
(decrypt)

KCA
- (KB

+)

69

HTTPS
Putting Everything Together

! Server has obtained a certificate validating that it is
who it says it is.
»  certificate contains: CA- (S+, ID information)

! Server sends: m, S-(m), CA- (S+, ID information)
! Client uses CA's public key to open certificate, then

gets server's public key.
! Client uses server's public key S+ to open encrypted

message S-(m)
! Client compares message to unencrypted message m
! Once authenticated, client can encrypt its messages

with the server's public key, S+.

70

The Web & HTTP
Outline

! Terminology (KR 2.2.1)

! HTTP protocol
»  message format (KR 2.23)
»  non-persistent and

persistent connections
(KR 2.2.2)

»  pipelining

! Authentication

! Cookies (KR 2.2.4)

! Web caches (KR
2.2.5-2.2.6)

! Security (KR 8.1-8.3)

71

Application-Layer Protocols
Outline

!  The architecture of distributed systems
»  Client/Server computing
»  P2P computing
»  Hybrid (Client/Server and P2P) systems

!  The programming model used in
constructing distributed systems
»  Socket programming

!  Example client/server systems and
their application-layer protocols
»  The World-Wide Web (HTTP)
»  Reliable file transfer (FTP)
»  E-mail (SMTP & POP)
»  Internet Domain Name System (DNS)

local ISP

company
network

regional ISP

application
transport
network

link
physical

application

